多元线性回归分析范例

合集下载

多元线性回归分析范例

多元线性回归分析范例

多元线性回归分析范例多元线性回归是一种用于预测因变量和多个自变量之间关系的统计分析方法。

它假设因变量与自变量之间存在线性关系,并通过拟合一个多元线性模型来估计因变量的值。

在本文中,我们将使用一个实际的数据集来进行多元线性回归分析的范例。

数据集介绍:我们选取的数据集是一份汽车销售数据,包括了汽车的价格(因变量)和多个与汽车相关的特征(自变量),如车龄、行驶里程、汽车品牌等。

我们的目标是通过这些特征来预测汽车的价格。

数据集包括了100个样本。

数据集的构成如下:车龄(年),行驶里程(万公里),品牌,价格(万元)----------------------------------------5,10,A,153,5,B,207,12,C,10...,...,...,...建立多元线性回归模型:我们首先需要将数据集划分为自变量矩阵X和因变量向量y。

其中,自变量矩阵X包括了车龄、行驶里程和品牌等特征,因变量向量y包括了价格。

在Python中,我们可以使用NumPy和Pandas库来处理和分析数据。

我们可以使用Pandas的DataFrame来存储数据集,并使用NumPy的polyfit函数来拟合多元线性模型。

首先,我们导入所需的库并读取数据集:```pythonimport pandas as pdimport numpy as np#读取数据集data = pd.read_csv('car_sales.csv')```然后,我们将数据集划分为自变量矩阵X和因变量向量y:```python#划分自变量矩阵X和因变量向量yX = data[['车龄', '行驶里程', '品牌']]y = data['价格']```接下来,我们使用polyfit函数来拟合多元线性模型。

我们将自变量矩阵X和因变量向量y作为输入,并指定多项式的次数(线性模型的次数为1):```python#拟合多元线性模型coefficients = np.polyfit(X, y, deg=1)```最后,我们可以使用拟合得到的模型参数来预测新的样本。

多元线性回归分析的实例研究

多元线性回归分析的实例研究

多元线性回归分析的实例研究多元线性回归是一种经典的统计方法,用于研究多个自变量对一个因变量的影响关系。

在实际应用中,多元线性回归分析可以帮助我们理解多个因素对一些现象的综合影响,并通过构建模型来进行预测和决策。

本文将以一个假想的房价分析为例,详细介绍多元线性回归分析的步骤、数据解释以及结果分析。

假设我们想要研究一个城市的房价与面积、房龄和地理位置之间的关系。

我们收集了100个房源的数据,包括房价(因变量)、面积(自变量1)、房龄(自变量2)和地理位置(自变量3)。

下面是我们的数据:序号,房价(万元),面积(平方米),房龄(年),地理位置(距市中心距离,公里)----,------------,--------------,----------,--------------------------------1,150,120,5,22,200,150,8,63,100,80,2,104,180,130,10,55,220,160,12,3...,...,...,...,...100,250,180,15,1首先,我们需要对数据进行描述性统计分析。

通过计算平均值、标准差、最小值、最大值等统计量,可以初步了解数据的分布和变异程度。

然后,我们需要进行回归模型的拟合。

回归模型可以表示为:房价=β0+β1*面积+β2*房龄+β3*地理位置+ε其中,β0、β1、β2、β3是待估计的回归系数,ε是模型的误差项。

回归系数表示自变量对因变量的影响大小和方向。

为了估计回归系数,我们可以使用最小二乘法。

最小二乘法通过找到一组回归系数,使得实际观测值与模型预测值之间的平方误差最小化。

在本例中,我们可以使用统计软件进行回归模型的拟合和参数估计。

假设我们得到的回归模型如下:房价=100+1.5*面积-5*房龄+10*地理位置接着,我们需要对回归模型进行评价和解释。

首先,我们可以计算回归模型的决定系数(R^2),它表示因变量的变异中能够被模型解释的比例。

《2024年多元线性回归分析的实例研究》范文

《2024年多元线性回归分析的实例研究》范文

《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计学方法,用于探究一个因变量与多个自变量之间的关系。

这种方法在各个领域的研究中广泛应用,如经济学、社会学、心理学等。

本文将通过一个具体的实例,展示多元线性回归分析的应用过程及其实证结果。

二、研究背景与目的本研究以某地区房价为研究对象,探讨房价与地理位置、房屋面积、房屋装修等因素之间的关系。

目的是通过多元线性回归分析,找出影响房价的主要因素,为房地产投资者和购房者提供参考依据。

三、数据收集与处理本研究采用某地区房地产交易数据,包括房价、地理位置、房屋面积、房屋装修等变量。

在数据收集过程中,我们确保数据的准确性和完整性,并对数据进行清洗和处理,以消除异常值和缺失值的影响。

四、多元线性回归分析(一)模型构建根据研究目的和收集的数据,构建多元线性回归模型。

假设房价为因变量Y,地理位置、房屋面积、房屋装修等因素为自变量X1、X2、X3。

则模型可以表示为:Y = β0 + β1X1 + β2X2 +β3X3 + ε。

其中,β0为常数项,β1、β2、β3为回归系数,ε为随机误差项。

(二)参数估计与假设检验利用统计软件对模型进行参数估计,得到各回归系数的估计值及其显著性水平。

通过假设检验,检验自变量与因变量之间的线性关系是否显著。

若显著性水平低于预设的阈值(如0.05),则认为自变量与因变量之间存在显著的线性关系。

(三)模型检验与优化对模型进行检验和优化,包括检查模型的拟合优度、自相关性和异方差性等。

若存在显著问题,则采取相应的方法进行修正和优化。

五、实证结果与分析(一)回归系数解释根据参数估计结果,得出各回归系数的估计值。

解释各系数在模型中的意义和作用,如地理位置对房价的影响程度、房屋面积对房价的影响程度等。

(二)实证结果分析根据实证结果,分析自变量与因变量之间的关系及影响程度。

通过对比各回归系数的估计值和显著性水平,找出影响房价的主要因素。

同时,结合实际情况,对实证结果进行深入分析和解释。

多元线性回归分析范例

多元线性回归分析范例

国际旅游外汇收入是国民经济发展的重要组成部分, 影响一个国家或地区旅游收入的因素包 括自然、文化、社会、经济、交通等多方面的因素,本例研究第三产业对旅游外汇收入的影响。

《中国统计年鉴》 把第三产业划分为12个组成部分, 分别为 x 农林牧渔服务业 ,x 21地质勘查水利 管理业 ,x 交通运输仓储和邮电通信业 ,x 批发零售贸易和餐饮业 ,x 金融保险 534业,x 房地产业 ,x 社会服务业 ,x 卫生体育和社会福利业, x 教育文化艺术和广播 ,x 科学研106987究和综合艺术 ,x 党 政机关, x 其他行业。

采用 1998年我国 31 个省、市、自治区的数据, 1211以国际旅游外汇收入 (百 万美元)为因变量 y ,以如上 12 个行业为自变量做多元线性回归,其中自变量单位为亿元人民 币。

即样本量n=31,变量 p=12。

利用 SPSS 软件对数据进行处理,输出:图1 输入/移除变量图 1 即输入了所有模型中的变量,分别为x :农林牧渔服务业 1x :地质勘查水利管理业 2x 电通信业 3x :批发零售贸易和餐饮业 4x :金融保险业 6x :社会服务业 7x :卫生体育和社会福利业 8x 播 9 x :科学研究和综合艺术 10x :党政机关 11x12 .图2 模型概述2=0.935R 。

由决 即回归方程对样本观测值的拟合程度,复相关系数R=0.875,决定系数2决定,得出回归拟合的效果较好,但是并不能作为严格的显著性检验。

由R 定系数接近 1 模型优劣时需慎重,尤其是样本量与自变量个数接近时。

:交通运输仓储和邮5x :房地产业 :教育文化艺术和广 :其他行业图3 回归方程显著性的F检验F=10.482,F(n,n-p-1)=F(30,18)=2.11(α =0.05),P值=0.000,表明回归方程高度显著,αα即12 个自变量整体对因变量y 产生显著线性影响。

但是并不能说明回归方程中所有自变量都对因变量y 有显著影响,因此还要对回归系数进行检验。

《2024年多元线性回归分析的实例研究》范文

《2024年多元线性回归分析的实例研究》范文

《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的关系。

在社会科学、经济分析、医学等多个领域,这种分析方法的应用都十分重要。

本实例研究以一个具体的商业案例为例,展示了如何应用多元线性回归分析方法进行研究,以便深入理解和探索各个变量之间的潜在关系。

二、背景介绍以某电子商务公司的销售额预测为例。

电子商务公司销售量的影响因素很多,包括市场宣传、商品价格、消费者喜好等。

因此,本文通过收集多个因素的数据,使用多元线性回归分析,以期达到更准确的销售预测和因素分析。

三、数据收集与处理为了进行多元线性回归分析,我们首先需要收集相关数据。

在本例中,我们收集了以下几个关键变量的数据:销售额(因变量)、广告投入、商品价格、消费者年龄分布、消费者性别比例等。

这些数据来自电子商务公司的历史销售记录和调查问卷。

在收集到数据后,我们需要对数据进行清洗和处理。

这包括去除无效数据、处理缺失值、标准化处理等步骤。

经过处理后,我们可以得到一个干净且结构化的数据集,为后续的多元线性回归分析提供基础。

四、多元线性回归分析1. 模型建立根据所收集的数据和实际情况,我们建立了如下的多元线性回归模型:销售额= β0 + β1广告投入+ β2商品价格+ β3消费者年龄分布+ β4消费者性别比例+ ε其中,β0为常数项,β1、β2、β3和β4为回归系数,ε为误差项。

2. 模型参数估计通过使用统计软件进行多元线性回归分析,我们可以得到每个变量的回归系数和显著性水平等参数。

这些参数反映了各个变量对销售额的影响程度和方向。

3. 模型检验与优化为了检验模型的可靠性和准确性,我们需要对模型进行假设检验、R方检验和残差分析等步骤。

同时,我们还可以通过引入交互项、调整自变量等方式优化模型,提高预测精度。

五、结果分析与讨论1. 结果解读根据多元线性回归分析的结果,我们可以得到以下结论:广告投入、商品价格、消费者年龄分布和消费者性别比例均对销售额有显著影响。

多元线性回归模型的案例分析

多元线性回归模型的案例分析

多元线性回归模型的案例分析年份 Y/千克 X/元 P 1/(元/千克)P 2/(元/千克)P 3/(元/千克)年份 Y/千克 X/元 P 1/(元/千克)P 2/(元/千克)P 3/(元/千克)1980 397 1992 911 1981 413 1993 931 1982 439 1994 1021 1983 459 1995 1165 1984 492 1996 1349 1985 528 1997 1449 1986 560 1998 1575 1987 624 1999 1759 1988 666 2000 1994 1989 717 2001 2258 1990 768 2002 24781991843(1)求出该地区关于家庭鸡肉消费需求的如下模型:01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2)请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。

先做回归分析,过程如下:输出结果如下:所以,回归方程为:123ln 0.73150.3463ln 0.5021ln 0.1469ln 0.0872ln Y X P P P =-+-++由上述回归结果可以知道,鸡肉消费需求受家庭收入水平和鸡肉价格的影响,而牛肉价格和猪肉价格对鸡肉消费需求的影响并不显著。

验证猪肉价格和鸡肉价格是否有影响,可以通过赤池准则(AIC )和施瓦茨准则(SC )。

若AIC 值或SC 值增加了,就应该去掉该解释变量。

去掉猪肉价格P 2与牛肉价格P 3重新进行回归分析,结果如下:VariableCoefficient Std. Error t-Statistic Prob. C LOG(X) LOG(P1)R-squaredMean dependentvarAdjusted R-squared . dependent var . of regression Akaike info criterionSum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic )通过比较可以看出,AIC 值和SC 值都变小了,所以应该去掉猪肉价格P 2与牛肉价格P 3这两个解释变量。

(完整word版)多元线性回归模型案例分析

(完整word版)多元线性回归模型案例分析

多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。

此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。

影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。

(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。

二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。

暂不考虑文化程度及人口分布的影响。

从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。

在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。

其中已有变量:“c ”—截距项 “resid ”—剩余项。

商务统计学课件-多元线性回归分析实例应用

商务统计学课件-多元线性回归分析实例应用

6.80
13.65
14.25
27
8.27
6.50
13.70
13.65
28
7.67
5.75
13.75
13.75
29
7.93
5.80
13.80
13.85
30
9.26
6.80
13.70
14.25
销售周期
1
销售价格/元
其他公司平均销售价格
/元
多元线性回归分析应用
多元线性回归分析应用

Y 表示牙膏销售量,X 1 表示广告费用,X 2表示销售价格, X 3
个自变量之间的线性相关程度很高,回归方程的拟合效果较好。
一元线性回归分析应用

广告费用的回归系数检验 t1 3.981 ,对应的 P 0.000491 0.05
销售价格的回归系数检验 t2 3.696 ,对应的 P 0.001028 0.05
其它公司平均销售价格的回归系数检验

14
1551.3
125.0
45.8
29.1
15
1601.2
137.8
51.7
24.6
16
2311.7
175.6
67.2
27.5
17
2126.7
155.2
65.0
26.5
18
2256.5
174.3
65.4
26.8
万元
表示其他公司平均销售价格。建立销售额的样本线性回归方程如
下:
Yˆi 15.044 0.501X 1i 2.358 X 2i 1.612 X 3i
一元线性回归分析应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国际旅游外汇收入是国民经济发展的重要组成部分,影响一个国家或地区旅游收入的因素包括自然、文化、社会、经济、交通等多方面的因素,本例研究第三产业对旅游外汇收入的影响。

《中国统计年鉴》把第三产业划分为12个组成部分,分别为x1农林牧渔服务业,x2地质勘查水利管理业,x3交通运输仓储和邮电通信业,x4批发零售贸易和餐饮业,x5金融保险业,x6房地产业,x7社会服务业,x8卫生体育和社会福利业,x9教育文化艺术和广播,x10科学研究和综合艺术,x11党政机关,x12其他行业。

采用1998年我国31 个省、市、自治区的数据,以国际旅游外汇收入(百万美元)为因变量y,以如上12 个行业为自变量做多元线性回归,其中自变量单位为亿元人民币。

即样本量n=31,变量p=12。

利用SPSS软件对数据进行处理,输出:
图1 输入/移除变量
图1即输入了所有模型中的变量,分别为
x1:农林牧渔服务业
x2:地质勘查水利管理业
x3:交通运输仓储和邮电通信业
x4:批发零售贸易和餐饮业
x5:金融保险业
x6:房地产业
x7:社会服务业
x8:卫生体育和社会福利业
x9:教育文化艺术和广播
x10:科学研究和综合艺术
x11:党政机关
x12:其他行业
图2 模型概述
即回归方程对样本观测值的拟合程度,复相关系数R=0.875,决定系数R 2=0.935。

由决定系数接近1,得出回归拟合的效果较好,但是并不能作为严格的显著性检验。

由R 2决定模型优劣时需慎重,尤其是样本量与自变量个数接近时。

图3 回归方程显著性的F 检验
F=10.482,F α(n,n-p-1)=F α(30,18)=2.11(α=0.05),P 值=0.000,表明回归方程高度显著,即12个自变量整体对因变量y 产生显著线性影响。

但是并不能说明回归方程中所有自变量都对因变量y 有显著影响,因此还要对回归系数进行检验。

图4 回归系数的显著性t 检验(t 0.05(20)=1.725)
y 对12个自变量的线性回归方程为:
1234
5678
9101112y 205.388 1.438 2.622 3.2970.9465.521 4.068 4.16215.40417.3389.15510.536 1.37x x x x x x x x x x x x =--++--++-++-+
但是,负的回归系数显然是不合理的,其原因可能是自变量之间的共线性。

所以这一回归方程并不理想,所选自变量数目过多,部分回归系数的显著性检验不能通过,这就是样本量个数n太小,而自变量个数p又较多造成R2虚假现象。

如果样本量再稍作改变,未知参数就会发生较大变化,即表现出很不稳定的状况。

在一元线性回归中,回归系数显著性的t检验与回归方程显著性的F检验是等价的,而在多元线性回归中,这两种检验是不等价的,某个或某几个自变量的系数不显著,回归方程显著性的F检验仍可能是显著的,即F检验只说明自变量整体对因变量y产生显著线性影响。

图5相关系数阵和协方差阵
由图可知部分自变量自身的方差较大,与其他自变量之间也存在较明显的相关关系。

所以这一回归方程并不理想,所选自变量数目过多,部分回归系数的显著性检验不能通过,在一定程度上说明它们对应的自变量在回归方程中可有可无,为使模型简化,需剔除不显著的自变量,重新建立回归方程。


应用后退法剔除多余变量。

当有多个自变量对因变量y无显著影响时,由于自变量之间的交互作用,不能一次剔除掉所有不显著的变量。

原则上每次只剔除一个变量,先剔除其中t的绝对值最小的(或p值最大的)一个变量,然后再对求得的新回归方程进行检验,有不显著的变量再剔除,直到保留的变量对y有显著影响为止。

也可以根据对问题的定性分析选择t值较小的变量先剔除。

下面是剔除多余变量后的回归方程及回归诊断
剔除顺序为x1,x2,x12,x4,x7,x6,x5,中间过程省略
t 0.05(25)=1.708,即后退法终止。

修正后,y 对自变量的线性回归方程为: 1110983998.12644.11334.17188.20325.4690.184x x x x x y -++-+-= x 3交通运输仓储和邮电通信业 x 8卫生体育和社会福利业 x 9教育文化艺术和广播 x 10科学研究和综合艺 x 11党政机关。

相关文档
最新文档