《独立性检验的基本思想和初步应用》
独立性检验的基本思想及其初步应用

No 0 . 01 .5 2 2
Y h i U i uS uWa X eX
2 1 第 5期 0 2年
独 立 性 检 验 的 基 本 思 想 及 其初 步 应 用
孙 恒 来
( 扶余 县第一 中学, 吉林
摘
松原
1 10 ) 3 2 0
要: 变量 的 不 同“ ” 值 表示 个体 所属 的 不 同类型 , 这样 的 变量称 为分 类 变量 。 与表 格相 比 , 像 图形更 能 直观 地 反 映 出两 个分 类
少有 无关 系 ?
【 分析】
{ 画出图形J 分析图中数据差异l 作出结论l —J —I
【 解析】 1 三维柱形图如图 l () 所示 比较 来说 , 面主对 角 线 上 的两 个 柱 体 高 乘 积 大 一 些 , 底 因此
语 数外学 习
No 0 201 . 5. 2
Y h i u i uS uWa X eX
变量 是 否相 互影 响 , 用等 高条 形 图、 雏柱 形 图、 雏条形 图 等展 示 列联表 数 据 的频 率特征 。 常 三 二
关键 词 : 变量 ; 同类型 ; 不 频率 特征
中图分 类号 : 6 3 G 2
文 献标 识码 : A
文 章编 号 :0 5— 3 1 2 1 ) 0 — 1 1 0 10 6 5 ( 0 2 一 5 0 1 — 2
系” 的上界 . 查表 确定 临界值 ; 然后 () 2 利用 公式 , 算 随机变 量 的观测 值 k 计 ; () 3 如果 k> , 判 断 “ 与 y k 就 有关 系 ” 这样 推 断犯 错 误 的 ,
概 率不 超过 a 否则 , ; 就认 为在 犯错误 的概 率不超 过 的前 提下 不
独立性检验的基本思想及其初步应用-说课稿

五、教法、学法 教法、
2、学法 、 (1)自主学习:引导学生通过亲身经历,动手、 )自主学习:引导学生通过亲身经历,动手、 动脑参与数学活动。 动脑参与数学活动。 (2)合作探究:充分发挥主观能动性,引导学生 )合作探究:充分发挥主观能动性, 分组讨论,学会合作,共同探讨问题。 分组讨论,学会合作,共同探讨问题。 (3)展示交流:小组内展示交流和班级中展示交 )展示交流: 在展示中得到乐趣,在交流中提升。 流,在展示中得到乐趣,在交流中提升。 说明:预设56人分成 个学习小组, 人分成8个学习小组 说明:预设 人分成 个学习小组,每小组一名 组长六名组员,小组内分工合作, 组长六名组员,小组内分工合作,小组间竞争展 力争人人有事做。 示,力争人人有事做。
二、教材分析
本节课是人教A版 选修) 本节课是人教 版(选修)2—3第三章第二节第 第三章第二节第 一课时的内容. 一课时的内容.是在学习了回归分析的基本思想 及初步应用后,( ,(回归分析是对具有相关关系的 及初步应用后,(回归分析是对具有相关关系的 两个变量进行统计分析的一种常用方法), ),利用 两个变量进行统计分析的一种常用方法),利用 独立性检验进一步分析两个分类变量之间是否有 关系,为以后学习统计理论奠定基础。本节课计 关系,为以后学习统计理论奠定基础。 划用两个课时完成, 划用两个课时完成,本说课是针对第一课时即了 解独立性检验的基本思想, 解独立性检验的基本思想,初步学会对两个分类 变量进行独立性检验的方法。 变量进行独立性检验的方法。
三、教学目标
1、知识与技能: 、知识与技能: 通过典型案例的探究,了解独立性检验的基本思想, 通过典型案例的探究,了解独立性检验的基本思想,初 步学会对两个分类变量进行独立性检验的方法。 步学会对两个分类变量进行独立性检验的方法。 2、过程与方法: 、过程与方法: 通过探究“吸烟是否与患肺癌有关系” 通过探究“吸烟是否与患肺癌有关系”引出独立性检验 的问题, 的问题,借助样本数据的列独立性检验的实施步骤与必要 培养学生在直联表、柱形图和条形图,使学生直观感 性,培养学生在直联表、柱形图和条形图 使学生直观感 觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据 这一直觉来自于观测数据, 觉到吸烟和患肺癌可能有关系 这一直觉来自于观测数据, 即样本.问题是这种来自于样本的印象能够在多大程度上 即样本 问题是这种来自于样本的印象能够在多大程度上 代表总体,这节课就是为了解决这个问题, 代表总体,这节课就是为了解决这个问题,让学生亲身体 验观感受的基础上,提高学生的数据分析能力. 验观感受的基础上,提高学生的数据分析能力 3、情感态度价值观: 、情感态度价值观: 通过对问题的自主探究,提高学生独立思考问题的能力; 通过对问题的自主探究,提高学生独立思考问题的能力; 通过小组交流,加强学生合作意识;通过实例,培养学生 通过小组交流,加强学生合作意识;通过实例 培养学生 的数据分析能力。 的数据分析能力。
独立性检验思想及应用

独立性检验思想及应用独立性检验(Independence Test)是统计学中用于研究两个或多个分类变量之间是否存在关联的方法。
它基于假设显著性检验的思想,通过计算观察值与期望值之间的差异程度,来判断两个变量是否独立。
在实际应用中,独立性检验经常用于确定两个变量是否相互影响或存在某种联系,以及在实验设计、社会科学研究、生物学研究等领域中的数据分析。
独立性检验的基本思想是基于对观察样本的期望值进行比较,来推断两个或多个分类变量是否存在关联。
在进行独立性检验时,常用的统计方法包括卡方检验(Chi-square Test)、Fisher精确检验(Fisher's Exact Test)和logistic回归分析(Logistic Regression)等。
卡方检验是独立性检验中最常用的方法之一。
它基于卡方统计量的分布特性,通过计算观测频数与期望频数之间的差异,来判断两个或多个分类变量之间的关联性。
卡方检验的原理是比较观测频数与期望频数之间的差异是否显著,若差异显著,则表明两个变量之间存在关联。
Fisher精确检验是一种非参数的检验方法,用于较小样本量且存在预期频数很低的情况。
它通过穷举计算所有可能的观测结果,来计算出在给定的边际总和下,观测频数与期望频数之差异的概率。
Fisher精确检验在小样本研究中经常被使用,特别是用于研究罕见事件的相关性。
logistic回归分析是一种广义线性模型,可用于分析二分类变量的关联性。
它将自变量的线性组合通过logistic函数转换为估计概率,从而实现对二分类变量之间的关系进行研究。
logistic回归分析在独立性检验领域中常用的方法包括二分类变量的logistic回归、多分类变量的logistic回归和多项式logistic回归等。
独立性检验在很多领域都有广泛的应用。
在医学研究中,独立性检验可以用于分析某种疾病的发病率与多个危险因素之间的关联性,以及评估治疗方法对疾病预后的影响;在社会科学研究中,独立性检验可以用于分析社会经济因素与人群特征之间的关联,以及评估政策改革对社会发展的影响;在生物学研究中,独立性检验可以用于分析基因型与表型之间的关联,以及评估不同基因型对遗传疾病的易感性等。
1.2独立性检验的基本思想及其初步应用

试用图形判断服用药和患病之间是否有关系?
解析:相应的等高条形图如下:
从图形可以看出,服用药的样本中患病的比例明显低于 没有服用药的样本中患病的比例,因此可以认为:服用药和 患病之间有关系.
独立性检验方法——K2公式
在调查的480名男士中有38名患有色盲,520名女 士中有6名患有色盲,能否在犯错误的概率不超过0.001的前 提下认为性别与患色盲有关系? 分析:
4.下面是一个2×2列联表: x1 x2 总计 y1 a 2 b y2 21 25 46 总计 73 27 100
则表中a、b的值分别为( C ) A.94、96 C.52、54 B.52、50 D.54、52
5.性别与身高列联表如下: 男 女 总计 高(165 cm以上) 37 6 43 矮(165 cm以下) 4 13 17 总计 41 19 60
作出2×2列联表 → 计算随机变量K2的值 → 对照临界值作出结论 解析:根据题目所给的数据作出如下的列联表:
色盲 不色盲 总计
男
女 总计
38
6 44
442
514 956
480
520 1 000
根据列联表中所给的数据可以得: a=38,b=442,c=6,d=514,a+b=480,c+d= 520,a+c=44,b+d=956,n=1 000.
3.独立性检验. 利用随机变量K2来判断“两个分类变量有关系”的方法 定义 称为独立性检验.
nad-bc2 公式 K2=_____________________ a+bc+da+cb+d ,其中n=______________. a+b+c+d
①根据实际问题的需要确定容许推断“两个分类变量有 临界值 k0 .② 关系”犯错误概率的上界α,然后查表确定 ________ k________ ≥k0 利用公式计算随机变量K2的 ________ , 观测值 k .③如果 具体 就推断“X与Y有关系”,这种推断犯错误的概率不超过 步骤 α;否则,就认为在犯错误的概率不超过α的前提下不能 推断“X与Y有关系”,或者在样本数据中没有发现足够 证据支持结论“X与Y有关系”.
独立性检验的基本思想及其初步应用

如果“吸烟与患肺癌没有关系”,那么吸烟样
本中不患肺癌的比例应该与不吸烟样本中相应的比
例差不多.
所以
a a+
b
c
c +d
,
所以 a c + d ca + b,
ad bc
即 ad bc 0.
︱ad-bc︱越小,说明吸烟与患肺癌之间的关系越弱;
︱ad-bc︱越大,说明吸烟与患肺癌之间的关系越强.
患心脏病 患其他病 总计
秃顶
214
175
389
不秃顶
451
597
1 048
总计
665
772
1 437
(1)相应的等高条形图如下所示,
不患心脏病 患心脏病
秃顶
不秃顶
由图可认为秃顶与患心脏病有关系
吸烟与患肺癌列联表(单位:人)
不患肺癌
患肺癌
总计
不吸烟
7 775
42
7 817
吸烟
2 099
49
2 148
总计
9 874
91
9 965
在不吸烟者中患肺癌的比重是__0_._5_4_%_,
在吸烟者中患肺癌的比重是__2_._2_8_%_.
说明:吸烟者和不吸烟者患肺癌的可能性存在差异, 吸烟者患肺癌的可能性大.
K2
(n ad bc)2
(a b)(c d )(a c)(b d )
临界值表:
P ( K 2 k 0 ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(完整)独立性检验的基本思想及其初步应用教学设计

《独立性检验的基本思想及其初步应用》教学设计邹晓利两当一中《独立性检验的基本思想及其初步应用》教学设计两当一中邹晓利【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】K的含义。
独立性检验的基本思想;随机变量2【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题5月31日是世界无烟日,有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、肺病等都与吸烟有关,吸烟已经成为继高血压之后的第二号全球杀手。
这些疾病与吸烟有关的结论是怎样得出的呢?[设计意图说明]好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一。
问题你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?[设计意图说明]提出问题,引导学生自主探究,指明方向,步步深入。
二、阅读教材,探究新知1.分类变量对于性别变量,其取值为男和女两种:[设计意图说明]利用图像向学生展示变量的不同取值,更加形象的表示分类变量的概念。
这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量。
生活中有很多这样的分类变量如:是否吸烟宗教信仰国籍民族……2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人不患肺癌患肺癌总计不吸烟7775 42 7817吸烟2099 49 2148总计9874 91 9965 这样列出的两个分类变量的频数表,称为列联表(一般我们只研究每个分类变量只取两2 列联表)。
独立性检验的基本思想及其初步应用

§3.2独立性检验的基本思想及其初步应用学习目标 1.了解独立性检验的基本思想、方法及其简单应用.2.理解判断两个分类变量是否有关系的常用方法、独立性检验中K2的含义及其实施步骤(重、难点).知识点1两个分类变量之间关联关系的定性分析1.分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.这里的“变量”和“值”都应作为“广义”的变量和值进行理解,它们取的不一定是具体的数值.2.列联表列出的两个分类变量的频数表,称为列联表.假设两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(也称为2×2列联表)为:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+d3.两个分类变量之间关联关系的定性分析的方法(1)频率分析法:通过对样本的每个分类变量的不同类别事件发生的频率大小进行比较来分析分类变量之间是否有关联关系.通常通过列联表列出两个分类变量的频数表来进行分析.(2)图形分析法:与表格相比,图形更能直观地反映出两个分类变量间是否互相影响,常用等高条形图展示列联表数据的频率特征.【预习评价】(1)下面是一个2×2列联表:y1y2总计x1 a 2173x282533总计 b 46则表中a,b处的值分别为()A.94,96B.52,50C.52,60D.54,52(2)根据如图所示的等高条形图可知吸烟与患肺病关系(填“有”或“没有”).知识点2独立性检验1.定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.2.K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.3.独立性检验的具体做法(1)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.(2)利用公式计算随机变量K2的观测值k.(3)如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.【预习评价】(1)在吸烟与患肺病这两个分类变量是否相关的判断中,下列说法中正确的是()①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在在犯错误的概率不超过0.01前提下,认为吸烟与患肺病有关系时,我们说若某人吸烟,则他有99%的可能患有肺病;③从统计量中得知在犯错误的概率不超过0.05的前提下认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.A.①B.①③C.③D.②(2)某班主任对全班50名学生进行了作业量的调查,数据如下表:认为作业量大认为作业量不大总计男生18927女生81523总计262450则推断“学生的性别与认为作业量大有关”这种推断犯错误的概率不超过()A.0.01B.0.005C.0.025D.0.001题型一利用等高条形图判断两个分类变量是否有关系【例1】为考察某种药物预防疾病的效果进行动物试验,得到如下列联表:患病未患病总计服用药104555未服用药203050总计3075105试用等高条形图分析服用药和患病之间是否有关系.规律方法(1)本题采用数形结合法通过条形图直观地看出差异,得出结论. (2)应用等高条形图判断两变量是否相关的方法在等高条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例aa+b,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例cc+d.“两个比例的值相差越大,H1成立的可能性就越大.”【训练1】网络对现代人的生活影响较大,尤其是对青少年,为了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了1 000人调查,发现其中经常上网的有200人,这200人中有80人期末考试不及格,而另外800人中有120人不及格.利用图形判断学生经常上网与学习成绩有关吗?方向1 有关“相关的检验”【例2-1】某校对学生课外活动进行调查,结果整理成下表:用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?方向2有关“无关的检验”【例2-2】为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.分析学生选报文、理科与对外语的兴趣是否有关?规律方法(1)独立性检验的关注点在2×2列联表中,如果两个分类变量没有关系,则应满足ad-bc≈0,因此|ad -bc|越小,关系越弱;|ad-bc|越大,关系越强.(2)独立性检验的具体做法①根据实际问题的需要确定允许推断“两个分类变量有关系”犯错误的概率的上界α,然后查表确定临界值k0.②利用公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)计算随机变量K2的观测值k.③如果k>k0,推断“X与Y有关系”这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够的证据支持结论“X与Y有关系”.【训练2】打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据:根据独立性检验,能否在犯错误的概率不超过0.001的前提下认为每一晚都打鼾与患心脏病有关系?题型三独立性检验的综合应用【例3】某高校共有学生15 000人,其中男生10 500人,女生4 500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间(单位:时)的样本数据.(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图),其中样本数据的分组区间为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否认为“该校学生的每周平均体育运动时间与性别有关”.附:P(K2≥k0)0.1000.0500.0100.005k0 2.706 3.841 6.6357.879K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).规律方法(1)解答此类题目的关键在于正确利用K2=n(ad-bc)2计算k的值,再用它与临界值k0的大小作比(a+b)(c+d)(a+c)(b+d)较来判断假设检验是否成立,从而使问题得到解决.(2)此类题目规律性强,解题比较格式化,填表计算分析比较即可,要熟悉其计算流程,不难理解掌握.【训练3】某校高三年级在一次全年级的大型考试中,数学成绩优秀和非优秀的学生中,物理、化学、总分成绩优秀的人数如下表所示,能否在犯错误的概率不超过0.001的前提下认为数学成绩优秀与物理、化学、总分成绩优秀有关系?物理优秀化学优秀总分优秀数学优秀228225267数学非优秀14315699注:该年级在此次考试中数学成绩优秀的有360人,非优秀的有880人.课堂达标1.观察下列各图,其中两个分类变量x,y之间关系最强的是()2.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:偏爱蔬菜 偏爱肉类 总计50岁以下 4 8 12 50岁以上 16 2 18 总计201030则可以说其亲属的饮食习惯与年龄有关的把握为( ) A.90%B.95%C.99%D.99.9%3.为了判断高中学生的文理科选修是否与性别有关系,随机调查了50名学生,得到如下2×2列联表:理科 文科 男 13 10 女720已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2的观测值k =50×(13×20-10×7)223×27×20×30≈4.844.可认为选修文理科与性别有关系的可能性不低于 . 4.根据下表计算:不看电视 看电视 男 37 85 女35143K 2的观测值k ≈ (保留3位小数).5.在109个人身上试验某种药物预防感冒的作用,得到如下列联表:感冒 未感冒 总计 服用药1146 57 未服用药 213152总计3277109则有多大把握认为该药有效?课堂小结1.列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有关联关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有关联关系.2.对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法.先假设“两个分类变量没有关系”成立,计算随机变量K2的值,如果K2值很大,说明假设不合理.K2越大,两个分类变量有关系的可能性越大.基础过关1.对两个分类变量A,B的下列说法中正确的个数为()①A与B无关,即A与B互不影响;②A与B关系越密切,则K2的值就越大;③K2的大小是判定A与B是否相关的唯一依据A.0B.1C.2D.32.高二第二学期期中考试,按照甲、乙两个班学生的数学成绩优秀和及格统计人数后,得到如下列联表:优秀及格总计甲班113445乙班83745总计197190则随机变量K2的观测值约为()A.0.600B.0.828C.2.712D.6.0043.考察棉花种子经过处理跟生病之间的关系得到下表数据:种子处理种子未处理总计根据以上数据,可得出()A.种子是否经过处理跟是否生病有关B.种子是否经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的4.2013年6月11日,中国的“神舟十号”发射成功,由此许多人认为中国进入了航天强国之列,也有许多人持反对意见,为此进行了调查.在参加调查的3 648名男性公民与3 432名女性公民中,持反对意见的男性有1 843人、女性有1 672人,在运用这些数据说明中国“神十”发射成功是否与中国进入航天强国有关系时,用下列最具说服力.①回归直线方程;②平均数与方差;③独立性检验.5.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是(填序号).①没有充足的理由认为课外阅读量大与作文成绩优秀有关;②有0.5%的把握认为课外阅读量大与作文成绩优秀有关;③有99.9%的把握认为课外阅读量大与作文成绩优秀有关;④有99.5%的把握认为课外阅读量大与作文成绩优秀有关.6.在研究某种药物对“H1N1”病毒的治疗效果时,进行动物试验,得到以下数据,对150只动物服用药物,其中132只动物存活,18只动物死亡,对照组150只动物进行常规治疗,其中114只动物存活,36只动物死亡.(1)根据以上数据建立一个2×2列联表;(2)试问该种药物对治疗“H1N1”病毒是否有效?7.在一次恶劣天气的飞行航程中调查男女乘客在飞机上晕机的情况如下表所示,根据此资料是否能在犯错误的概率不超过0.05的前提下认为在恶劣天气飞行中男人比女人更容易晕机?能力提升8.利用独立性检验来考察两个分类变量X和Y是否有关系时,通过查阅下表来确定“X与Y有关系”的可信程度.如果K2≥5.024,那么就有把握认为“X与Y有关系”的百分比为()A.25%B.75%C.2.5%D.97.5%9.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2表3表4A.成绩B.视力C.智商D.阅读量10.下表是关于男婴与女婴出生时间调查的列联表:那么,A=,B=,C=,D=,E=.11.在研究性别与吃零食这两个分类变量是否有关系时,下列说法中正确的是(填序号).①若K2的观测值k=6.635,则我们在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系,那么在100个吃零食的人中必有99人是女性;②由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,如果某人吃零食,那么此人是女性的可能性为99%;③由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误.12.随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人的休闲方式是运动,而女性中只有13的人的休闲方式是运动. (1)完成下列2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动? 13.(选做题)某学校为了解该校高三年级学生在市一练考试的数学成绩情况,随机从该校高三文科与理科各抽取50名学生的数学成绩,作出频率分布直方图如图,规定考试成绩在[120,150]内为优秀.(1)由以上频率分布直方图填写下列2×2列联表.若按是否优秀来判断,是否有99%的把握认为该校的文理科数学成绩有差异.文科理科总计优秀非优秀总计5050100(2)某高校派出2名教授对该校随机抽取的学生成绩中一练数学成绩在140分以上的学生进行自主招生面试,每位教授至少面试一人,每位学生只能被一位教授面试.若甲教授面试的学生人数为ξ,求ξ的分布列和均值.。
数学核心素养之数据分析的课堂教学探究——独立性检验的基本思想和初步应用教学反思

数学核心素养之数据分析的课堂教学探究——独立性检验的基本思想和初步应用教学反思数据分析是数学核心素养中的重要内容,它帮助我们理解和解释数据,并通过统计方法来做出合理的推断和决策。
独立性检验作为数据分析中的一种常用方法,可以帮助我们判断两个变量是否存在相关性。
本文将对独立性检验的基本思想和初步应用进行探究,并对其在课堂教学中的实际应用进行反思。
一、独立性检验的基本思想独立性检验是一种用于验证两个变量是否独立的统计方法。
在进行独立性检验之前,我们需要明确两个变量的测量尺度,一般分为分类变量和数量变量。
当两个变量都是分类变量时,可以使用卡方检验进行独立性检验;当两个变量一个是分类变量,一个是数量变量时,可以使用相关系数或t检验进行独立性检验。
独立性检验的基本思想是通过比较实际观察的数据与假设数据的差异程度,来判断两个变量之间是否存在相关性。
在进行独立性检验时,我们需要提出原假设和备择假设。
原假设通常假定两个变量是独立的,备择假设则是两个变量之间存在相关性。
通过计算检验统计量和相应的P值,我们可以对原假设进行接受或拒绝。
二、独立性检验的初步应用在课堂教学中,我们可以通过案例分析和实际数据进行独立性检验的初步应用。
例如,我们可以选择一个具体的问题,比如调查学生的学习习惯对考试成绩的影响。
我们可以设计一个问卷调查,收集学生的学习习惯和考试成绩的数据。
首先,我们需要将学生的学习习惯和考试成绩两个变量进行分类。
学习习惯可以分为高效学习和低效学习两类,考试成绩可以分为优秀和不及格两类。
接下来,我们可以使用卡方检验来验证学习习惯和考试成绩之间是否存在相关性。
通过计算卡方检验的检验统计量和P值,我们可以得出结论。
如果P值小于显著性水平(通常为0.05),则可以拒绝原假设,即学习习惯和考试成绩之间存在相关性;如果P值大于显著性水平,则接受原假设,即学习习惯和考试成绩之间不存在相关性。
三、教学反思在进行数据分析的课堂教学中,独立性检验是一个重要的内容,它帮助学生理解统计方法的基本原理,并培养他们的数据分析能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计说明
省市第一高级中学宁
1-人教A版
教材:普通高中课程标准实验教科书数学选修2
章节:2.1独立性检验的基本思想及其初步应用
一、授课容的数学本质
在《数学3(必修)》概率统计容的基础上,通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用。
章引言首先提出了现实中经常遇到的问题,比如肺癌是严重威胁人类生命的一种疾病,吸烟与患肺癌有关系吗?等等。
现实中类似的问题大量存在,如何得出准确的推断,这就需要科学的方法,独立性检验就是其中一种常用的统计方法。
教科书通过探究“吸烟是否与患肺癌有关系”引出了独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟人中患肺癌的比例比不吸烟人中患肺癌的比例要高,使学生直观感觉到吸烟和患肺癌可能有关系。
“吸烟与患肺癌有关”这一直觉来自于观测数据,即样本。
问题是这种来自于样本的印象能够在多大程度上代表总体?来自于样本的结论“吸烟与患肺癌有关”能够推广到总体吗?为了回答这个问题,就必须借助于统计理论来分析。
在统计学中,独立性检验就是检验两个分类变量是否有关系的一种统计方法。
二、教学目标分析
【知识与技能】
1、了解独立性检验的基本思想、方法及初步应用。
⨯列联表)、柱形图、条形图直观分析两个分类变量是否有关。
2、会从列联表(只要求22
K公式判断两个分类变量在某种可信程度上的相关性。
3、会用2
【过程与方法】
运用数形结合的方法,借助对典型案例的探究,来了解独立性检验的基本思想,总结独立性检验的基本步骤。
【情感、态度与价值观】
1、通过本节课的学习,让学生感受数学与现实生活的联系,体会独立性检验的基本思想在解决日常
生活问题中的作用。
2、培养学生运用所学知识,依据独立性检验的思想作出合理推断的实事求是的好习惯。
三、教学问题诊断
在独立性检验中,教科书通过典型案例“吸烟是否与患肺癌有关系”的研究,介绍了独立性检验的基本思想、方法和初步应用。
独立性检验的步骤是固定的,仿照教科书的例题,学生不难完成习题,但独立性检验的思想对学生来说是比较难理解的,教学中如何结合例子介绍独立性检验的思想,才能使得学生很好的理解是一个教学难点。
那么,在教学过程中,采用了与反证法做类比,帮助学生理解独立性检验的思想。
两者都是先假设结论不成立,然后根据是否能够推出“矛盾”来断定结论是否成立。
但二者“矛盾”的含义不同,反证法中的“矛盾”是指一种不符合逻辑事情的发生;而独立性检验中的“矛盾”是指一种不符合逻辑的小概率事件的发生,即在结论不成立的假设下,推出有利于结论成立的小概率事件发生。
我们知道,小概率事件在一次试验中通常是不会发生的,因此认为结论在很大的程度上是成立的。
这样做了
类比后,可以很好的帮助理解独立性检验的基本思想。
四、教法特点及预期效果分析
精心设计课堂环节,共同实现师生互动。
在设计本节课的时候,我是从以下几个方面入手的。
1、创设情境,导入新课
通过对典型案例“吸烟是否对患肺癌有影响?”的提出,联系生活,引起共鸣,激发学生的学习兴趣。
从生活的实例出发,让学生充分体会数学与实际生活的联系,从而使得本节知识的形成更自然、更生动。
先介绍分类变量、列联表的概念。
对于问题1的设计,是想让学生通过对列联表中数据的观察和计算,得出结论,吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者中患肺癌的可能性大。
将列联表中的数据输入到Excel 表格中,将数据呈现到图形上,用计算机演示三维柱形图和二维条形图,让生观察图形,总结可以得出什么样的结论?用多种统计图使学生直观感觉两个分类变量是否有关系,然后再进行检验。
提出问题:是否能够以一定的把握认为“吸烟与患肺癌有关系”呢? 设置问题,引发学生的思考,激发学生的求知欲望。
2、合作探究,收获新知
通过用字母表示的列联表:
表
在假设0:“吸烟与患肺癌没有关系”的基础上。
引导学生得出bc ad ≈。
因此,bc ad -越小,说明吸烟与患肺癌之间关系越弱;bc ad -越大,说明吸烟与患肺癌之间关系越强。
(上述结论由生思考后回答。
) 师:介绍统计学中有这样一个公式
构造一个随机变量 ()()()()()
2
2
n ad bc K a b c d a c b d -=++++ (1)
(其中n a b c d =+++为样本容量。
)
学生得出结论:若0H 成立,即“吸烟与患肺癌没有关系”,则2
K 应该很小。
根据表1中的数据,利用公式(1)计算得到2
K 的观测值为
632.5691
987421487817)209942497775(99652≈⨯⨯⨯⨯-⨯=k
这个值到底能告诉我们什么呢?
统计学家经过研究后发现,在0H 成立的情况下,
2( 6.635)0.01P K ≥≈ (2)
对于问题2的设计,目的是让学生理解,在0H 成立的情况下,635.62
≥K 的发生的概率非常小,
是一个小概率事件。
对于问题3的设计,学生讨论的很激烈,经过同学互相点评以及教师的适时引导,学生慢慢理解了
H出现了问题,因此认为结论在很大的程度上是成立的。
当小概率事件发生时,一般认为是假设的
将独立性检验和反证法作类比,加深学生对独立性检验思想的理解。
学生活动:分组进行讨论,而后让学生总结二者的区别和联系,培养学生学会用联系的观点看问题。
介绍临界值表,教学生学会运用临界值表。
总结独立性检验的基本步骤。
3、课堂练习,夯实基础
课上到这里,学生已掌握了独立性检验的基本步骤,练习就是进一步巩固所学知识,运用其来解决实际问题。
4、课堂小结,感悟提高
学生进行思考后,对本节课所学知识进行梳理,教师再进行补充概括。
让本节课所学的知识在学生的感悟中得以升华。
5、课后作业,学以致用
效果分析:本节课通过对典型案例的探究,学生理解了独立性检验的基本思想及其具体实施步骤。
让学生从中初步体会了数学与实际生活的联系,以及怎样运用所学知识去解决实际生活中的问题。
本节课通过对几个问题的设置,经过学生之间的讨论、互评,教师的引导帮助,使得本节课的难点得以突破。
学生通过总结也完善了自己的认知结构,从而对该部分得知识也有了更深的体会。
我在课堂上注重学生的主体参与,努力创设教师引导下的学生自主探究、合作交流的学习方式。
通过课堂练习,看到学生基本上能掌握用独立性检验思想解决实际问题,课前制定的教学目标基本实现。
通过反思,才能进步,我觉得课前预设与课堂生成相结合,才是符合新课程理念的对学生发展最为有利的教法。
非常感谢主办单位为我们年轻教师的成长提供了这样一个平台,我会在今后努力工作,使自己快速的成长起来,也希望各位专家,评委和同行们批评指正,谢谢!
省市第一高级中学宁
2010.9.19。