解一元二次方程 教学设计

合集下载

一元二次不等式教案5篇

一元二次不等式教案5篇

一元二次不等式教案一元二次不等式教案5篇作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。

那么教案应该怎么写才合适呢?以下是小编整理的一元二次不等式教案,仅供参考,希望能够帮助到大家。

一元二次不等式教案1教学内容3.2一元二次不等式及其解法三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。

回顾下等比数列的性质。

生:略师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。

21.2 解一元二次方程(直接开平方法)(教学设计)

21.2 解一元二次方程(直接开平方法)(教学设计)

章节名称21.2 解一元二次方程(直接开平方法)编号课型新授课备课人上课时间年月日教学目标知识与技能:1)利用开平方法解形如x2=p(p≥0)的方程。

2)利用开平方法解形如(mx+n)2=p(p≥0)的方程。

过程与方法:回顾平方根的知识,通过对实际生活中的问题列出一元二次方程,通过整理并求解的过程,让学生初步掌握利用直接开平方解一元二次方程(形如:x2=p(p≥0)的方法,再通过数学转换的方法,将一个一元二次方程(形如:(mx+n)2=p(p≥0))“降次”为两个一元一次方程,这样就可以通过解一元一次方程来求一元二次方程的解。

情感态度与价值观:1)培养学生主动探究知识、自主学习和合作交流的意识。

2)激发学生对学数学的兴趣,体会学数学的快乐,培养用数学的意识。

教学重点运用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程。

教学难点通过平方根的意义解形如x2=p(p≥0)的方程,将知识迁移到根据平方根的意义解形如(mx+n)2=p(p ≥0)的一元二次方程。

板书设计21.2 解一元一次方程(直接开平方法)一般地,对于方程x2=p,1)当p>0时,根据平方根的意义,方程有两个不相等的实数根p2xpx1-==,;2)当p=0时,根据平方根的意义,方程有两个相等的实数根x1=x2=0;3)当p<0时,因为对于任意实数x,都有x2≥0,所以方程无实数根。

教学过程教学环节教生活动设计意图导入新课【课前回顾】师:求下列各数的平方根 1)169 2)8125生:1)±135[多媒体展示][课前回顾]对于方程x2=p,1)当p= 4时,求方程的解?2)当p= 0时, 求方程的解?3)当p=-4时, 方程有解吗?为什么?师:尝试求解方程?生:1)x1=2, x2=﹣22)x1=x2=03)无解,当p<0时,因为对于任意实数x,都有x2≥0,所以方程无解【情景导入】[多媒体展示][情景引入]一桶油漆可刷的面积为1500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?师:列出方程,观察方程的样式,解方程求出棱长?生:设正方体的棱长为 x dm,则一个正方体的表面积为 6x2 dm2,则列出方程为:10×6x2=1500 ,化简整理,得x2=25,据平方根的意义,得x=±5,即x1=5, x2=﹣5。

用适当的方法解一元二次方程教案

用适当的方法解一元二次方程教案

一元二次方程教案篇1学习目标:1、使学生会用列一元二次方程的方法解决有关增长率的应用题;2、进一步培养学生分析问题、解决问题的能力。

学习重点:会列一元二次方程解关于增长率问题的应用题。

学习难点:如何分析题意,找出等量关系,列方程。

学习过程:一、复习提问:列一元二次方程解应用题的一般步骤是什么?二、探索新知1.情境导入问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.2002年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,2003年村长完成了36.3•亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长2003•年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,•则国家将对该村投入补助粮食多少万斤?2.合作探究、师生互动教师引导学生分析关于环保的情境导入问题,•这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,•即2002年实际完成的亩数是30(1+x),第二次增长后,即2003年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.教师引导学生运用方程解决问题:①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.②全村坡耕地还林还草为50×36.3=1 815(亩),•国家将补助粮食1 •815•×500=907 500(斤)=90.75(万斤).三、例题学习说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。

例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?(小组合作交流教师点拨)时间基数降价降价后价钱第一次600 600x 600(1-x)第二次600(1-x) 600(1-x)x 600(1-x)2(由学生写出解答过程)四、巩固练习一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?五、课堂总结:1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案•相关推荐一元二次方程优秀教案(通用11篇)作为一名默默奉献的教育工作者,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那么大家知道正规的教案是怎么写的吗?以下是小编整理的一元二次方程优秀教案,仅供参考,大家一起来看看吧。

一元二次方程优秀教案篇1教学目标1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:1.教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

教学目的1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。

直接开平方法很简单,在这里不做过多的介绍。

为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。

我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。

在解一元二次方程的几种方法中,均需要用到转化的思想方法。

如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。

在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。

教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。

2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。

过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。

2.在探究一元二次方程的过程中体会转化、降次的数学思想。

情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。

教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。

难点:根据方程的特点灵活选择适当的方法解一元二次方程。

教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

一元二次方程的解法教学设计

一元二次方程的解法教学设计

一元二次方程的解法教学设计目标:学生能够理解一元二次方程的概念。

学生能够应用多种方法求解一元二次方程。

学生能够分析和解释一元二次方程的解。

教学方法:讲授演示引导式探究小组合作实践练习教学过程:一、导入(5分钟)回顾一元一次方程的解法。

引入一元二次方程的概念,并展示其一般形式:ax^2 + bx + c = 0。

二、探索一元二次方程的求解方法(15分钟)因式分解法:让学生尝试对一些简单的一元二次方程进行因式分解,以找出其解。

公式法:推导一元二次方程的求根公式:x = (-b ± √(b^2 - 4ac)) / 2a。

三、分组练习(20分钟)将学生分成小组。

分配不同的练习题,涵盖因式分解法和公式法。

指导小组成员合作解决问题,并分享不同的解题策略和方法。

四、全班讨论(10分钟)召集小组代表分享他们的解题过程和结果。

讨论不同方法的优缺点。

强调理解一元二次方程的结构对于求解至关重要。

五、应用练习(15分钟)提供一些实际应用问题,涉及一元二次方程。

让学生应用所学到的求解方法解决这些问题。

鼓励学生解释他们的解并讨论它们的含义。

六、巩固练习(10分钟)分发一系列混合练习题,包括因式分解法、公式法和应用问题。

让学生独立练习,以巩固他们的理解并提高熟练度。

七、反思和评估(5分钟)让学生反思他们在学习一元二次方程求解方法过程中学到的内容。

通过收集作业、课堂参与和练习表现等证据对学生的理解程度进行评估。

补充材料:交互式在线模拟器,用于演示一元二次方程的求解方法。

练习题库,涵盖不同难度和类型的方程。

额外的教学资源,如补充阅读材料和视频教程。

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。

初中数学初二数学下册《一元二次方程的解法》教案、教学设计

4.引导学生总结解题规律,培养学生归纳、概括的能力。
(三)情感态度与价值观
1.培养学生勇于探索、善于思考的精神,增强学生克服困难的信心。
2.培养学生合作交流的意识,让学生在合作中学会倾听、表达和尊重他人。
3.培养学生严谨、认真的学习态度,提高学生的数学素养。
4.引导学生体会数学在生活中的应用,感受数学的价值,激发学生学习数学的兴趣。
初中数学初二数学下册《一元二次方程的解法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元二次方程的标准形式,掌握其基本性质。
2.学会使用直接开平方法求解一元二次方程,并掌握其适用条件。
3.学会使用配方法求解一元二次方程,理解其原理和步骤。
4.学会使用公式法求解一元二次方程,并熟练运用公式。
5.能够根据问题情境选择合适的解法求解一元二次方程,提高解决问题的能力。
(2)开展数学实践活动,让学生在实际操作中体验数学的乐趣和价值。
(3)鼓励学生参加数学竞赛、讲座等活动,拓宽学生的知识视野。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
(1)通过一个实际问题引入一元二次方程,如:一块正方形菜地的边长比它的面积多1,求这块菜地的边长。让学生尝试用已学过的知识解决问题,引导学生发现一元一次方程无法解答该问题。
2.难点:
(1)理解并掌握配方法的原理和步骤,特别是如何通过添加和减去同一个数使方程变形。
(2)熟练运用求根公式求解一元二次方程,并理解公式中各个参数的含义。
(3)在实际问题中,能够根据方程的特点选择合适的解法。
(二)教学设想
1.对于重点内容的教授:
(1)通过实际例题引入,让学生感受一元二次方程解法的必要性,激发学生的学习兴趣。

八年级数学下册《因式分解法解一元二次方程》教案、教学设计

3.组织学生进行小组讨论、合作探究,培养学生团队协作能力和解决问题的能力;
4.设计不同难度层次的习题,使学生在巩固基础知养其创新思维。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性;
2.培养学生勇于面对困难,敢于挑战自我的精神,使其在解决问题中增强自信心;
4.家长签字确认,加强对学生学习情况的了解和关注。
4.加强团队合作指导,提高学生的沟通协作能力;
5.关注学生个体差异,实施差异化教学,激发学生的学习兴趣和潜能。
三、教学重难点和教学设想
(一)教学重难点
1.重点:因式分解法解一元二次方程的步骤和方法,以及在实际问题中的应用。
2.难点:
(1)理解一元二次方程的根的判别式及其与因式分解的关系;
(2)灵活运用因式分解法解决各种类型的一元二次方程;
4.能够根据一元二次方程的特点,选择合适的解法,提高解题效率;
5.通过练习,提高学生的运算速度和准确性。
(二)过程与方法
在本章节的教学过程中,教师将采用以下过程与方法:
1.引导学生通过观察、分析、归纳一元二次方程的特点,发现因式分解法解一元二次方程的规律;
2.通过讲解、示范、练习等多种方式,帮助学生掌握因式分解法解一元二次方程的方法;
(4)注重课堂反馈,及时调整教学进度和策略,提高教学效果。
3.教学评价:
(1)采用过程性评价与终结性评价相结合的方式,全面评估学生的学习效果;
(2)关注学生在小组合作中的表现,评价其团队协作能力和沟通能力;
(3)设置开放性问题,评价学生的创新思维和解决问题的能力;
(4)鼓励学生自我评价和相互评价,提高学生的自我认知和反思能力。
八年级数学下册《因式分解法解一元二次方程》教案、教学设计

一元二次方程教学设计(精选6篇)

一元二次方程教学设计(精选6篇)一元二次方程教学设计1一、教学内容分析华师版九年级(上)23章《一元二次方程的根的判别式》一节,教材中作为阅读材料。

从推导到应用都比较简单。

但是它在整个中学数学中占有重要的地位。

从知识的发展来看,学生通过对一元二次方程的根的判别式的学习,可以巩固已学过实数、整式、二次根式、一元一次不等式、一元二次方程的相关概念、一元二次方程的解法等知识,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究二次函数的图像与x轴交点情况,二次三项式以及二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。

通过这一节的学习,使学生会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,感受数学的简洁美。

教学重点:根的判别式的正确理解和运用教学难点:含字母系数的一元二次方程根的判别式的运用。

二、学情分析学生已经学过一元二次方程的四种解法,并对的作用已经有所了解,在此基础上来进一步研究作用,它是前面知识的深化与总结。

九年级学生的认识水平渐渐由具体直觉占优势过渡到抽象思维占优势。

教师的指导方法应适应他们的认知特点和相应规律。

从数学思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。

所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。

三、教学目标知识和技能目标:1、能运用根的判别式,判别方程根的情况和进行有关的推理论证;2、会运用根的判别式求一元二次方程中字母系数的取值范围;过程和方法目标:1、经历一元二次方程的根的判别式的产生的过程;2、向学生渗透分类的数学思想;3、培养学生的逻辑思维能力以及推理论证能力。

情感态度价值观目标:1、体验数学的简洁美;2、培养学生的探索、创新精神和协作精神。

四、教法、学法:教法:1、探索发现:本着“以学生发展为本”的教育理念,教师启发、诱导,学生探索发现新知识;2、观察演示:通过典型例题的分析、研究,引发学生的思考、质疑、解疑;3、归纳总结:通过课堂小结,完善认知结构,提高认识能力;4、讲练结合:通过变式训练、拓展训练,让学生学会分类、类比、转化等数学思想,培养学生分析问题和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元二次方程【课时安排】3课时【第一课时】【教学目标】1.会用配方法解二次项系数不为1的一元二次方程,进一步体会配方法是一种重要的数学方法。

2.经历探究将一般一元二次方程化成(x+m )2=n (n ≥0)形式的过程,进一步理解配方法的意义。

3.在用配方法解方程的过程中,体会转化的思想。

【教学重点】使学生掌握用配方法解二次项系数不为1的一元二次方程。

【教学难点】把一元二次方程转化为的(x +h )2=k (k ≥0)形式。

【教学过程】一、情境引入:1.什么是配方法?什么是平方根?什么是完全平方式?我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法(solving by completing the square) 用配方法解一元二次方程的方法的助手:如果x 2=a ,那么x=a 。

x 就是a 的平方根。

式子a 2±2ab+b 2叫完全平方式,且a 2±2ab+b 2=(a ±b)22.用配方法解下列方程:(1)x 2-6x-16=0; (2)x 2+3x-2=0;3.请你思考方程x 2-25x+1=0与方程2x 2-5x+2=0有什么关系? 后一个方程中的二次项系数变为1,即方程两边都除以2就得到前一个方程,这样就转化为学过的方程的形式,用配方法即可求出方程的解。

二、探究学习:1.尝试:问题1:如何用配方法解方程2x 2-5x+2=0呢?解:两边都除以2,得x 2-25x+1=0 系数化为1 移项,得x 2-25x=-1 移项 配方,得x 2-25x+2245145⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛即169452=⎪⎭⎫ ⎝⎛-x 配方 开方,得4345±=-x 开方 ∴x 1=21,x 2=2 定根 引导学生交流思考与探索(对于二次项系数不为1的一元二次议程,我们可以先将两边都除以二次项系数,再利用配方法求解)问题2:如何解方程-3x 2+4x+1=0?分析:对于二次项系数是负数的一元二次方程,用配方法解时,为了便于配方,可把二次项系数化为1,再求解解:两边都除以-3,得031342=--x x 移项,得31342=-x x 配方,得22232313234⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+-x x 即97322=⎪⎭⎫ ⎝⎛-x 开方,得3732±=-x ∴3732373221-=+=x x 2.概括总结。

对于二次项系数不为1的一元二次方程,用配方法求解时要做什么?首先要把二次项系数化为1,用配方法解一元二次方程的一般步骤为:系数化为1,移项,配方,开方,求解,定根。

3.概念巩固用配方法解下列方程,配方错误的是(C )A .x 2+2x-99=0化为(x+1)2=100B .t 2-7t-4=0化为(t-27)2=465 C .x 2+8x+9=0化为(x+4)2=25 D .3x 2-4x-2=0化为(x-32)2=910 4.典型例题:解下列方程(1)4x 2-12x-1=0 (2)2x 2-4x+5=0 (3)3-7x=-2x 2解:(1)04132=--x x (2)02522=+-x x (3)023272=+-x x 125122+=+-x x 164923472722+-=⎪⎭⎫ ⎝⎛+-x x 494123322+=⎪⎭⎫ ⎝⎛-+-x x ()2712=-x 1625472=⎪⎭⎫ ⎝⎛-x 410232=⎪⎭⎫ ⎝⎛-x 2141±=-x 4547±=-x 21023±=-x ∴2141,214121-=+=x x ∴21,321==x x ∴210232102321-=+=x x 说明:对于二次项系数不为1的一元二次方程化为(x+h )2=k 的形式后,如果k 是非负数,即k ≥0,那么就可以用直接开平方法求出方程的解;如果k <0,那么方程就没有实数解。

5.探究:一个小球竖直上抛的过程中,它离上抛点的距离h (m )与抛出后小球运动的时间t (s )有如下关系:h=24t-5t 2经过多少时间后,小球在上抛点的距离是16m6.巩固练习:练习1:解下列方程(1)2x 2-8x+1=0 (2)21x 2+2x-1=0 (3)2x 2+3x=0 4132=-x x(4)3x2-1=6x (5)-2x2+19x=20 (6)-2x2-x-1=0练习2:用配方法求2x2-7x+2的最小值。

练习3:用配方法证明-10x2+7x-4的值恒小于0。

三、归纳总结:运用配方法解二次项系数不为1的一元二次方程的方法和步骤是什么?(自己写出)【第二课时】【教学目标】1.会用公式法解一元二次方程。

2.学生体验用配方法推导一元二次方程求根公式的过程,明确运用公式求根的前提条件是b2-4ac≥0。

3.在探索和应用求根公式中,使学生进一步认识特殊与一般的关系,渗透辩证唯物广义观点。

【教学重点】掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程。

【教学难点】求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误。

【教学过程】一、情境引入:1.用配方法解一元二次方程的一般步骤是什么?二次项系数化1,移项,配方,变形,开平方,求解,定根。

2.用配方法解下例方程(1)022=+-xx547x(2)022=2--x3.用直接开平方法和配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程ax2+bx+c=0(a≠0)的实数根呢?二、探究学习:1.尝试:如何用配方法解一般形式的一元二次方程ax2+bx+c = 0(a≠0)?回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论交流,达成共识:解:因为0a ≠,所以方程两边都除以a ,得20b c x x a a++= 移项,得 2b c x x a a+=- 配方,得 222)2()2(22a b a c a b x a b x +-=+∙∙+ 即 2224()24b b ac x a a -+= (这样原方程就化成了(x+h )2=k 的形式)能用直接开平方解吗?什么条件下就能用直接开平方解了?当240b ac -≥,且0a ≠时,2244b ac a -大于等于零吗? 让学生思考、分析,发表意见,得出结论:因为0a ≠,所以240a >,从而22404b ac a -≥当240b ac -≥时,得2b x a += 所以aac b a b x 2422-±-=即x = 到此,你能得出什么结论?2.概括总结一般地,对于一般形式的一元二次方程 20(0)ax bx c a ++=≠,当240b ac -≥时,它的根是2b x a -±=(240b ac -≥) 这个公式叫做一元二次方程的求根公式,利用这个公式解一元二次方程的方法叫做公式法。

这个公式说明方程的根是由方程的系数a 、b 、c 所确定的,利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的解。

问题(1)为什么在得出求根公式时有限制条件b 2-4ac ≥0?(2)在一元二次方程20(0)ax bx c a ++=≠中,如果b 2-4ac <0,那么方程有实数根吗?为什么?在用配方法求20(0)ax bx c a ++=≠的根时,得2224()24b b ac x a a -+=,因为负数没有平方根,所以240b ac -≥在一元二次方程20(0)ax bx c a ++=≠中,如果b 2-4ac <0,那么方程无实数根,这是由于ac b 42-无意义。

3.概念巩固:(1)把方程4-x 2=3x 化为ax 2+bx+c=0(a≠0)形式为 ,b 2-4ac=(2)用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A .x=21214412-±B .x=21214412-±- C .x=21214412+± D .x=64814412-± 4.典型例题:例 用公式法解下列方程:(1)x 2+3x +2 = 0 (2)2x 2-7x = 4分析:第2小题要先将方程化为一般形式再用求根公式求解。

解(1)∵a=1,b=3,c=2 (2)解:移项,得2x 2-7x-4=0b 2-4ac=32-4×1×2=1>0 ∵a=2,b=-7,c=-4 ∴1213⨯±-=x b 2-4ac=49-4×2×(-4)=81>0 ∴x 1=-1,x 2=-2 ∴22817⨯±=x ∴x 1=4,212-=x 用公式法解一元二次方程的一般步骤?说明:用公式法解一元二次方程首先要把它化为一般形式,进而确定A 、B 、C 的值,再求出b 2-4ac 的值,当b 2-4ac ≥0的前提下,再代入公式求解;当b 2-4ac <0时,方程无实数解(根)5.巩固练习:练习1:用公式法解下列方程(1)x 2-3x-4=0 (2)2x 2+x-1=0(3)322=-x x (4)66=-)(x x(5)4x 2+4x-1=-10-8x (6)2x 2-7x+7=0练习2:两个连续正偶数的积等于168,求这两个偶数。

三、归纳总结:1.解一元二次方程一般有哪几种方法?一元二次方程的求根公式是什么?用公式法解一元二次方程时要注意什么?2.任何一个一元二次方程都能用公式法求解吗?举例说明。

3.若解一个一元二次方程时,b 2-4ac <0,请说明这个方程解的情况。

【第三课时】【教学目标】1.会用因式分解法解一元二次方程,体会“降次”化归的思想方法。

2.能根据一元二次方程的特征,选择适当的求解方法,体会解决问题的灵活性和多样性。

3.学会与同学进行交流,勇于从交流中发现最优解法。

【教学重点】用因式分解法解某些一元二次方程。

【教学难点】选择适当的方法解一元二次方程。

【教学过程】一、情境引入:1.我们已经学习了一元二次方程的哪些解法?2.解下列一元二次方程:(1)822=x (2)016)2(2=--x (3)142-=+t t (4)0922=-+x x3.式子ab=0说明了什么?4.把下列各式因式分解。

(1)x 2-x (2)x 2-4x (3)x +3-x (x +3) (4)(2x -1)2-x 2二、探究学习:1.尝试:若在上面的多项式后面添上=0,你怎样来解这些方程?(1)x 2-x =0 (2)x 2-4x=0(3)x +3-x (x +3)=0 (4)(2x -1)2-x 2=02.概括总结。

你能用几种方法解方程x 2-x=0?本题既可以用配方法解,也可以用公式法来解,但由于公式法比配方法简单,一般选用公式法来解。

相关文档
最新文档