γ射线的吸收实验报告
实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定

实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定γ射线能谱测定以及γ射线的吸收与物质吸收系数μ的测定实验报告摘要原子核的能级跃迁可以产生伽马射线,通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。
同时通过学习了解伽马射线与物质相互作用的特性,测定窄束γ射线在不同物质中的吸收系数μ。
本实验通过使用伽马闪烁谱仪测定不同的放射源的γ射线能谱;根据当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应损失能量。
闪烁体分子电离和激发,退激时发出大量光子,闪烁光子入射到光阴极上,光电效应产生光电子,电子会在阳极负载上建立起电信号等原理,对γ射线进行研究。
γ射线,又称γ粒子流,是原子核能级跃迁蜕变时释放出的射线,波长短于0.2埃的电磁波,具有很强的穿透性。
本实验将γ射线的次级电子按不同能量分别进行强度测量,通过电子学仪器得到它的能谱图。
实验中使用NaI单晶γ闪烁谱仪对γ的能谱进行测定。
最后得到γ射线在160道数及320道数位置的一些相关数据。
在这些位置它的数量和能量的值都比较合适,有一定数量,又有一定的穿透能力。
实验中将了解NaI(Tl)单晶γ闪烁谱仪是如何测量γ射线的能谱,NaI(Tl)单晶γ闪烁谱仪的结构、原理与特性;掌握NaI(Tl)单晶γ闪烁谱仪整套装置的操作、调整和使用方法。
并通过对137Cs和60Co 放射源γ能谱的测量,加深对γ射线与物质相互作用的理解以及通过该实验了解多道脉冲幅度分析器在NaI(Tl)单晶γ谱测量中的数据采集及其基本功能。
在第一个实验的基础上,采用NaI闪烁谱仪测全能峰的方法测量137Cs的γ射线在铅、铝材料中的吸收系数。
并且通过实验对核试验安全防护的重要性有初步的认识。
关键词γ射线吸收系数μ60Co、137Cs放射源能谱NaI单晶γ闪烁谱仪多道分析器引言γ射线首先由法国科学家P.V.维拉德发现,γ射线是光子,是由原子核的衰变产生的,当原子核从激发态跃迁到较低能态或基态时,就有可能辐射出γ射线。
γ射线的吸收实验报告

γ射线的吸收实验报告实验报告:γ射线的吸收实验一、实验目的通过实验探究γ射线的吸收规律,分析各种不同物质对γ射线吸收的影响。
二、实验原理γ射线是一种能量很高的电磁辐射,对物质有很强的透射能力。
当γ射线通过不同物质时,会发生吸收现象,即射线的强度会发生变化。
主要影响γ射线吸收的因素包括物质的厚度、密度、原子序数等。
实验中通过改变不同材料的厚度和密度,来研究γ射线吸收规律。
三、实验器材和试剂1.γ射线源:用于发射γ射线的辐射源。
2.安全屏蔽装置:用于屏蔽γ射线的辐射。
3.各种材料:如不同厚度和密度的铅片、铝片等。
四、实验步骤1.取一块铝片作为基准样品,记录γ射线源发出的射线强度。
2.依次将铅片放在铝片上,每次增加一块铅片并记录射线强度,直到达到一定厚度。
3.记录各个厚度下的射线强度,计算吸收率。
4.将铝片和不同厚度的铅片放在γ射线源和探测器之间,记录射线强度和各种材料的厚度、密度。
5.分析各个实验结果,总结出γ射线的吸收规律。
五、实验数据和结果实验结果如下表所示:材料,厚度(cm),密度(g/cm³),射线强度(cps):-----,:--------:,:----------:,:------------:铝片,0,2.7,600铝片+铅片,0+0.5,11.3,500铝片+铅片,0+1.0,11.3,300铝片+铅片,0+1.5,11.3,100铝片+铅片,0+2.0,11.3,50铝片+铅片,0+2.5,11.3,20根据实验数据,可以绘制γ射线强度与不同厚度材料的关系图。
根据实验数据和图表分析可得到结论:随着铅片厚度的增加,γ射线的吸收率逐渐增大,射线强度逐渐减小。
当铅片厚度超过2.5cm时,射线强度已经变得非常弱。
六、讨论和分析1.实验结果符合γ射线的吸收规律。
厚度越大,吸收率越高。
2.实验中使用了铝片作为基准样品,因为铝对γ射线的吸收相对较低,便于观察强度的变化。
铅作为一种重金属,对γ射线有较高的吸收能力,可以用于改变吸收率。
射线的吸收

实验1.3 射线的吸收实验时间:2010年10月21日【摘要】实验中我们分别探究了γ射线在铜,铝,铅中的吸收规律。
通过这次实验我们希望了解γ射线在物质中的吸收规律,同时掌握测量γ吸收系数的基本方法。
【引言】γ射线在穿透物质时,会被物质吸收,吸收作用的大小用吸收系数来表示。
物质的吸收系数的值与γ射线的能量有关,也与物质本身的性质有关。
正确测定物质的吸收系数,在核技术的应用与辐射防护设计中具有十分重要的意义。
例如工业上广泛应用的料位计、密度计、厚度计,医学上的γ照相技术等都是根据这一原理研究设计的。
【关键词】铜 铝 铅γ射线 吸收【正文】一、 实验原理1.窄束 射线在物质中的吸收规律。
γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使γ射线的强度减弱。
准直成平行束的γ射线称为窄束γ射线,单能窄束γ射线在穿过物质时,其强度的减弱服从指数衰减规律,即:其中I 0为入射γ射线强度,I x 为透射γ射线强度,x 为γ射线穿透的样品厚度,μ为线性吸收系数。
用实验的方法测得透射率T=I x /I 0与厚度x 的关系曲线,便可根据(1)式求得线性吸收系数μ值。
为了减小测量误差,提高测量结果精度。
实验上常先测得多组 I x 与x 的值,再用曲线拟合来求解。
则:ln I x =ln I 0−μx (2)由于γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数μ都有贡献,可得:μ=μph +μc +μp (3)式中μph 为光电效应的贡献, μc 为康普顿效应的贡献,μp 为电子对效应的贡献。
它们的值不但与γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。
对于能量相同的γ射线不同的材料、μ也有不同的值。
医疗上正是根据这一原理,来实现对人体内部组织病变的诊断和治疗,如x 光透视,x 光CT 技术,对肿瘤的放射性治疗等。
图1表示铅、锡、铜、铝材料对γ射线的线性吸收系数μ随能量E变化关系。
伽马射线的吸收实验分析报告

伽马射线的吸收实验分析报告伽马射线是一种高能电磁辐射,它具有较强的穿透能力和高能量。
为了研究伽马射线在物质中的吸收特性,我们进行了一系列的实验,并对实验结果进行了详细的分析。
实验目的:1.研究伽马射线在不同物质中的吸收情况;2.了解伽马射线的穿透能力和吸收特性;3.探究伽马射线吸收实验的应用价值。
实验装置:1. 伽马射线源:选用共振核素Cesium-137 (Cs-137)。
2.探测器:采用闪烁体探测器,记录伽马射线的强度变化。
3.不同材料:如铅、铝、聚乙烯等具有不同密度和原子序数的材料。
实验步骤:1.将伽马射线源定位在一定距离的位置上,探测器放置在伽马射线源的背面,预留一定的触发时间。
2.依次将铅、铝和聚乙烯等材料放置在伽马射线源和探测器之间,记录不同材料下的伽马射线强度。
3.根据伽马射线的强度变化情况,分析不同材料对伽马射线的吸收程度。
实验结果与分析:我们进行了三组实验,分别使用了铅、铝和聚乙烯作为吸收材料。
我们记录了不同材料下伽马射线的强度变化情况。
首先,当伽马射线通过铅材料时,我们观察到伽马射线的强度明显减弱。
这是因为铅具有较高的密度和原子序数,能够对伽马射线产生较强的吸收作用。
所以,铅是一种比较好的屏蔽伽马射线的材料。
其次,当伽马射线通过铝材料时,尽管铝的密度较低,但其原子序数较高,对伽马射线也有一定的吸收作用。
与铅相比,铝的吸收效果较弱。
这可能是因为伽马射线的穿透能力与其能量有关,而铝的原子序数相对较小,无法有效吸收高能伽马射线。
最后,当伽马射线通过聚乙烯材料时,我们观察到伽马射线的强度几乎没有明显的减弱。
这是因为聚乙烯的密度较低,原子序数也很小,无法有效吸收伽马射线。
因此,聚乙烯对伽马射线的屏蔽效果很差。
通过对实验结果的分析,我们可以得出以下结论:1.伽马射线的穿透能力与所穿过材料的密度和原子序数有关。
密度和原子序数较大的材料对伽马射线具有较强的吸收能力。
2.铅是一种较好的屏蔽伽马射线的材料,其吸收能力远远高于铝和聚乙烯。
γ能谱及γ射线的吸收实验报告(河南农业大学)

γ能谱及γ射线的吸收实验报告学校:河南农业大学班级:能源与动力工程19-2姓名:刘轩志学号:1904116046指导教师:谭明实验时间:2020-06-29一、实验简介根据原子核结构理论,原子核能级属于分立能级。
当处于激发态上的核跃迁到低能级上时,就发射γ射线。
放出的光量子能量,此处h 为普朗克常数,ν为γ光子的频率。
原子核衰变放出的γ射线的能量反映了核能级差,且能量大小通常为特征能量,因此通过测量γ射线强度按能量的分布即γ射线能谱,可以用于研究核能级、核衰变纲图等,在放射性分析、同位素应用及鉴定核素等领域有重要的意义。
当γ射线穿过物质时,可能通过光电效应、康普顿效应和电子对效应(当E γ>1.02MeV )而损失能量,强度逐渐减弱,这种现象称为物质对γ射线的吸收。
目前物质对γ射线的吸收规律广泛应用于工业、科研、医疗、资源勘探、环境保护许多领域。
闪烁γ能谱仪具有实用范围广、探测效率高、时间分辨小、价格低廉等优点,是测量γ射线能谱最常用的工具。
本实验的目的是学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律。
二、实验原理1.γ射线与物质的相互作用γ射线与物质原子之间的相互作用主要有三种方式:光电效应、康普顿散射、电子对效应。
(1)光电效应当能量的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失,发射出去的电子称为光电子,这种过程称为光电效应.发射出光电子的动能:(1),为束缚电子所在壳层的结合能。
原子内层电子脱离原子后留下空位形成激发原子,其外部壳层的电子会填补空位并放出特征X 射线。
例如L 层电子跃迁到K 层,放出该原子的K 系特征X 射线。
(2)康普顿效应2E 1E 12E E hv −=γE i e B E E −=γi Bγ光子与自由静止的电子发生碰撞,而将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射改变了原来的能量和方向。
γ射线能谱测量实验报告(共12页)

γ射线能谱测量实验报告篇一:γ射线能谱的测量及γ射线的吸收γ射线能谱的测量及γ射线的吸收与物质吸收系数μ的测定【摘要】原子核从激发态跃迁到较低能级或基态跃迁能产生γ射线,实验,将γ射线的次级电子按不同能量分别进行强度测量,从而得到γ辐射强度按能量的分布。
并通过测量γ射线在不同物质中的吸收系数,了解γ射线在不同物质中的吸收规律。
【关键字】γ闪烁谱仪γ射线能谱物质吸收系数当今的世界,以对核技术进行了相当广泛的运用。
从1896年法国科学家A.H.Becquerel发现放射性现象开始,经过M.Curie一些新放射性元素的发现及其性质进行研究后,人类便进入了原子核科学时代。
在原子核发生衰变时,会发出α、β、γ射线,核反应时会产生各种粒子。
人们根据射线粒子与物质相互作用的规律,研制了各种各样的探测器。
这些探测器大致可以分为“信号型”和“径迹型”两大类。
径迹型探测器能给出粒子运动的径迹,有的还能测出粒子的速度、性质等,如核乳胶、固体径迹探测器、威尔逊云室、气泡室、多丝正比室等。
而信号型探测器根据工作物质和原理的不同,又可分为气体探测器、半导体探测器、闪烁探测器。
其中闪烁探测器的工作物质是有机或无机的晶体闪烁体,射线与闪烁体相互作用,会使其电离激发而发射荧光。
从闪烁体出来的光子与光电倍增管的光阴极发生光电效应而击出光电子,光电子在管中倍增,形成电子流,并在阳极负载上产生电信号。
如NaI(TI)单晶γ探测器。
γ射线是由原子核的衰变产生的,当原子核从激发态跃迁到较低能态或基态时,就有可能辐射出不同能量的γ射线。
人们已经对γ射线进行了很多研究,并在很多方面加以运用。
像利用γ射线杀菌,γ探伤仪等。
然而不恰当的使用γ射线也会对人类产生一定的危害。
γ射线的穿透力非常强,如果在使用过程中没有有效的防护,长时间被放射性元素照射的话可能发生细胞癌变。
在对γ射线进行了大量的研究后发现,按能量的不同,可以对其进行强度测量,从而得到γ辐射强度按能量的分布(能谱)。
实验2γ射线的吸收与物质吸收系数μ的测定实验报告

百度文库•让每个人平等地捉升口我近代物理实验报告Y射线的吸收与物质吸收系数测定学班姓学时院级名号间数理与信息工程学院光信081班086201142011年04月27日Y射线的吸收与物质吸收系数u的测定班级:光信081 姓名:陈亮学号:08620114摘要:学会Nal (T1)单晶T闪烁体整套装置的操作、调整和使用;在此基础上测量137Cs和60Co 的T能谱,求出能量变化率、唸康比、线性等各项指标,并分析谱形;了解多道脉冲幅度分析器在Nal(Tl)单晶T谱测量中的数据采集及英基本功能,在数拯处理中包括对谱形进行光滑、寻峰,曲线拟合等。
通过测量137Cs和60Co的T射线的吸收曲线,研究T射线与物质(被束缚在原子中的电子、自有电子、库仑场、核子)相互作用的特性,了解窄束丁射线在物质中的吸收规律及测量其在不同物质中的吸收系数。
关键字:T射线能谱物质吸收系数U光电效应康普顿效应电子对效应引言:原子核由髙能级向低能级跃迁时会辐射射线,它是一种波长极短的电磁波,其能量由原子核跃迁前后的能级差来表示即:射线与物质发生相互作用则产生次级电子或能量较低的射线,将射线的次级电子按不同能量分别进行强度测量,从而得到辐射强度按能量的分布, 即为“能谱”。
测量能谱的装置称为“能谱仪”。
闪烁探测器是利用带电粒子或非带电粒子与某些物质的相互作用下转化成为带电粒子对物质原子的激发,从而会产生发光效应的特性来测量射线的仪器。
它的主要优点是即能测量各种类型的带电粒子,又能探测中性粒子:即能测量粒子强度,又能测量粒子能量:并且探测效率高。
Y,又称Y粒子流,是能级跃迁蜕变时释放出的射线,是波长短于0.2埃的电磁波。
首先由科学家P.V.维拉徳发现,是继(I、后发现的第三种射线。
原子和核反应均可产生丫射线。
Y射线的波长比X射线要短,所以丫射线具有比还要强的穿透能力。
当Y射线通过物质并与相互作用时会产生光电效应、和正负电子对三种效应。
原子核释放出的Y与核外电子相碰时,会把全部能量交给电子,使电子成为光电子,此即光电效应。
γ射线的吸收实验报告

γ射线的吸收实验报告γ射线的吸收一、实验目的:1.了解γ射线在物质中的吸收规律。
2.掌握测量γ吸收系数的基本方法。
二、实验原理:1.窄束射线在物质中的吸收规律。
射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使射线的强度减弱。
准直成平行束的射线称为窄束射线,单能窄束射线在穿过物质时,其强度的减弱服从指数衰减规律,即:(1)其中为入射射线强度,为透射射线强度,x为射线穿透的样品厚度,为线性吸收系数。
用实验的方法测得透射率与厚度的关系曲线,便可根据(1)式求得线性吸收系数值。
为了减小测量误差,提高测量结果精度。
实验上常先测得多组与的值,再用曲线拟合来求解。
则:(2)由于射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数都有贡献,可得:(3)式中为光电效应的贡献,为康普顿效应的贡献,为电子对效应的贡献。
它们的值不但与光子的能量Er有关,而且还与材料的原子序数、原子密度或分子密度有关。
对于能量相同的射线不同的材料、也有不同的值。
医疗上正是根据这一原理,来实现对人体内部组织病变的诊断和治疗,如光透视,光CT技术,对肿瘤的放射性治疗等。
图1表示铅、锡、铜、铝材料对射线的线性吸收系数μ随能量E变化关系。
图中横座标以光子的能量与电子静止能量mc2的比值为单位,由图可见,对于铅低能射线只有光电效应和康普顿效应,对高能射线,以电子对效应为主。
为了使用上的方便,定义μm=μ/ρ为质量吸收系数,ρ为材料的质量密度。
则(1)式可改写成如下的形式:(4)式中xm=x·ρ,称为质量厚度,单位是g/cm2。
半吸收厚度x1/2:物质对射线的吸收能力也常用半吸收厚度来表示,其定义为使入射射线强度减弱到一半所需要吸收物质的厚度。
由(1)式可得:(5)显然也与材料的性质和射线的能量有关。
图2表示铝、铅的半吸收厚度与E的关系。
若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
γ射线的吸收
一、实验目的:
1. 了解γ射线在物质中的吸收规律。
2. 掌握测量γ吸收系数的基本方法。
二、实验原理:
1. 窄束 γ射线在物质中的吸收规律。
γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使 γ射线的强度减弱。
准直成平行束的 γ射线称为窄束 γ射线,单能窄束 γ射线在穿过物质时,其强度的减弱服从指数衰减规律,即:
x x e I I μ-=0 (1)
其中 0I 为入射 γ射线强度, x I 为透射 γ射线强度,x 为 γ射线穿透的样品厚度, μ为线性吸收系数。
用实验的方法测得透射率 0/I I T x =与厚度 x 的关系曲线,便可根据(1)式
求得线性吸收系数 μ值。
为了减小测量误差,提高测量结果精度。
实验上常先测得多组 x I 与
x 的值,再用曲线拟
合来求解。
则:
x I I x μ-=0ln ln (2)
由于 γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 μ都有贡献,
可得:
p c ph μμμμ++= (3)
式中
ph μ为光电效应的贡献, c μ为康普顿效应的贡献,
p μ为电子对效应的贡献。
它们的值不但与 γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。
对于能量相同的 γ射线不同的材料、 μ也有不同的值。
医疗上正是根据这一原理,来实现对人体内部组织病变的诊断和治疗,如
x 光透视, x 光CT 技术,对肿瘤的放射性治疗等。
图1表示
铅、锡、铜、铝材料对 γ射线的线性吸收系数μ随能量E γ变化关系。
图中横座标以 γ光子的能量 υh 与电子静止能量mc 2的比值为单位,由图可见,对于铅低能 γ射线只有光电效应和康普顿效应,对高能 γ射线,以电子对效应为主。
为了使用上的方便,定义μm =μ/ρ为质量吸收系数,ρ为材料的质量密度。
则(1)式可改写成如下的形式:
m m x x e I I μ-=0 (4)
式中x m =x·ρ,称为质量厚度,单位是g/cm 2。
半吸收厚度x 1/2:
物质对 γ射线的吸收能力也常用半吸收厚度来表示,其定义为使入射 γ射线强度减弱到一半所需要吸收物质的厚度。
由(1)式可得:
μ2
ln 2
1=
x (5)
显然也与材料的性质和 γ射线的能量有关。
图2表示铝、铅的半吸收厚度与E γ的关系。
若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。
三、实验内容与要求
1.按图3检查测量装置,调整探测器位置,使放射源、准直孔、探测器具有同一条中心线。
2.打开微机多道系统的电源,使微机进入多道分析器工作状态(UMS )。
3.选择合适的高压值及放大倍数,使在显示器上得到一个正确的60Co γ能谱。
4.测量不同吸收片厚度x 的60Co 的能谱,并从能谱上计算出所要的积分计数 x I 。
5.测量完毕,取出放射源,在相同条件下,测量本底计数 b I 。
6.把高压降至最低值,关断电源。
7.用最小二乘法求出 γ吸收系数μ及半吸收厚度d ½
四、数据处理
上图得21.0048/cm g μ=则20.5ln 2
0.69g/cm x μ
==
上图得2
0.4321/cm g μ=则20.5ln 2
1.6/x g cm μ
=
=
上图得2
0.1419/cm g μ=则20.5ln 2
4.88/x g cm μ
=
=
五、思考题
1.本实验中计数来自于哪些作用过程, x I 应如何选取。
答:Ix 的选取首先是取100s 的计数率,多次取平均后再减去本底计数率得到。
2.实验布置中,为什么要把放射源、准直孔、探测器的中心保持在同一直线上?
答:把放射源、准直孔、探测器的中心保持在同一直线上既可以使探测效率更高,更可以使屏蔽样品的吸收效率最高,验证结果更好。
3.在实验过程中如何估算半吸收厚度?
答:可以通过强度和厚度曲线,线性拟合出计算出材料的线性吸收系数μ值,再算出半吸收厚度。