自动控制理论结构图和信号流图

合集下载

自动控制原理控制系统的结构图

自动控制原理控制系统的结构图

C(s) H( s )
(3)开环传递函数 Open-loop Transfer Function
--假设N(s)=0
反馈信号B(s)与误差信号E(s)之比
B(s) E(s) G1 (s)G2 (s)H (s) G(s)H (s)
29
控制器
N( s )
被控 对象
+ E( s)
++
C(s)
R( s )
N(s)
G2 (s)
H(s)
-1

G1(s)
误差对扰动的结构图
E(s)
利用公式(1),直接可得:
M NE (s)
E(s) N (s)
G2 (s)H (s) 1 G(s)H (s)
33
精品文档 欢迎下载
读书破万卷,下笔如有神--杜 甫
G1 ( s )
G2 (s)
+ -
G3 (s) C(s) ①
H (s)G2 (s)
+
-
G3 (s)
C(s)

H (s)G2 (s)
R(s)
G1(s)G2 (s) G4 (s)
G3 (s)
C(s)
1 G2 (s)G3(s)H (s)
G(s) G3(s)(G1(s)G2 (s) G4 (s))
1 G2 (s)G3(s)H (s)
前向通路传递函数 1 开环传递函数
30
控制器
N( s )
被控 对象
+ E( s)
++
C(s)
R( s )
G1 ( s )
G2 (s)
B( s )
反馈信号
H( s )

自动控制原理第二章信号流图

自动控制原理第二章信号流图

1 R1
U (s)
I1 (s) I 2 (s) I (s)
U c (s) I (s)R2
u1 (0)
1
C
Ur
1
U
R1 R1Cs 1
R2
I1
I2
I
1
Uc
1
8
2、由系统结构图绘制信号流图 结构图与信号流图的对应关系 1)结构图的信号线对应于信号流图的节点、方框对应于支
路和支路增益; 2)结构图输入端和输出端对应于信号流图的输入节点和
G4
作用分解
G1
G2
G3
H1
G4
G1
G2
H3 G3
H1
H3
H1
H3
四、信号流程图
(一)组成及性质 是一种将线性代数方程用图形表示的方法。
X
Y
G
X
G
Y
节点:节点表示变量,以小圆圈表示 支路:连接节点之间的有向线段 支路有三个特点: • 联接有因果关系的节点--支路相当于乘法器 • 有方向性--信号只能沿箭头单向传递 • 有加权性(支路增益)
增益的乘积之和;
12
k — 余因子式,它等于特征 式中除去与第 k条前向通路相接触的回 路 增益项(包括回路增益 的乘积项)以后的余项 式。
说明:(1)梅逊公式也适用于结构图; (2)只适用于输出节点对输入节点的总增益,对混合节 点不能直接用。
13
R(s)
G1(s)
G4(s)

++
_
G2(s)

P2 2
)

G1G2G3 G3G4 1 G2G3H
14
G5
G6
R(s) 1

2011-2结构图与信号流图

2011-2结构图与信号流图
39
(3)混合节点
既有输入支点又有输出支点的节点称为混 合节点。
(4)通路
从某一节点开始,沿支路箭头方向经过各 相连支路到另一节点(或同一节点)构成的路 径,称为通路。通路中各支路传输的乘积称为 通路传输(通路增益)。
40
(5)开通路 与任一节点相交不多于一次的通路称为开通路。 (6)闭通路 如果通路的终点就是通路的起点,并且与任何 其他 节点相交不多于一次的通路称为闭通路或称为回环。 (7)回环增益 回环中各支路传输的乘积称为回环增益(或传 输)。
45
1 1
2 1 La 1 be
T11 T2 2 1 2 T Tk k k 1 abcd fd (1 be) 1 be ( f abc bef ) dg
46
例2-15
xc xc x1 x1 求:Tr ,T y ,Tr1 ,T y1 xr y xr y
……
Lm
——m个互不接触回环的传输乘积之和; k ——称为第k条通路特征式的余因子,是在

中除去
第k 条前向通路相接触的各回环传输(即将其置 零)。
44
例 2-14
T1 abcd , T2 fd
1 L1 L2 1 ( La Lb Lc ) La Lc 1 be abcdg fdg befdg 1 be ( f abc bef )dg
对于单位反馈系统,有 X c ( s) WK ( s) WB ( s) X r ( s) 1 WK ( s)
34
5.系统对给定作用和扰动作用的传递函数
原则:对于线性系统来说,可以运用叠加原理, 即对每一个输入量分别求出输出量,然后再进行 叠加,就得到系统的输出量。

自动控制原理-第二章-控制系统的数学模型—结构图-信号流图-传递函数

自动控制原理-第二章-控制系统的数学模型—结构图-信号流图-传递函数
(1)单位脉冲 (2)单位阶跃 (3)单位斜坡 (4)单位加速度 (5)指数函数 (6)正弦函数 (7)余弦函数
f (t)
(t)
1(t )
t t2 2
e at
sin t cos t
F (s)
1
1s 1 s2 1 s3
1 (s a)
(s2 2) s (s2 2)
2.2 线性定常微分方程的求解 拉普拉斯反变换:部分分式展开法
时域 差分方程
解析式模型
状态方程
复域
传递函数 结构图-信号流图
图模型
频域 频率特性
数学模型是一个反应变量之间关系的表达式,在不同的域中有不同的表现形式!
1.引言
解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表 达式,并实验验证。
实验法:对系统或元件输入一定形式的信号(例如阶跃信号、单位脉冲信号、正弦信 号等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。
k 1 v n1
s
l 1 n2
(Ti s 1)

(T
2 j
s2

2Tj
s

1)
i 1
j 1
适用于 频域分

3.2 传递函数的基本概念 传递函数的标准形式
K:增益
K*=根轨迹增益
K与K*的关系:
两者关系
m
zj
K K*
j 1 n
pi
i 1
3.3 典型环节及其传递函数
一个传递函数可以分解为若干个基本因子的乘积,每个基本因子就称为典型环节。常见 的几种形式有:
Y (s)
R(s)
Y (s)

西工大、西交大自动控制原理 第二章 控制系统的数学模型_2

西工大、西交大自动控制原理 第二章  控制系统的数学模型_2

5 比较点的移动 比较点的前移:
Rs
Cs
Rs
Cs
Gs
Gs
Qs
1 Qs
Gs
若要将比较点由方框后移至方框的前面,为保持信号 的等效,要在移动后的信号线上加入一个比较点所越 过的方框的倒数。
5 比较点的移动 比较点的后移:
Rs
Cs Gs
Rs Gs
Cs
Qs
Qs
G(s)
若要将比较点由方框前移至方框的后面,为保持信号的 等效,要在移动后的信号线上加入一个比较点所越过的 方框。
2-3 控制系统的结构图与信号流图
控制系统的结构图概述
控制系统的结构图(block diagram)是描述系统各元部 件之间信号传递关系的数学图形,表示了系统中各变量 间的因果关系以及对各变量所进行的运算。通过对系统 结构图进行等效变换(equivalent transform)后,可 求出系统的传递函数。
G1(s)
-1 H(s)
R(s)=0
f
(s)
C(s) F(s)
G2 ( s) 1 G2 (s)H (s)(1)G1(s)
G2 ( s) 1 G2 (s)G1(s)H (s)
G2(s) G2(s) 1 G(s)H(s) 1 Gk (s)
单位反馈系统H(s)=1,有
f
(s)
C(s) F(s)
若令:G(s) G1(s)G2(s) 为前向通路传递函数,
则:
B(s)
Gk (s) (s) G(s)H(s)
可见:系统开环传递函数Gk(s)等于前向通路传递函 数G(s)=G1(s)G2(s)与反馈通道传递函数H(s)的乘积。
R(S) ε(s) G1(s)
F(s)

自动控制原理第二章梅森公式-信号流图课件

自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。

自动控制原理第2章(2)

自动控制原理第2章(2)

(3) 按信号流向将各框图连起来
Ur(s) + _ I1(s) 1/R1
Uc(s)
华中科技大学文华学院机电学部 自动控制理论
控制系统的结构图与信号流图
方框图等效变换 基本连接方式:串联、并联、反馈 基本连接方式:串联、并联、
1.串联方框的等效变换 1.串联方框的等效变换
R(s) C(s) G1(s) G2(s) R(s) C(s) G1(s) G2(s)
华中科技大学文华学院机电学部 自动控制理论
控制系统的结构图与信号流图
例3 试化简如下系统结构图,并求传递函数C(s)/R(s) 试化简如下系统结构图,并求传递函数C(s)/R(s)
H2(s) R(s)
_ _
G1(s)
G2(s)
_
G3(s) H3(s)
G4(s)
C(s)
H1(s)
解:①将G3(s)输出端的分支点后移得: (s)输出端的分支点后移得: 输出端的分支点后移得
x1 = xr gxc x2 = ax1 fx4 x3 = bx2 exc x4 = cx3 xc = dx4
xr x1
a x2 b -f
x3 c
-g
x4 d
-e
xc
华中科技大学文华学院机电学部 自动控制理论
控制系统的结构图与信号流图
2、由系统结构图绘制信号流图 在结构图的信号线上用小圆圈标志出传递的信号, ①在结构图的信号线上用小圆圈标志出传递的信号,得到节点 用标有传递函数的线段代替结构图中的方框, ②用标有传递函数的线段代替结构图中的方框,得到支路
G(s) H(s)
R(s)
C(s) G(s) 1m G(s)H(s)
化简一般方法:移动分支点或相加点 化简一般方法: 交换相加点 合并

控制系统的传递函数及信号流图和梅逊公式

控制系统的传递函数及信号流图和梅逊公式
+
1 Ln LrLsLt
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
例2-7 试用梅逊公式求系统的闭环传递函数 C(S)
R(S)
图2-45 例2-7图
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
解: P1 G1G2G3.
路 开通路—通路与任一节点相交不多于一次
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
闭通路—通路的终点也是通路的起点,并且与任何其它节 点相交不多于一次
6)前向通路—从输入节点到输出节点的通路上,通过任何节 点不多于一次,此通路自然保护区为前向通路
7)回路—就是闭环通路 8)不接触回路—如果一些回路间没有任何公共节点 9)前向通路增益—在前向通路中多支路增益的乘积。 10)回路增益—回路中多支路增益的乘积。
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
信号流图的性质 (1)信号流图只适用于线性系统。 (2)支路表示一个信号对另一个信号的函数关系;信 号只能沿着支路上的箭头指向传递 (3)在节点上可以把所有输入支路的信号叠加,并把 相加后的信号传送到所有的输出支路。
(4)具有输入和输出支路的混合节点,通过增加一个具 有单位增益的支路,可以把它作为输出节点来处理。 (5)对于一个给定的系统,其信号流图不是唯一的, 这是由于描述的方程可以表示为不同的形式。
参考输入误差的传递函数为
CR(s) ER(s)G1(s)G2(s)
CR(s)
G1( s )G 2( s )
R(s) 1 G1(s)G2(s)H (s)
ER(s)G1(s)G2(s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R1C2 s
ui ( s )
-
-
1
R1
1
C1sห้องสมุดไป่ตู้
u (s)
1 R2C2 s 1
uo ( s )
② 16
结构图等效变换例子||例2-11
R1C2 s
ui ( s ) -
1
R1
1
C1s
u (s)
1 R2C2 s 1
uo ( s )

R1C2 s

uo ( s )

ui ( s ) -
1 R1C1 s 1
[注意]: 相临的信号相加点位置可以互换;见下例
X 1 ( s) X 2 ( s)
Y ( s)
X 1 ( s)
X 3 (s)
Y ( s)




X 3 (s)
X 2 ( s)
13
比较点和分支点的移动和互换
同一信号的分支点位置可以互换:见下例
X 1 ( s)
X 2 ( s)
X ( s)
Y ( s ) G (s)
u (s) I ( s) 1 C1s
-
1
R1
I1 ( s )
I 2 ( s)
1 u ( s) C1s 1 [u ( s) uo ( s)] I 2 ( s) R2 I (s) 1 I 2 ( s) uo ( s ) C2 s
u (s)
1 R2
uo ( s )
1 C2 s
I 2 ( s)
[例2-11]利用结构图等效变换讨论两级RC串联电路的传递函数。 R1 R2
ui
i1
i, u
C1
i2
C2
i2 uo
[解]:根据电路定理:
1 [ui ( s) u ( s )] I1 ( s ) R1
I1 (s) I (s) I 2 (s)
ui ( s )
I1 ( s )
I (s)
u (s)
G2 (s)
+
-
G3 (s)
H (s)G2 (s)
C (s)

R( s )
G1 (s)G2 (s) G4 (s)
G3 (s) 1 G2 (s)G3 (s) H (s)
C (s)
G3 ( s)(G1 ( s)G2 ( s) G4 ( s)) G( s) 1 G2 ( s)G3 ( s) H ( s)
上式中,G1 (s)G2 (s) 称为前向通道传递函数,前向通道指从输入 端到输出端沿信号传送方向的通道。前向通道和反馈通道的乘 积称为开环传递函数 G1 (s)G2 (s) H (s) 。含义是主反馈通道断开时 从输入信号到反馈信号B( s)之间的传递函数。
22
给定输入作用下的闭环系统的传递函数
X 2 ( s)
X ( s)
Y ( s ) G (s)
X 1 ( s)
X 3 (s)
相加点和分支点在一般情况下,不能互换。
X ( s)

X 3 (s)
G (s)
所以,一般情况下,相加点向相加点移动,分支点向分支 点移动。 14
X 2 ( s)
X ( s)

G (s)
X 2 ( s)
结构图等效变换例子||例2-11

Gn (s)
Y ( s)
环节的并联:
反馈联接:
n Y ( s) G( s) Gi ( s) X ( s) i 1
X ( s)
Y ( s)
X ( s) E ( s ) G ( s)

Y ( s)
Gn (s)
n Y ( s) G( s) Gi ( s ) X ( s) i 1
给定输入作用下的闭环系统的传递函数
1、给定输入作用下的闭环系统: 令 N ( s) 0 ,则有:
R( s ) E ( s ) G1 ( s ) G2 (s) B( s ) H (s)
C ( s ) ( s) C ( s)
R( s)
G1G2 1 G1G2 H
输出量为: G1G2 C ( s) R( s) 1 G1G2 H
11
比较点和分支点的移动和互换
②信号分支点的移动: 分支点从环节的输入端移到输出端——后移
X 1 ( s)
G (s)
Y ( s)
X 1 ( s)
X 1 ( s)
G (s) N (s)
Y ( s)
X 1 ( s)
N ( s) ? 1 X 1 ( s)G ( s) N ( s) X 1 ( s), N ( s) G( s)
R( s )
G4 (s) G1 ( s)
-
G2 (s)
+
G3 ( s)
C (s)
H ( s)
[解]:结构图等效变换如下:
G4 (s)
R( s )
G1 ( s )
G2 (s)
+
-
G3 (s)
H (s)G2 (s)
C (s)

19
结构图等效变换例子||例2-12
G4 (s)
R( s )
G1 ( s )
u g ( s ) ue ( s )
u f ( s)
K1
u1 ( s)
K 2 (s 1)
u2 ( s )
K3
ua ( s )
Ku TaTm s 2 Tm s 1
-
( s )
Kf
在结构图中,不仅能反映系统的组成和信号流向,还能表 示信号传递过程中的数学关系。系统结构图也是系统的数学模 型,是复域的数学模型。
M c ( s)
( s ) K u f ( s )
3
K m (Ta s 1) TaTm s 2 Tm s 1 Ku TaTm s 2 Tm s 1
U a ( s)
- ( s )
将上面几部分按照逻辑连接起来,形成下页所示的完 整结构图。 6
结构图的基本概念
M c ( s)
K m (Ta s 1) TaTm s 2 Tm s 1
10
比较点和分支点的移动和互换
把比较点从环节的输出端移到输入端——前移:
X 1 ( s)
X 2 ( s)
G (s)
Y ( s)

X 1 ( s)
X 2 ( s)

N (s)
G (s)
Y ( s)
N ( s) ? Y ( s) X 1 ( s)G ( s) X 2 ( s), Y ( s) X 1 ( s)G ( s) X 2 ( s) N ( s)G ( s), 1 N ( s) G (s)
1 R2C2 s 1
1 uo ( s ) 1 ( R1C1s 1)( R2C2 s 1) G( s) R1C2 s ui ( s ) 1 ( R1C1s 1)( R2C2 s 1) R1C2 s ( R1C1s 1)( R2C2 s 1)
17
问题:能否认为是两个RC网络串联? R1 R2
X 1 ( s)
X 2 ( s)
G (s) Y ( s)
X 1 ( s)
X 2 ( s)
G (s) N (s)
Y ( s)

N (s) ? Y (s) [ X 1 (s) X 2 (s)]G(s), 又 : Y (s) X (s)1 G(s) X 2 (s) N (s), N (s) G(s)
ui
i1
i, u
C1
i2
C2
i2 uo

ui ( s )
1 R1C1 s 1
uo ( s ) 1 R2C2 s 1
不能把左图简单地看成两个RC电路的串联,有负载效应。
18
结构图等效变换例子||例2-12
[例2-12]系统结构图如下,求传递函数 G ( s)
C (s) 。 R( s)
比较点移动
系统偏差传递函数:
R( s )
E (s)
B( s )
K1
u1 ( s)
运放Ⅱ: u2 ( s) K 2 (s 1) u1 ( s)
功放环节:
ua ( s) K3 u2 ( s)
u1 ( s)
K 2 (s 1)
u2 ( s )
u2 ( s )
K3
ua ( s )
5
反馈环节:
电动机环节:
u f ( s) ( s)
Kf
(TaTm s 2 Tm s 1)( s) K u ua ( s) K m (Ta s 1) M c ( s)
I 2 ( s)
uo ( s )
15
结构图等效变换例子||例2-11
总的结构图如下:
ui ( s )
-
1
I1 ( s ) R1 I (s)
1
u (s)
C1s
1
-
R2
I 2 ( s)
1
C2 s
uo ( s )
为了求出总的传递函数,需要进行适当的等效变换。一个 可能的变换过程如下: C2 s 1 ui ( s ) uo ( s ) u (s) 1 I1 ( s ) 1 ① R1 C1s R C s 1 I (s) 2 2
H (s)
Y ( s ) E ( s )G ( s ) E ( s ) X ( s ) H ( s )Y ( s ), Y (s) G ( s) G (s) X ( s) 1 G ( s) H (s)
9
比较点和分支点的移动和互换
(二)比较点和分支点的移动和互换: 如果上述三种连接交叉在一起而无法化简,则要考虑移动某 些比较点和分支点。 ①比较点的移动: 把比较点从环节的输入端移到输出端——后移
相关文档
最新文档