山东省淄博市高青县第三中学七年级数学下册 5.1.2 垂线(第二课时)教案 (新版)新人教版

合集下载

七年级数学下册《垂线》第二课时教案

七年级数学下册《垂线》第二课时教案

七年级数学下册《垂线》第二课时教案4.5垂线(第二课时)教学目标:1.掌握点到直线的距离的有关概念.2.会作出直线外一点到一条直线的距离.3.理解垂线段最短的性质.教学重点:点到直线的距离的概念及垂线段最短的性质.教学难点:垂线段最短的性质及从直线外一点作直线的垂线的画法教学过程:一、问题情境.垂直的概念2.经过直线外一点作这条直线的平行线,可以作几条?3.如何从直线外一点作已知直线的垂线?二、新课学习.经过一点作一条已知直线的垂线.(1)点P在直线AB上(2)点P在直线AB外2.讨论思考题:过一点P作已知直线的垂线,可以作几条?是不是一定可以作一条?如果有两条直线Pc,PD与直线AB垂直,那么Pc,PD 的关系怎样呢?(重合)3.归纳:在同一平面内,过一点有且只有一条直线与已知直线垂直.4.垂线段的概念:如图,设Po垂直于AB于o,线段Po叫作点P到直线AB的距垂线段.PA,PB,Pc,PD叫作斜线段.5.垂线段Po的长度叫作点P到直线AB的距离.6.动脑筋请同学们用圆规测量一下,Po与PA,PB,PD,Pc的长度,然后猜测一下它们之间的关系如何.归纳结论:直线外一点与直线上各点连接的所有线段中,垂线段最短.简单说成:垂线段最短.7.做一做P100(利用垂线段作点到直线的距离)8.例题示范P100的例3,先引导学生分析,教师在黑板上板演.三、实效训练.下列说法正确的是()A.过直线上一点有且只有一条直线与已知直线垂直B.直线的垂线有无数条c.过直线外一点有且只有一条直线与已知直线垂直D.过一点有且只有一条直线与已知直线垂直2.读句画图:(1)画出表示P,Q两点之间距离的线段;(2)画出表示P到直线n的距离的线段;(3)画出表示Q到直线m的距离的线段.3.练习P101的练习1,2,3.四、课堂小结五、课后作业P102的A组第3,4题六、拓展练习.如图1所示,AD⊥BD,Bc⊥cD,AB=acm,Bc=bcm,则BD 的范围是A.大于acmB.小于bcmc.大于acm或小于bcmD.大于bcm且小于acm2.如图2所示,修一条公路将村庄A、B与公路mN连接起来,怎样修才能使所修的公路最短?画出线路图,并说明理由.图1图2。

5.1.2_垂线(2)--

5.1.2_垂线(2)--

1.垂直定义:当两条直线相交所成的四个角 中,有一个角是直角时,这两条直线互相垂 直,其中一条直线叫另一条直线的垂线,它 a 们的交点叫垂足。 α b 2.垂直的表示: O 用“⊥”和直线字母表示垂直
例如、如图,a、b互相垂直, 垂足为O, 则记为: a⊥b或b⊥a,
若要强调垂足,则记为:a⊥b, 垂足为O.
C
E
B
∵ DE⊥BC于E(已知) A D ∴ DE<CD(垂线段最短)
∴ AB>AC>CD>DE
例4、如图,量出(1)村庄A与货场B的距离, (2)货场B到铁道的距离。
30 m 20 m
A
25m
8m 答:……。 B
C
0m
10 m
例5、如图, 1)画出线段BC的中点M,连结AM; 2)比较点B与点C到直线AM的距离。
C
想一想:
已知:如图AD<AE <AC<AB能说AD的 长是A到BC的距离吗?
A
答:不能。
B D EC
例3、如图:AC⊥BC于C,CD⊥AB于D,DE⊥BC 于E,试比较四条线段AB 、AC、DC和 DE的大小。
解: ∵ AC⊥BC于C(已知) ∴ AC<AB(垂线段最短) 又∵ CD⊥AD于D(已知) ∴ CD<AC(垂线段最短)
C
N
拓展应用1
如图:在铁路旁边有一张庄,现在要建一火 车站,为了使张庄人乘火车最方便(即距离最近) ,请你在铁路上选一点来建火车站,并说明理由。
张庄
垂线段最短
拓展应用2
问题1:长方体的顶点A处有一 只蚂蚁想爬到点C处,请你帮 它画出爬行的最佳路线。并说 明理由。 F问题2:若A处的蚂蚁想爬到棱 BC上,你认为它的最佳路线是 什么? E 问题3:若蚂蚁在点M处,想爬 到棱BC上,请你设计一条最佳 路线。

七年级数学下册:第2课时《垂线》教案(精编)

七年级数学下册:第2课时《垂线》教案(精编)

ABCDO 5 . 1.2 垂线[教学目标] 1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2. 掌握点到直线的距离的概念,并会度量点到直线的距离。

3.掌握垂线的性质,并会利用所学知识进行简单的推理。

[教学重点与难点]1.教学重点:垂线的定义及性质。

2.教学难点:垂线的画法。

[教学过程设计] 一. 复习提问: 1、 叙述邻补角及对顶角的定义。

2、对顶角有怎样的性质。

二.新课: 引言:前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

(一)垂线的定义当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线AB 、CD 互相垂直,记作CD AB ⊥,垂足为O 。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图).(90(垂直定义)已知),︒=∠=∠=∠=∠∴⊥AOD BOD COB AOC CD AB Θ反之,(二)垂线的画法 探究:1、用三角尺或量角器画已知直线l 的垂线,这样的垂线能画出几条?2、经过直线l 上一点A 画l 的垂线,这样的垂线能画出几条?3、经过直线l 外一点B 画l 的垂线,这样的垂线能画出几条? 画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂直定义)已知)((90CD AB AOC ⊥∴︒=∠ΘPO A B CB垂足有时在延长线上。

(三)垂线的性质经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直。

5.1.2垂线(2)

5.1.2垂线(2)

ED C BA 七 年 级 数 学 试 用 教 学 案1.垂线段:从直线外一点引一条直线的 线,这点和 之间的线段叫做垂线段。

2.连接直线外一点与直线上各点的所有线段中, 最短。

3.点到直线的距离:直线外一点到这条直线的 ,叫做点到直线的距离。

二.量学 自测------互查------互教1.判断正误,如果正确,请说明理由,若错误,请订正.(1)直线外一点与直线上一点之间的线段的长度是这一点到这条直线的距离.()(2)如右图,线段AE 的长是点A 到直线BC 的距离.()(3)如右图,线段CD 的长是点C 到直线AB 的距离.() 2、体育课上,老师测量某同学的跳远成绩的依据是( )A .经过直线外一点,有且只有一条直线与这条直线平行B .两点之间线段最短C .垂线段最短D .两点之间确定一条直线 三.助学 展示------反馈------导学1.垂线段与垂线的区别和联系:垂线段是一条线段,而垂线是一条直线;垂线段是垂线上的一部分。

2. 垂线的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短。

四.用学 自测------反馈------点拨1.如左图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点的距离是_________.D CB A2.如右图,∠ACB=∠D=90°,则三条线段AB 、AD 、AC 按从小到大的排列顺序是 ,理由是 .五.测学 自测------反馈------点拨1.如右图,直线AB.CD 相交于点O ,OE 平分∠COB ,FO ⊥EO,∠AOD=70°.(1)求∠EOB 的度数.(2)OF 平分∠AOC 吗?为什么?2.如图所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.N MB A。

人教版七年级下册 5.1.2 垂线 教案设计(2课时)

人教版七年级下册 5.1.2 垂线  教案设计(2课时)

5.1.2 垂线(第一课时)垂线(一)教学目标1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线. 教学重点两条直线互相垂直的概念、性质和画法. 教学过程一、创设问题情境,研究垂直等有关概念1.学生观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖线……,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直”两个字对大家并不陌生, 但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.教师出示相交线的模型,演示模型,学生观察思考:固定木条a,转动木条, 当b 的位置变化时,a 、b 所成的角a 是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?bb a教师在组织学生交流中,应学生明白:当b 的位置变化时,角a 从锐角变为钝角,其中∠a 是直角是特殊情况.其特殊之处还在于:当∠a 是直角时,它的邻补角,对顶角都是直角,即a 、b 所成的四个角都是直角,都相等. 3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。

如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”, 如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。

4.垂直的表示法.垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB 垂直于直线CD , 垂足为O”,则记为AB ⊥CD,垂足为O ,并在图中任意一个角处作上直角记号,如图.O DCBA5.简单应用(1)学生观察课本P6图5.1-6中的一些互相垂直的线条, 并再举出生活中其他实例. (2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等; ③两条直线相交,有一组邻补角相等; ④两条直线相交,对顶角互补. 二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线L 的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L 的垂线.待学生上黑板画出L 的垂线后,教师追问学生:还能画出L 的垂线吗?能画几条?通过师生交流, 使学生明确直线L 的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L 的垂线位置?在学生道出:在直线L 上取一点A,过点A 画L 的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L 外一点B 画直线L 的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直. 教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质1:过一点有且只有一条直线与已知直线垂直.2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图: (1)过点P 画射线MN 的垂线,Q 为垂足;(2)过点P 画射线BN 的垂线,交射线BN 反向延长线于Q 点;(3)过点P 画线段AB 的垂线,交线AB 延长线于Q 点.P MANPPBA学生画完图后,教师归结:画一条射线或线段的垂线, 就是画它们所在直线的垂线. 三、小结本节学习了互相垂直、垂线等概念, 还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗? 四、作业1.课本P7练习,P9.3,4,5,9.2.选用课时作业设计. 一、判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.( ) 二、填空题.1.如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.(1)ODC BA(2)O DCBAE(3)O D CBA2.如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________. 三、解答题.1.已知钝角∠AOB,点D 在射线OB 上. (1)画直线DE ⊥OB;(2)画直线DF ⊥OA,垂足为F.2.已知:如图,直线AB,垂线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD 与OE的位置关系.EDCBA3.你能用折纸方法过一点作已知直线的垂线吗?5.1.2垂线(第2课时)垂线(二)教学目标1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。

人教版七年级数学下册 教学设计5.1.2 第2课时《垂线》

人教版七年级数学下册 教学设计5.1.2 第2课时《垂线》

人教版七年级数学下册教学设计5.1.2 第2课时《垂线》一. 教材分析人教版七年级数学下册第5.1.2节《垂线》主要介绍了垂线的定义、性质及运用。

本节课的内容是学生在学习了直线、射线、线段的基础上进行的,是初中数学的基本内容,也是后续学习三角形、四边形等图形的基础。

教材通过生活实例引入垂线的概念,让学生体会数学与生活的联系,培养学生的空间观念。

二. 学情分析七年级的学生已经掌握了直线、射线、线段的基本知识,对于空间图形有一定的认识。

但学生在学习过程中,可能对垂线的性质和运用理解不够深入,需要通过大量的练习来巩固。

此外,学生对于实际问题的解决能力有待提高,需要教师在教学中进行引导和培养。

三. 教学目标1.理解垂线的定义,掌握垂线的性质;2.能够运用垂线的性质解决实际问题;3.培养学生的空间观念,提高学生的数学思维能力。

四. 教学重难点1.垂线的定义和性质;2.运用垂线的性质解决实际问题。

五. 教学方法1.采用情境教学法,以生活实例引入垂线概念,激发学生的学习兴趣;2.运用直观演示法,让学生直观地理解垂线的性质;3.采用练习法,让学生在实践中巩固所学知识;4.引导学生运用垂线的性质解决实际问题,培养学生的应用能力。

六. 教学准备1.准备相关的教学课件和教具;2.准备一些实际问题,用于课堂练习和拓展。

七. 教学过程1.导入(5分钟)利用生活实例,如墙角、电梯等,引导学生思考:什么是垂线?让学生直观地感受垂线的概念。

2.呈现(10分钟)讲解垂线的定义和性质,通过演示和讲解,让学生理解垂线的特点。

3.操练(10分钟)设计一些练习题,让学生运用垂线的性质进行解答,巩固所学知识。

4.巩固(10分钟)让学生分组讨论,总结垂线性质的应用,分享解题心得。

5.拓展(10分钟)提出一些实际问题,如:在建筑设计中,如何利用垂线性质解决问题?让学生思考和探讨。

6.小结(5分钟)对本节课的内容进行总结,强调垂线的定义和性质,以及其在实际问题中的应用。

5.1.2垂线-人教版七年级数学下册教案

5.1.2垂线-人教版七年级数学下册教案

5.1.2 垂线-人教版七年级数学下册教案课程目标1.通过本课程的学习,学生能够理解垂线的概念和性质,掌握垂线的画法和判定方法。

2.学生能够在解决实际问题时,利用垂线问题解决相关的几何性质。

教学重点1.垂线的概念和性质。

2.垂线的画法和判定方法。

教学难点应用垂线问题解决相关的几何性质。

教学准备1.教师准备教材和讲义。

2.学生准备笔记本和铅笔。

教学过程与方法一、导入(5分钟)1.教师介绍垂线的概念,引导学生回忆上一课的内容。

2.引出本节课的主要内容,即垂线的画法和判定方法。

二、讲授(35分钟)1.教师向学生介绍垂线画法,注重在板书上讲解垂线的绘制方法及其性质。

2.教师向学生演示垂线的判定方法,并引导学生一起做练习。

3.教师与学生共同探讨几何图形中常见的垂线问题,并引导学生反思垂线的应用场景。

三、练习(30分钟)1.分为小组开展小组讨论,讨论垂线的应用场景,并完成老师提供的练习题目。

2.教师对每位学生的讨论和答题进行点评,帮助学生更好地理解本课程内容。

四、总结与归纳(10分钟)1.教师及时总结本节课的重难点,并引导学生发言讨论。

2.教师通过板书展现垂线问题解决几何性质的应用,引导学生对本节内容进行归纳总结。

课后作业1.完成相关习题。

2.查阅相关资料,深入了解垂线的应用场景。

教学反思本节课通过引导学生探索垂线绘制方法和判定规则,有效提高了学生的创造力和动手实践能力。

同时,对于垂线问题解决相关几何性质的应用,教师通过多种手段进行引导,有效拓展了学生的思维深度和广度。

为了更好地满足不同学生的学习训练需求,下一步可以考虑通过编制不同难度级别的习题来给予学生精细化的训练和指导。

人教版七年级数学(教案):5.1.2垂线教案

人教版七年级数学(教案):5.1.2垂线教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂线的基本概念。垂线是与直线相交,且与直线之间的夹角为90度的直线。垂线在几何图形中具有重要作用,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过分析墙角线的例子,了解垂线在实际中的应用,以及它如何帮助我们解决问题。
-对于垂线性质的应用,可以设计一些实际问题的例题,如测量距离、判断角度等,让学生通过解决具体问题来理解垂线的性质。
-在讲解过直线外一点作已知直线的垂线时,可以采用动手操作、动态演示等方法,让学生直观地感受垂线的唯一性。
-对于垂线的判定方法,可以通过典型例题和变式练习,训练学生运用不同方法判断直线之间的垂直关系,提高其识别和解决问题的能力。
三、教学难点与重点
1.教学重点
-垂线的定义及其与直线的垂直关系:使学生掌握垂线的概念,理解垂线与被垂直的直线之间的夹角为90度,能够准确判断两条直线是否垂直。
-垂线的性质:培养学生熟练运用垂线的性质,如过直线外一点作已知直线的垂线唯一存在,两条直线相交成直角则互相垂直等。
-垂线的判定:使学生掌的性质、同位角相等等方法。
-过直线外一点作已知直线的垂线:在操作过程中,学生可能难以理解为什么只有一条直线与已知直线垂直,如何准确作出这条垂线。
-识别并运用垂线的判定方法:学生在面对复杂的几何图形时,可能无法准确判断两条直线是否垂直,需要掌握多种判定方法,如同位角相等、垂直的定义等。
举例:针对难点内容,可以通过以下方法帮助学生突破:
举例:讲解垂线定义时,可以通过实际生活中的例子(如墙角的线、桌面与地面的交线)来说明垂线的概念,让学生理解垂线在实际中的运用。
2.教学难点
-理解并应用垂线的性质:学生对垂线性质的掌握往往停留在表面,难以在实际问题中灵活应用。需要通过具体例题和练习,帮助学生深入理解垂线的性质,并能够运用到解题过程中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【教学目标】
1.理解点到直线的距离的意义,并会度量点到直线的距离;
2.掌握垂线的性质2;
3.感受简单推理.
【教学重点】
1.点到直线的距离;
2.度量点到直线的距离;
3.垂线的性质2.
【教学难点】
区分垂线段与点到直线的距离.
【对话设计】
〖探究1〗怎样测量跳远的成绩
如图,这是你们班的运动员小欣在校运会上跳远后
留下的脚印,裁判员怎样测量跳远的成绩?画出皮
尺的位置.
〖归纳〗你能说出垂线的第二条性质吗?
什么叫做点到直线的距离(见P8)?
〖探究2〗
如图,要从A处到河边B挖一道水渠AB引水,B点一般应选在哪一处?为什么?如果比例尺是1:100 000,水渠大约要挖多长?
〖课堂练习〗
1.从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段(垂线段) 叫做三角形的高.请用三角板分别画出下面三角形的三条高(各用三种颜色).
2.如图,已知△A BC, 用度量方法求△AB C面积的近似值. A
·
起跑线
B C
A
B C
B B C。

相关文档
最新文档