2009湖北省黄冈市中考真题数学答案

合集下载

2009年部分省市中考数学试题分类汇编 选择题(含答案).doc

2009年部分省市中考数学试题分类汇编 选择题(含答案).doc

2009年部分省市中考数学试题(选择题部分)2009年襄樊1.A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( ) A .3- B .3 C .1 D .1或3-2.如图1是由四个相同的小正方体组成的立体图形,它的俯视图为( )3.通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯D .83.110-⨯4.如图2,已知直线110AB CD DCF =︒∥,∠,且AE AF =,则A ∠等于( ) A .30︒ B .40︒ C .50︒ D .70︒ 5.下列计算正确的是( )A .236a a a =gB .842a a a ÷= C .325a a a += D .()32628aa =6.函数y =x 的取值范围是( ) A .0x > B .2x -≥ C .2x >- D .2x ≠-7.分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-38.如图3,在边长为1的正方形网格中,将ABC △向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴对称的点的坐标是( )A .()01-,B .()11,C .()21-,D .()11-, 9.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的正半轴相交,那AF BCDE 图2图3图1 A . B . C . D .么对k 和b 的符号判断正确的是( )A .00k b >>,B .00k b ><,C .00k b <>,D .00k b <<, 10.如图4,AB 是O e 的直径,点D 在AB 的延长线上,DC 切O e 于C ,若25A =o∠.则D ∠等于( ) A .40︒ B .50︒ C .60︒ D .70︒11.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( ) A .9% B .10% C .11% D .12%12.如图5,在ABCD Y中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD Y 的周长为( )A.4+ B.12+C.2+ D.212++2009年山东省日照市1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高(A)-10℃(B)-6℃ (C)6℃(D)10℃2.计算()4323b a --的结果是(A)12881b a(B )7612b a (C )7612b a -(D )12881b a -3.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 (A ) 70°(B ) 65°(D ) 25° (C ) 50° 4.已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是 (A )(3,-2 )(B )(-2,-3 )图4AA DC EB EDB C′FCD ′A(第3题图)(C )(2,3 )(D )(3,2)5.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于 (A )2cm (B )4cm(C )6cm(D )8cm 6.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是(A )①② (B )②③ (C ) ②④ (D ) ③④7.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是8.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是(A )点A(B )点B (C )点C (D )点D9.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则(A )(B)30 (C )(D )M11(第7题图)①正方体②圆柱③圆锥④球(第5题图)ABCD(第5题图)Ek 的值为 (A )43- (B )43(C )34(D )34-10.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 (A )10cm (B )30cm (C )40cm(D )300cm11.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为(A )1 (B )2(C )-1 (D )-212.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为(A )(0,0) (B )(22,22-) (C )(-21,-21)(D )(-22,-22) 题号 123 4 5 6 7 8 9 10 11 12 答案 D D CAABAB BADC2009年潍坊市1.下列运算正确的是( )A .236·a a a =B .1122-⎛⎫=- ⎪⎝⎭C4=±D .|6|6-=2.一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( ) A .1a +B .21a +CD13.太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学计数法表示,保留2个有效数字)(第12题图)A .141.910⨯B .142.010⨯C .157.610⨯D .151.910⨯4.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( ) A .8 B .7- C .6 D .55.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( ) A .A 点处 B .线段AB 的中点处 C .线段AB 上,距A 点10003米处D .线段AB 上,距A 点400米处6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .97.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.A .3B .4C .5D .68.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25B.C.3D.25+9.已知圆O 的半径为R ,AB 是圆O 的直径,D 是AB 延长线上一点,DC 是圆O 的切线,C 是切点,连结AC ,若30CAB ∠=°,则BD 的长为( ) A .2RBC .RDR 10.如图,已知Rt ABC △中,9030ABC BAC AB ∠=∠==°,°,,将ABC △绕顶点C 顺时针旋转至A B C '''△的位置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( )cm . A .8B.C .32π3D .8π311.如图,在Rt ABC △中,908cm 6cm ABC AB BC ∠===°,,,分别以A C 、为圆BC A Dl D'心,以2AC的长为半径作圆,将Rt ABC△截去两个扇形,则剩余(阴影)部分的面积为()cm2.A.2524π4-B.25π4C.524π4-D.2524π6-12.在同一平面直角坐标系中,反比例函数8yx=-与一次函数2y x=-+交于A B、两点,O为坐标原点,则AOB△的面积为()A.2 B.6 C.10 D.8题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B A D A C C B C D A B2009年湖北省黄石市1、-2的倒数是()A、2B、-2C、21D、-212、函数y=12-x的自变量x的取值范围是()A、x=1B、x≠1C、x>1D、x<13、不等式3-2x≤7的解集是()A、x≥-2B、x≤-2C、x≤-5D、x≥-54、如图1,是由4个大小相同的正方体搭成的几何体,其主视图是()5、如图2,已知直线AB//CD,∠C=115°,∠A=25°,∠E=()A、70°B、80°C、90°D、100°6、从0—9这10个自然数中任取一个,是2的倍数或是3的倍数的概率是()A、21B、52C、109D、1077、已知点A(m2-5,2m+3)在第三象限角平分线上,则m=()A、4B、-2C、4或-2D、-18、已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列结论:①abc>0 ②2a+b<0 ③4a-2b+c<0 ④a+c>0,其中正确结论的个数为()A、4个B、3个C、2个D、1个9、将正整数按如图4所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)ACBxyO图3表示9,则表示58的有序数对是( )A 、(11,3)B 、(3,11)C 、(11,9)D 、(9,11)10、如图5,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时,始终与AB 相交,记点A 、B 到MN 的距离分别为h 1,h 2,则|h 1-h 2| 等于( ) A 、5 B 、6 C 、7 D 、8题号 1 2 3 4 5 6 7 8 9 10 答案DBAACDBCAB2009年河北省1.3(1)-等于( )A .-1B .1C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15C .10D .54.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.反比例函数1y x =(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( )A .某个数的绝对值小于0B .某个数的相反数等于它本身C .某两个数的和小于0D 8.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )A .833 mB .4 mC .43 mD .8 mBACD图1PO BA图2ABC D150° 图4h4=1+3 9=3+6 16=6+10图7 …9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x (x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21 D .49 = 18+31 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案AADCBBABCCDC2009年湖北省孝感市1.-32的值是 A .6 B .-6 C .9 D .-92.小华拿着一块正方形木板在阳光下做投影实验,这块正方形 木板在地面上形成的投影不可能是3.如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是 A .15° B .30° C .45° D .60° 4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒, 黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是xO yx-2- 4A DC B O 42y O2 - 4yx O4- 2 y x取相反数 ×2 +4图6输入x输出y 图5A .112B .13C .512D .125.如图,将放置于平面直角坐标系中的三角板AOB 绕O 点 顺时针旋转90°得△A′OB′.已知∠AOB =30°,∠B =90°, AB =1,则B′点的坐标为A .33()22, B .33()22, C .13()22, D .31(,)226.日期 一 二 三 四 五方差平均气温 最低气温1℃-1℃2℃0℃■■1℃被遮盖的两个数据依次是 A .3℃,2B .3℃,65C .2℃,2D .2℃,857.如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分 别在边AB 、CD 、AD 、BC 上.小明认为:若MN = EF ,则MN ⊥EF ; 小亮认为: 若MN ⊥EF ,则MN = EF .你认为A .仅小明对B .仅小亮对C .两人都对D .两人都不对8.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-29.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给 人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值 是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为 A .4cmB .6cmC .8cmD .10cm10.将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数B232y x x =-+的图象,则a 的值为A .1B .2C .3D .411.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖 去了7个小正方体),所得到的几何体的表面积是 A .78B .72C .54D .4812.对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++L 的值是A .20092008B .20082009 C .20102009D .20092010题号 123 456789101112答案D A BCA A C D CB B D2009年武汉市1.有理数12的相反数是( ) A .12- B .12C .2-D .22.函数21y x =-中自变量x 的取值范围是( )A .12x -≥ B .12x ≥ C .12x -≤D .12x ≤3.不等式2x ≥的解集在数轴上表示为( )4.二次根式2(3)-的值是( ) A .3-B .3或3-C .9D .35.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .3-B .3C .0D .0或36.今年某市约有102000名应届初中毕业生参加中考.102000用科学记数法表示为( ) A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯ 7.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,1-,2-,这五天的最低温度的平均值是( ) A .1 B .2 C .0 D .1- 8.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )9.如图,已知O 是四边形ABCD 内一点,OA OB OC ==,70ABC ADC ∠=∠=°,则DAO DCO ∠+∠的大小是( )A .B .C .D .正面 A . B . C . D .B COADA .70°B .110°C .140°D .150°10.如图,已知O ⊙的半径为1,锐角ABC △内接于O ⊙,BD AC ⊥于点D ,OM AB ⊥于点M ,则sin CBD ∠ 的值等于( ) A .OM 的长 B .2OM 的长 C .CD 的长 D .2CD 的长11.近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入不断提高.下图统计的是某地区2004年—2008年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2006年的人均年纯收入增加的数量高于2005年人均年纯收入增加的数量;②与上一年相比,2007年人均年纯收入的增长率为35873255100%3255-⨯;③若按2008年人均年纯收入的增长率计算,2009年人均年纯收入将达到41403587414013587-⎛⎫⨯+ ⎪⎝⎭元.其中正确的是( )A .只有①②B .只有②③C .只有①③D .①②③12.在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论: ①ACD ACE △≌△;②CDE △为等边三角形; ③2EHBE=; ④EDC EHC S AH S CH =△△. 其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④2009年湖北省荆门市1.|-9|的平方根是( )(A)81. (B)±3. (C)3. (D)-3.2.计算22()ab a b-的结果是( )(A)a . (B)b . (C)1. (D)-b . 3.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕OC BAD MD CBE A H为CD ,则∠A ′DB =( ) (A)40°. (B)30°. (C)20°. (D)10°.4.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是p 1,摸到红球的概率是p 2,则( )(A)p 1=1,p 2=1. (B)p 1=0,p 2=1. (C)p 1=0,p 2=14. (D)p 1=p 2=14. 5x +y )2,则x -y 的值为( )(A)-1. (B)1. (C)2. (D)3.6.等腰梯形ABCD 中,E 、F 、G 、H 分别是各边的中点,则四边形EFGH 的形状是( ) (A)平行四边形. (B)矩形. (C)菱形. (D)正方形.7.关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( ) (A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2. 8.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )9.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是( ) (A)12cm 2. (B)8cm 2. (C)6cm 2. (D)4cm 2.10.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )(A)a >-1.2009年宁德市1.-3的绝对值是( )第3题图A 'B DAC 第9题图左视图主视图(A) (B) (C) (D)OAB第9题图A.3B .-3C .13D .13-2.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为( )A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元 3.在如图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A .B .C .D . 4.下列运算正确的是( )A .651a a -=B .235()a a = C .632a a a ÷= D .532a a a =⋅5.如图所示几何体的左视图是( )A. B. C. D. 6.不等式组1024x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .无解 7.如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB , 若∠EOB =55º,则∠BOD 的度数是( ) A .35ºB .55ºC .70ºD .110º8.为配合世界地质公园申报,闽东某景区管理部门随机调查了1000名游客,其中有800人对景区表示满意.对于这次调查以下说法正确的是( )A .若随机访问一位游客,则该游客表示满意的概率约为0.8B .到景区的所有游客中,只有800名游客表示满意C .若随机访问10位游客,则一定有8位游客表示满意D .本次调查采用的方式是普查BECO DA第7题图第5题图正面9.如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠OBA = 30°,则OB 的长为( ) A. B .4C. D .210.图(1)表示一个正五棱柱形状的高大建筑物,图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN 的度数为( ) A .30ºB .36ºC .45ºD .72º1.A ;2.B ; 3.D ; 4.D ; 5.C ; 6.C 7.C 8.A 9.B 10.B2009年广东省中山市1.4的算术平方根是( ) A .2±B .2C.D2.计算32()a 结果是( ) A .6aB .9aC .5aD .8a3.如图所示几何体的主(正)视图是( )A .B .C .D .4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯元 B .972.610⨯元 C .110.72610⨯元 D .117.2610⨯元 5.方程组223010x y x y +=⎧⎨+=⎩的解是( )A .1113x y =⎧⎨=⎩2213x y =-⎧⎨=-⎩ B .12123311x x y y ==-⎧⎧⎨⎨=-=⎩⎩ C . 12123311x x y y ==-⎧⎧⎨⎨==-⎩⎩ D.12121133x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 答案:1.B 2.A 3.B 4.A 5.D图第10题图(2)2009年济南市1.3-的相反数是( ) A .3 B .3- C .13D .13-2.图中几何体的主视图是( )3.如图,AB CD ∥,直线EF 与AB 、CD 分别相交于G 、 H .60AGE =︒∠,则EHD ∠的度数是( ) A .30︒ B .60︒ C .120︒ D .150︒4.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A .535.910⨯平方米 B .53.6010⨯平方米 C .53.5910⨯平方米 D .435.910⨯平方米6.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .67.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( ) A .20、20 B .30、20 C .30、30 D .20、30AC EB FD HG (第3题图)A .B .C .D . 捐款人数 金额(元)1015 20 6132083203050100(第7题图)10 正面(第2题图)8.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( ) A .230cm B .230cm π C .260cm πD .2120cm10.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC⊥交AD 于E ,则AE 的长是() A .1.6 B .2.5C .3D .3.411.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )1 2 0 A . B . 1 2 0 C . 1 2 0 D . 1 2 0 (第9题图) B A C OA B C D O E(第10题图)GDC E F AB ba(第11题A .B .C .D .12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-, 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCCBBCCCDBB2009年娄底市1.(-3)2的相反数是 ( ) A. 6 B. -6 C. 9 D. -92.下列计算正确的是( )A.(a-b )2=a 2-b 2B.a 2·a 3=a 5C. 2a+3b=5abD. 33-22=13.如图1,已知AC ∥ED ,∠C =26°,∠CBE =37°,则∠BED 的度数是( ) A.63° B.83° C.73° D.53°4.下列哪个不等式组的解集在数轴上表示如图2所示 ( )x ≥2 x <-1x ≤2 x >-1x >2 x ≤-1x <2 x ≥-1A B C D5.我市统计局发布的统计公报显示,2004年到2008年,我市GDP增长率分别为9.6%、10.2%、10.4%、10.6%、10.3%. 经济学家评论说,这5年的年度GDP增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的比较小.A.中位数B.平均数C.众数D.方差6.下列命题,正确的是( )A.如果|a|=|b|,那么a=bB.等腰梯形的对角线互相垂直C.顺次连结四边形各边中点所得到的四边形是平行四边形D.相等的圆周角所对的弧相等7.市一小数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示. 设矩形的宽为x cm,长为y cm,那么这些同学所制作的矩形长y(cm)与宽x(cm)之间的函数关系的图象大致是 ( )8.如图3,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误..的是( ) A. AD=BD B.∠ACB=∠AOEC. »»AE BED.OD=DE9.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O、准星A、目标B在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米,AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为( )A.3米B.0.3米C.0.03米D.0.2米10.一次函数y=kx+b与反比例函数y=kx的图象如图5所示,则下列说法正确的是( )A.它们的函数值y随着x的增大而增大B.它们的函数值y随着x的增大而减小C.k<0D.它们的自变量x的取值为全体实数题号 1 2 3 4 5 6 7 8 9 10 答案 D B A B D C A D B C2009年江苏省1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是( ) A .0a b +>B .0ab >C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格 6商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABCDEF △≌△的条件共有( )A .1组B .2组C .3组D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭;(第3题)圆柱 圆锥 球 正方体(第5题) 图②图① A C B DF E (第7题)第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭L.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数2009年江西省1.2-的绝对值是( ) A .2-B .2C .12D .12-2.化简()221a a -+-的结果是( ) A .41a -- B .41a - C .1D .1-3.如图,直线m n ∥,︒∠1=55,︒∠2=45, 则∠3的度数为( ) A .80︒ B .90︒ C .100︒ D .110︒4.方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,.B .21x y =⎧⎨=⎩,. C .11x y =⎧⎨=⎩,.D .23x y =⎧⎨=⎩5.在下列四种图形变换中,本题图案不包含的变换是( ) A .位似 B .旋转 C .轴对称 D .平移 6则这个队队员年龄的众数和中位数分别是( ) A .1516, B .1515, C .1515.5, D .1615, 7.如图,已知AB AD =,那么添加下列一个条件后, 仍无法判定ABC ADC △≌△的是( )3mn21(第3题) (第5题)A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠8.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,A e 的半径 为2.下列说法中不正确...的是( ) A .当5a <时,点B 在A e 内B .当15a <<时,点B 在A e 内C .当1a <时,点B 在A e 外D .当5a >时,点B 在A e 外9.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .2个或3个B .3个或4个C .4个或5个D .5个或6个10.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( ) A .()60.051263%x += B .()60.051263x += C .()260.05163%x +=D .()260.05163x +=2009年浙江省宁波市1.下列四个数中,比0小的数是 ( )A .23B C .π D .1- 2.等腰直角三角形的一个底角的度数是 ( ) A .030 B .045 C .060 D .0903.一个不透明的布袋装有4个只有颜色的球,其中2个红色,1个白色,1个黑色,搅匀后从布袋里摸出1个球,摸到红球的概率是 ( ) A .12 B .13 C .14 D .164.据《宁波市休闲基地和商务会议基地建设五年行动计划》,预计到2012年,宁波市接待游客容量将达到4640万人,其中4640万用科学记数法可表示为 ()A .90.46410⨯ B .84.6410⨯ C .74.6410⨯ D .746.410⨯ 5x 的取值范围是 ( )A .2x ≠B .2x >C .2x ≤D .2x ≥6.如图是由4来个立方块组成的立体图形,它的俯视图是 ( )AB CD (第7主视图 俯视图(第9题)7.下列调查适合作普查的是 ( ) A .了解在校大学生的主要娱乐方式. B .了解宁波市居民对废电池的处理情况. C .日光灯管厂要检测一批灯管的使用寿命.D .对甲型H1N1流感患者的同一车厢乘客进行医学检查. 8.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,1∠、2∠、3∠、4∠是五边形ABCD 的外角,且0123470∠=∠=∠=∠=, 则AED ∠的度数是 ( )A .0110 B .0108 C .0105 D .010010、反比例函数ky x=在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .411.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连结OM 、ON 、MN ,则下列叙述正确的是 ( ) A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 和四边形ABCD 都是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 12.如图,点A 、B 、C 、D 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积这和是 ( ) A .1 B .3 C .3(1)m - D .3(2)2m - 题号 1234 56 7 8 91011 12 答案D B A C DBDAD CCB。

2009年湖北省黄冈市中考数学试卷及答案

2009年湖北省黄冈市中考数学试卷及答案

2009年湖北省黄冈市中考数学试卷及答案一、选择题(共6小题,每小题3分,满分18分)1.(3分)8的立方根是()A.2 B.﹣2 C.±2 D.22.(3分)下列运算正确的是()A.a3+a3=a6 B.2(a+b)=2a+b C.(ab)﹣2=ab﹣2 D.a6÷a2=a43.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°4.(3分)化简的结果是()A.﹣4 B.4 C.2a D.﹣2a5.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.76.(3分)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟二、填空题(共6小题,满分36分)7.(9分)||=;()0=;﹣的相反数是.8.(9分)计算:tan60°=;3x3•(﹣x2)=;﹣(﹣2a2)4=.9.(9分)①分解因式:6a 3﹣54a= ;②66°角的余角是度;③当 时,二次根式有意义. 10.(3分)已知点(﹣,)是反比例函数图象上的一点,则此反比例函数图象的解析式是 .11.(3分)在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于 .12.(3分)矩形ABCD 的边AB=8,AD=6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置A 1B 1C 1D 1时(如图所示),则顶点A 所经过的路线长是 .三、解答题(共8小题,满分66分)13.(5分)解不等式组.14.(6分)如图,在△ABC 中,∠ACB=90°,点E 为AB 中点,连接CE ,过点E 作ED ⊥BC 于点D ,在DE 的延长线上取一点F ,使AF=CE .求证:四边形ACEF 是平行四边形.15.(7分)如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连接BC ,AC ,过点C 作直线CD ⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连接BF ,与直线CD 交于点G .求证:BC 2=BG•BF .16.(6分)某商场在今年“六•一”儿童节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树状图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.17.(7分)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):(1)计算甲、乙两种电子钟走时误差的平均数;(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?18.(10分)如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为千米,且位于临海市(记作点B)正西方向千米处,台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭请说明理由;(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?19.(11分)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB 和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=﹣5x2+205x ﹣1230的一部分,且点A,B,C的横坐标分别为4,10,12.(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多,最多利润是多少万元?20.(14分)如图,在平面直角坐标系xOy中,抛物线y=x2﹣x﹣10与y轴的交点为点B,过点B 作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x 轴于点F.设动点P,Q移动的时间为t(单位:秒).(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.2009年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)(2012•乌鲁木齐)8的立方根是()A.2 B.﹣2 C.±2 D.2【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵2的立方等于8,∴8的立方根等于2.故选:A.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2009•黄冈)下列运算正确的是()A.a3+a3=a6 B.2(a+b)=2a+b C.(ab)﹣2=ab﹣2 D.a6÷a2=a4【分析】根据负整数指数幂、合并同类项、同底数幂的除法的知识点进行解答.【解答】解:A、是合并同类项,结果为2a3,故不对;B、是去括号,得2(a+b)=2a+2b,故不对;C、是负整数指数幂,即,故不对;故选D.【点评】合并同类项,只需把系数相加减,字母和字母的指数不变,应用单项式去乘单项式的每一项,a﹣p=(a≠0),同底数幂除法法则:底数不变,指数相减.3.(3分)(2009•黄冈)如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°【分析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.【解答】解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选B.【点评】本题考查轴对称的性质及三角形内角和定理;把已知条件转化到同一个三角形中利用内角和求解是正确解答本题的关键.4.(3分)(2009•黄冈)化简的结果是()A.﹣4 B.4 C.2a D.﹣2a【分析】由乘法分配律(a+b)c=ab+bc可知,解答该题可以运用分配律可约去各个分式的分母,使计算简便.【解答】解:原式=﹣(a+2)+(a﹣2)=﹣4,故选A.【点评】此题根据乘法的分配律先进行分式的乘法运算,然后再进行加减的运算,使运算简单化了,计算过程要注意符号间的变化.5.(3分)(2010•密云县)一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.7【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.(3分)(2009•黄冈)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟【分析】依据图象分别求出平路、上坡路和下坡路的速度,然后根据路程,求出时间即可.【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),所以他从单位到家门口需要的时间是(分钟).故选:B.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.二、填空题(共6小题,满分36分)7.(9分)(2009•黄冈)||=;()0=1;﹣的相反数是.【分析】根据相反数,绝对值,零指数幂的概念解题.【解答】解:||=;()0=1;﹣的相反数是.【点评】本题考查绝对值、零指数幂和相反数的概念.负数的绝对值是它的相反数;一个不为0的零次幂等于1,负数的相反数是正数.8.(9分)(2009•黄冈)计算:tan60°=;3x3•(﹣x2)=;﹣(﹣2a2)4=﹣16a8.【分析】本题考查特殊角的三角函数值、整式的乘法及乘方的计算.【解答】解:tan60°=;3x3•(﹣x2)=5;﹣(﹣2a2)4=﹣16a8.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.9.(9分)(2009•黄冈)①分解因式:6a3﹣54a=6a(a+3)(a﹣3);②66°角的余角是24度;③当x≤4时,二次根式有意义.【分析】①因式分解时,有公因式的要首先提取公因式,然后运用公式法;②和为90°的两个角互为余角,求一个角的余角即让90°减去已知角;③二次根式有意义的条件:被开方数大于等于0.【解答】解:①6a3﹣54a=6a(a2﹣9)=6a(a﹣3)(a+3);②66°角的余角是90°﹣66°=24°;③根据二次根式有意义的条件,得4﹣x≥0,即x≤4.【点评】本题考查因式分解、互为余角和二次根式的有关概念.10.(3分)(2009•黄冈)已知点(﹣,)是反比例函数图象上的一点,则此反比例函数图象的解析式是y=.【分析】先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:设反比例函数为y=,把x=﹣,y=代入求出k=﹣3,即y=﹣.故答案为:y=﹣.【点评】本题考查了用待定系数法求反比例函数的解析式,比较简单,是中学阶段的重点.11.(3分)(2009•黄冈)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于70°或20°.【分析】此题根据△ABC中∠A为锐角与钝角分为两种情况,当∠A为锐角时,∠B等于70°,当∠A为钝角时,∠B等于20°.【解答】解:根据△ABC中∠A为锐角与钝角,分为两种情况:①当∠A为锐角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠A=40°,∴∠B===70°;②当∠A为钝角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠1=40°,∴∠BAC=140°,∴∠B=∠C==20°.故答案为:70°或20°.【点评】此题考查了等腰三角形的性质及线段垂直平分线的性质;分类讨论的应用是正确解答本题的关键.12.(3分)(2009•黄冈)矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是12π.【分析】提示:点A经过的路线长由三部分组成:以B为圆心,AB为半径旋转90°的弧长;以C为圆心,AC为半径旋转90°的弧长;以D为圆心,AD为半径旋转90°的弧长,利用弧长公式计算即可.【解答】解:.【点评】本题的关键是弄清弧长的半径及圆心,圆心角的度数.三、解答题(共8小题,满分66分)13.(5分)(2009•黄冈)解不等式组.【分析】解先求出各不等式的解集,再求其公共解集即可.【解答】解:由①得:3x+6<x+8.解得:x<1.由②得:3x≤2x﹣2.解得:x≤﹣2.∴不等式组的解集为x≤﹣2.【点评】解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.(6分)(2009•黄冈)如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC 于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.【分析】要证明四边形ACEF是平行四边形,需求证CE∥AF,由已知易得△BEC,△AEF是等腰三角形,则∠1=∠2,∠3=∠F,又∠2=∠3,∴∠1=∠F,∴CE∥AF.【解答】证明:∵点E为AB中点,∴AE=EB又∵∠ACB=90°,∴CE=AE=EB,又∵AF=CE,∴AF=AE,∴∠3=∠F,又EB=EC,ED⊥BC,∴∠1=∠2(三线合一),又∠2=∠3,∴∠1=∠F,∴CE∥AF,∴四边形ACEF是平行四边形.【点评】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.15.(7分)(2009•黄冈)如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF.【分析】结合图形,可以把所要证明的线段放到△CBG和△FBC中,两个三角形中已经有一个公共角,只需进一步证明∠BCG=∠F,根据等角的余角相等和圆周角定理,借助中间角∠A即可证明.【解答】证明:∵AB是⊙O的直径,∠ACB=90°,又CD⊥AB于D,∴∠BCD=∠A,又∠A=∠F.∴∠F=∠BCD.在△BCG和△BFC中,,∴△BCG∽△BFC.∴.即BC2=BG•BF.【点评】熟练运用等角的余角相等和圆周角定理发现∠BCG=∠A,掌握相似三角形的判定和性质.16.(6分)(2009•黄冈)某商场在今年“六•一”儿童节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树状图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.【分析】列举出所有情况,让两次摸出的小球的标号之和为“8”或“6”的情况数除以总情况数即为所求的概率.【解答】解:画出如图的树状图3分6=2+4=3+3=4+2,8=4+4,∴小彦中奖的概率.6分【点评】此题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.17.(7分)(2010•密云县)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):(1)计算甲、乙两种电子钟走时误差的平均数;(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?【分析】根据平均数与方差的计算公式易得(1)(2)的答案,再根据(2)的计算结果进行判断.【解答】解:(1)甲种电子钟走时误差的平均数是:(1﹣3﹣4+4+2﹣2+2﹣1﹣1+2)=0,乙种电子钟走时误差的平均数是:(4﹣3﹣1+2﹣2+1﹣2+2﹣2+1)=0.=[(1﹣0)2+(﹣3﹣0)2+…+(2﹣0)2]=×60=6(s2),(2)S 2甲S2乙=[(4﹣0)2+(﹣3﹣0)2+…+(1﹣0)2]=×48=4.8(s2),∴甲乙两种电子钟走时误差的方差分别是6s2和4.8s2;(3)我会买乙种电子钟,因为两种类型的电子钟价格相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.同时考查平均数公式:.18.(10分)(2009•黄冈)如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为千米,且位于临海市(记作点B)正西方向千米处,台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭请说明理由;(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?【分析】(1)过A作AH⊥MN于H,故AMH是等腰直角三角形,可求出AM,则可以判断滨海市是否会受到此次台风的侵袭.同理,过B作BH1⊥MN于H1,求出BH1,可以判断临海市是否会受到此次台风的侵袭.(2)求该城市受到台风侵袭的持续时间,以B为圆心60为半径作圆与MN交于T1、T2,则T1T2就是台风影响时经过的路径,求出后除以台风的速度就是时间.【解答】解:(1)设台风中心运行的路线为射线MN,于是∠AMN=60°﹣15°=45°.过A作AH⊥MN于H,故AMH是等腰直角三角形.∵AM=,∠AMH=60°﹣15°=45°,∴AH=AM•sin45°=61>60.∴滨海市不会受到台风的影响;过B作BH1⊥MN于H1.∵MB=,∠BMN=90°﹣60°=30°,∴BH1=×<60,因此临海市会受到台风的影响.(2)以B为圆心60千米为半径作圆与MN交于T1、T2,则BT1=BT2=60.在Rt△BT1H1中,sin∠BT1H1=,∴∠BT1H1=60°.∴△BT1T2是等边三角形.∴T1T2=60.∴台风中心经过线段T1T2上所用的时间=小时.因此临海市受到台风侵袭的时间为小时.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.19.(11分)(2009•黄冈)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=﹣5x2+205x﹣1230的一部分,且点A,B,C的横坐标分别为4,10,12.(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多,最多利润是多少万元?【分析】(1)根据各段图象所过的特殊点易求其解析式,注意自变量的取值范围,综合起来得结论;;(2)在各段中,s=y x﹣y(x﹣1)(3)根据函数性质分别求出各段中s的最大值比较后得结论.【解答】解:(1)设直线OA的解析式为y=kx,∵点O(0,0),A(4,﹣40)在该直线上,∴﹣40=4k,解得k=﹣10,∴y=﹣10x;∵点B在抛物线y=﹣5x2+205x﹣1230上,设B(10,m),则m=320.∴点B的坐标为(10,320).∵点A为抛物线的顶点,∴设曲线AB所在的抛物线的解析式为y=a(x﹣4)2﹣40,∴320=a(10﹣4)2﹣40,解得a=10,即y=10(x﹣4)2﹣40=10x2﹣80x+120.∴y=;(2)利用第x个月的利润应该是前x个月的利润之和减去前x﹣1个月的利润之和:即S=;(3)由(2)知当x=1,2,3,4时,s的值均为﹣10,当x=5,6,7,8,9时,s=20x﹣90,即当x=9时s有最大值90,而在x=10,11,12时,s=﹣10x+210,当x=10时,s有最大值110,因此第10月公司所获利润最大,它是110万元.【点评】此题为分段函数问题中较复杂的一题,问题较多,认真审题很重要.理解s的意义及表示方法是本题难点.20.(14分)(2009•黄冈)如图,在平面直角坐标系xOy中,抛物线y=x2﹣x﹣10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.【分析】(1)已知抛物线的解析式,当x=0时,可求得B的坐标;由于BC∥OA,把B的纵坐标代入抛物线的解析式,可求出C的坐标;当y=0时,可求出A的坐标.求顶点坐标时用公式法或配方法都可以;(2)当四边形ACQP是平行四边形时,AP、CQ需满足平行且相等的条件.已知BC∥OA,只需求t为何值时,AP=CQ,可先用t表示AP,CQ,再列出方程即可求出t的值;(3)当0<t<时,根据OA=18,P点的速度为4单位/秒,可得出P点总在OA上运动.△PQF中,Q是否为定值,已知QC∥到PF的距离是定值即OB的长,因此只需看PF的值是否有变化即可得出S△PQFPF,根据平行线分线段成比例定理可得出:,因此可得出OP=AF,那么PF=PA+AF=PA+OP=OA,由于OA的长为定值即PF的长为定值,因此△PQF的面积是不会变化的.其面积的值可用OA•OB求出;(4)可先用t表示出P,F,Q的坐标,然后根据坐标系中两点间的距离公式得出PF2,PQ2,FQ2,进而可分三种情况进行讨论:①△PFQ以PF为斜边.则PF2=PQ2+FQ2,可求出t的值.②△PFQ以PQ为斜边,方法同①③△PFQ以FQ为斜边,方法同①.综合三种情况即可得出符合条件的t的值.【解答】解:(1)y=(x2﹣8x﹣180),令y=0,得x2﹣8x﹣180=0,即(x﹣18)(x+10)=0,∴x=18或x=﹣10.∴A(18,0)在y=x2﹣x﹣10中,令x=0得y=﹣10,即B(0,﹣10).由于BC∥OA,故点C的纵坐标为﹣10,由﹣10=x2﹣x﹣10得,x=8或x=0,即C(8,﹣10)且易求出顶点坐标为(4,),于是,A(18,0),B(0,﹣10),C(8,﹣10),顶点坐标为(4,);(2)若四边形PQCA为平行四边形,由于QC∥PA.故只要QC=PA即可,而PA=18﹣4t,CQ=t,故18﹣4t=t得t=;(3)设点P运动t秒,则OP=4t,CQ=t,0<t<4.5,说明P在线段OA上,且不与点OA、重合,由于QC∥OP知△QDC∽△PDO,故∵△AEF∽△CEQ,∴AF:CQ=AE:EC=DP:QD=4:1,∴AF=4t=OP∴PF=PA+AF=PA+OP=18又∵点Q到直线PF的距离d=10,=PF•d=×18×10=90,∴S△PQF于是△PQF的面积总为90;(4)设点P运动了t秒,则P(4t,0),F(18+4t,0),Q(8﹣t,﹣10)t∈(0,4.5).∴PQ2=(4t﹣8+t)2+102=(5t﹣8)2+100FQ2=(18+4t﹣8+t)2+102=(5t+10)2+100.①若FP=FQ,则182=(5t+10)2+100.即25(t+2)2=224,(t+2)2=.∵0≤t≤4.5,∴2≤t+2≤6.5,∴t+2==.∴t=﹣2,②若QP=QF,则(5t﹣8)2+100=(5t+10)2+100.即(5t﹣8)2=(5t+10)2,无0≤t≤4.5的t满足.③若PQ=PF,则(5t﹣8)2+100=182.即(5t﹣8)2=224,由于≈15,又0≤5t≤22.5,∴﹣8≤5t﹣8≤14.5,而14.52=()2=<224.故无0≤t≤4.5的t满足此方程.注:也可解出t=<0或t=>4.5均不合题意,故无0≤t≤4.5的t满足此方程.综上所述,当t=﹣2时,△PQF为等腰三角形.【点评】本题着重考查了二次函数的性质、图形平移变换、平行四边形的判定、直角三角形的判定等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.。

黄冈近5年中考试题及其答案

黄冈近5年中考试题及其答案

2017年湖北省黄冈市中考数学试卷一、选择题(本题共6小题,第小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)计算:|﹣|=()A.B.C.3 D.﹣32.(3分)下列计算正确的是()A.2x+3y=5xy B.(m+3)2=m2+9 C.(xy2)3=xy6D.a10÷a5=a53.(3分)已知:如图,直线a∥b,∠1=50°.∠2=∠3,则∠2的度数为()A.50°B.60°C.65°D.75°4.(3分)已知:如图,是一几何体的三视图,则该几何体的名称为()A.长方体B.正三棱柱C.圆锥D.圆柱5.(3分)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13.5 D.146.(3分)已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.30°B.35°C.45°D.70°二、填空题(每小题3分,共24分)7.(3分)16的算术平方根是.8.(3分)分解因式:mn2﹣2mn+m=.9.(3分)计算:﹣6﹣的结果是.10.(3分)自中国提出“一带一路,合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都内罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2017年5月31日正式投入运营,该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作吨.11.(3分)化简:(+)•=.12.(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.13.(3分)已知:如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是cm2.14.(3分)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=cm.三、解答题(共10小题,满分78分)15.(5分)解不等式组.16.(6分)已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.17.(6分)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.18.(6分)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?19.(7分)我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).根据以上统计图提供的信息,请解答下列问题:(1)m=,n=.(2)补全上图中的条形统计图.(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球.(4)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)20.(7分)已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.21.(7分)已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.22.(8分)在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图所示),已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)23.(12分)月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.24.(14分)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P 从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tan∠QPA的值;(3)当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;(4)连接CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式.2017年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,第小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)(2017•黄冈)计算:|﹣|=()A.B.C.3 D.﹣3【分析】利用绝对值的性质可得结果.【解答】解:|﹣|=,故选A.【点评】本题主要考查了绝对值的性质,掌握绝对值的非负性是解答此题的关键.2.(3分)(2017•黄冈)下列计算正确的是()A.2x+3y=5xy B.(m+3)2=m2+9 C.(xy2)3=xy6D.a10÷a5=a5【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m2+6m+9,不符合题意;C、原式=x3y6,不符合题意;D、原式=a5,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)(2017•黄冈)已知:如图,直线a∥b,∠1=50°.∠2=∠3,则∠2的度数为()A.50°B.60°C.65°D.75°【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【解答】解:∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4.(3分)(2017•黄冈)已知:如图,是一几何体的三视图,则该几何体的名称为()A.长方体B.正三棱柱C.圆锥D.圆柱【分析】根据2个相同的长方形视图可得到所求的几何体是柱体,锥体,还是球体,进而由第3个视图可得几何体的名称.【解答】解:主视图和左视图是长方形,那么该几何体为柱体,第三个视图为圆,那么这个柱体为圆柱.故选D.【点评】考查由三视图判断几何体;用到的知识点为:若三视图里有两个是长方形,那么该几何体是柱体.5.(3分)(2017•黄冈)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13.5 D.14【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:10个数,处于中间位置的是13和13,因而中位数是:(13+13)÷2=13.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.6.(3分)(2017•黄冈)已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.30°B.35°C.45°D.70°【分析】先根据垂径定理得出=,再由圆周角定理即可得出结论.【解答】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题(每小题3分,共24分)7.(3分)(2017•黄冈)16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.8.(3分)(2017•黄冈)分解因式:mn2﹣2mn+m=m(n﹣1)2.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(n2﹣2n+1)=m(n﹣1)2,故答案为:m(n﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9.(3分)(2017•黄冈)计算:﹣6﹣的结果是﹣6.【分析】先依据二次根式的性质,化简各二次根式,再合并同类二次根式即可.【解答】解:﹣6﹣=﹣6﹣=3﹣6﹣=﹣6故答案为:﹣6.【点评】本题主要考查了二次根式的加减法的运用,二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并.10.(3分)(2017•黄冈)自中国提出“一带一路,合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都内罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2017年5月31日正式投入运营,该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作 2.5×107吨.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:25000000=2.5×107.故答案为:2.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)(2017•黄冈)化简:(+)•=1.【分析】首先计算括号內的加法,然后计算乘法即可化简.【解答】解:原式=(﹣)•=•=1.故答案为1.【点评】本题考查了分式的化简,熟练掌握混合运算法则是解本题的关键.12.(3分)(2017•黄冈)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE 与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质和等边三角形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.13.(3分)(2017•黄冈)已知:如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是65πcm2.【分析】首先利用勾股定理求得圆锥的圆锥的母线长,然后利用圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:∵圆锥的底面直径是10cm,高为12cm,∴勾股定理得圆锥的母线长为13cm,∴圆锥的侧面积=π×13×5=65πcm2.故答案为:65π.【点评】本题考查圆锥侧面积公式的运用,掌握公式是关键.14.(3分)(2017•黄冈)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D= 1.5 cm.【分析】先在直角△AOB中利用勾股定理求出AB==5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【解答】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.三、解答题(共10小题,满分78分)15.(5分)(2017•黄冈)解不等式组.【分析】分别求出求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式①,得x<1.解不等式②,得x≥0,故不等式组的解集为0≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)(2017•黄冈)已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.【分析】要证明∠B=∠ANM,只要证明△BAD≌△NAM即可,根据∠BAC=∠DAM,可以得到∠BAD=∠NAM,然后再根据题目中的条件即可证明△BAD≌△NAM,本题得以解决.【解答】证明:∵∠BAC=∠DAM,∠BAC=∠BAD+∠DAC,∠DAM=∠DAC+∠NAM,∴∠BAD=∠NAM,在△BAD和△NAM中,,∴△BAD≌△NAM(SAS),∴∠B=∠ANM.【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求结论需要的条件,利用三角形全等的性质解答.17.(6分)(2017•黄冈)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.【分析】(1)由方程有两个不相等的实数根知△>0,列不等式求解可得;(2)将k=1代入方程,由韦达定理得出x1+x2=﹣3,x1x2=1,代入到x12+x22=(x1+x2)2﹣2x1x2可得.【解答】解:(1)∵方程有两个不相等的实数根,∴△=(2k+1)2﹣4k2=4k+1>0,解得:k>﹣;(2)当k=1时,方程为x2+3x+1=0,∵x1+x2=﹣3,x1x2=1,∴x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7.【点评】本题考查了根与系数的关系及根的判别式,熟练掌握方程的根的情况与判别式的值间的关系及韦达定理是解题的关键.18.(6分)(2017•黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用5000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.【解答】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得=.解得x=.经检验,x=是原方程的解,且符合题意,则科普类图书平均每本的价格为+5=元,答:文学类图书平均每本的价格为元,科普类图书平均每本的价格为元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.19.(7分)(2017•黄冈)我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).根据以上统计图提供的信息,请解答下列问题:(1)m=100,n=5.(2)补全上图中的条形统计图.(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球.(4)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)【分析】(1)篮球30人占30%,可得总人数,由此可以计算出n;(2)求出足球人数=100﹣30﹣20﹣10﹣5=35人,即可解决问题;(3)用样本估计总体的思想即可解决问题.(4)画出树状图即可解决问题.【解答】解:(1)由题意m=30÷30%=100,排球占=5%,∴n=5,故答案为100,5.(2)足球=100﹣30﹣20﹣10﹣5=35人,条形图如图所示,(3)若全校共有2000名学生,该校约有2000×=400名学生喜爱打乒乓球.(4)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两人进行比赛)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.20.(7分)(2017•黄冈)已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.【分析】(1)求出OE∥DM,求出OE⊥DE,根据切线的判定得出即可;(2)连接EN,求出∠MDE=∠MEN,求出△MDE∽△MEN,根据相似三角形的判定得出即可.【解答】证明:(1)∵ME平分∠DMN,∴∠OME=∠DME,∵OM=OE,∴∠OME=∠OEM,∴∠DME=∠OEM,∴OE∥DM,∵DM⊥DE,∴OE⊥DE,∵OE过O,∴DE是⊙O的切线;(2)连接EN,∵DM⊥DE,MN为⊙O的半径,∴∠MDE=∠MEN=90°,∵∠NME=∠DME,∴△MDE∽△MEN,∴=,∴ME2=MD•MN【点评】本题考查了切线的判定,圆周角定理,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.21.(7分)(2017•黄冈)已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.【分析】(1)根据一次函数y=﹣2x+1的图象经过点A(﹣1,m),即可得到点A的坐标,再根据反比例函数y=的图象经过A(﹣1,3),即可得到k的值;(2)先求得AC=3﹣(﹣2)=5,BC=﹣(﹣1)=,再根据四边形AEDB的面积=△ABC的面积﹣△CDE 的面积进行计算即可.【解答】解:(1)如图所示,延长AE,BD交于点C,则∠ACB=90°,∵一次函数y=﹣2x+1的图象经过点A(﹣1,m),∴m=2+1=3,∴A(﹣1,3),∵反比例函数y=的图象经过A(﹣1,3),∴k=﹣1×3=﹣3;(2)∵BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),∴令y=﹣2,则﹣2=﹣2x+1,∴x=,即B(,﹣2),∴C(﹣1,﹣2),∴AC=3﹣(﹣2)=5,BC=﹣(﹣1)=,∴四边形AEDB的面积=△ABC的面积﹣△CDE的面积=AC×BC﹣CE×CD=×5×﹣×2×1=.【点评】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是掌握:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.22.(8分)(2017•黄冈)在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图所示),已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【解答】解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,∴AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E与点F之间的距离为7.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题、锐角三角函数、等腰直角三角形的性质、一元一次方程等知识,解题的关键是学会添加常用辅助线,构建方程解决问题.23.(12分)(2017•黄冈)月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.【分析】(1)依据待定系数法,即可求出y(万件)与x(元/件)之间的函数关系式;(2)分两种情况进行讨论,当x=8时,s max=﹣80;当x=16时,s max=﹣16;根据﹣16>﹣80,可得当每件的销售价格定为16元时,第一年年利润的最大值为﹣16万元.(3)根据第二年的年利润s=(x﹣4)(﹣x+28)﹣16=﹣x2+32x﹣128,令s=103,可得方程103=﹣x2+32x ﹣128,解得x1=11,x2=21,然后在平面直角坐标系中,画出s与x的函数图象,根据图象即可得出销售价格x(元/件)的取值范围.【解答】解:(1)当4≤x≤8时,设y=,将A(4,40)代入得k=4×40=160,∴y与x之间的函数关系式为y=;当8<x≤28时,设y=k'x+b,将B(8,20),C(28,0)代入得,,解得,∴y与x之间的函数关系式为y=﹣x+28,综上所述,y=;(2)当4≤x≤8时,s=(x﹣4)y﹣160=(x﹣4)•﹣160=﹣,∵当4≤x≤8时,s随着x的增大而增大,∴当x=8时,s max=﹣=﹣80;当8<x≤28时,s=(x﹣4)y﹣160=(x﹣4)(﹣x+28)﹣160=﹣(x﹣16)2﹣16,∴当x=16时,s max=﹣16;∵﹣16>﹣80,∴当每件的销售价格定为16元时,第一年年利润的最大值为﹣16万元.(3)∵第一年的年利润为﹣16万元,∴16万元应作为第二年的成本,又∵x>8,∴第二年的年利润s=(x﹣4)(﹣x+28)﹣16=﹣x2+32x﹣128,令s=103,则103=﹣x2+32x﹣128,解得x1=11,x2=21,在平面直角坐标系中,画出z与x的函数示意图可得:观察示意图可知,当s≥103时,11≤x≤21,∴当11≤x≤21时,第二年的年利润s不低于103万元.【点评】本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.24.(14分)(2017•黄冈)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tan∠QPA的值;(3)当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;(4)连接CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式.【分析】(1)可求得P点坐标,由O、P、A的坐标,利用待定系数法可求得抛物线解析式;(2)当t=2s时,可知P与点B重合,在Rt△ABQ中可求得tan∠QPA的值;(3)用t可表示出BP和AQ的长,由△PBM∽△QAM可得到关于t的方程,可求得t的值;(4)当点Q在线段OA上时,S=S;当点Q在线段OA上,且点P在线段CB的延长线上时,由相似△CPQ=S矩形OABC﹣S△COQ﹣S△AMQ,可求得S与t的关系式;三角形的性质可用t表示出AM的长,由S=S四边形BCQM当点Q在OA的延长线上时,设CQ交AB于点M,利用△AQM∽△BCM可用t表示出AM,从而可表示,可求得答案.出BM,S=S△CBM【解答】解:(1)当t=1s时,则CP=2,∵OC=3,四边形OABC是矩形,∴P(2,3),且A(4,0),∵抛物线过原点O,∴可设抛物线解析式为y=ax2+bx,∴,解得,∴过O、P、A三点的抛物线的解析式为y=﹣x2+3x;(2)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(3)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(4)当0≤t≤2时,如图3,由题意可知CP=2t,=×2t×3=3t;∴S=S△PCQ当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;∴S=S四边形BCQM当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,=×4×=;∴S=S△BCM综上可知S=.【点评】本题为二次函数与四边形的综合应用,涉及待定系数法、矩形的性质、相似三角形的判定和性质、三角函数的定义、方程思想及分类讨论思想等知识.在(1)中求得P点坐标是解题的关键,在(2)中确定P、B重合是解题的关键,在(3)中由相似三角形的性质得到关于t的方程是解题的关键,在(4)中确定出P、Q的位置,从而确定出S为哪一部分图形的面积是解题的关键.本题为“运动型”问题,用t 和速度表示出相应线段的长度,化“动”为“静”是解这类问题的一般思路.本题考查知识点较多,综合性较强,特别是最后一问,情况较多,难度较大.2016年湖北省黄冈市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.2.(3分)下列运算结果正确的是()A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a53.(3分)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°4.(3分)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.5.(3分)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.6.(3分)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1二、填空题:每小题3分,共24分.7.(3分)的算术平方根是.8.(3分)分解因式:4ax2﹣ay2=.9.(3分)计算:|1﹣|﹣=.10.(3分)计算(a﹣)÷的结果是.11.(3分)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=.12.(3分)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.13.(3分)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.14.(3分)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.三、解答题:共78分.15.(5分)解不等式≥3(x﹣1)﹣4..16.(6分)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?17.(7分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.18.(6分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.。

湖北省黄冈市中考数学真题及答案

湖北省黄冈市中考数学真题及答案

湖北省黄冈市中考数学真题及答案(考试时间120分钟满分120分)第Ⅰ卷(选择题共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.的相反数是()A. B.﹣6 C.6 D.﹣2.下列运算正确的是()A.m+2m=3m2 B.2m3•3m2=6m6 C.(2m)3=8m3 D.m6÷m2=m33.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.7 B.8 C.9 D.104.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85 90 90 85方差50 42 50 42A.甲 B.乙 C.丙 D.丁5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A. B. C. D.6.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1 B.5:1 C.6:1 D.7:18.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A. B. C. D.第Ⅱ卷(非选择题共96分)二、填空题(本题共8小题,每小题3分,共24分)9.计算=.10.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则=.11.若|x﹣2|+=0,则﹣xy=.12.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD =度.13.计算:÷(1﹣)的结果是.14.已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.15.我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(注:丈,(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是尺.16.如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM上。

2009年湖北省武汉市中考数学试卷

2009年湖北省武汉市中考数学试卷

第1页(共7页)武汉市2009年初中毕业生学业考试数 学 试 卷第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)1.有理数12的相反数是( ) A .12- B .12C .2-D .22.函数y =x 的取值范围是( )A .12x -≥ B .12x ≥ C .12x -≤D .12x ≤3.不等式2x ≥的解集在数轴上表示为( )4)A .3-B .3或3-C .9D .35.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .3-B .3C .0D .0或36.今年某市约有名应届初中毕业生参加中考.用科学记数法表示为( ) A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯7.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,1-,2-,这五天的最低温度的平均值是( ) A .1B .2C .0D .1-8.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )9.如图,已知O 是四边形ABCD 内一点,OA OB OC ==,70ABC ADC ∠=∠=°,则DAO DCO ∠+∠的大小是( )正面A .B .C .D .A .B .C .D .A .70°B .110°C .140°D .150°第9题图 第10题图10.如图,已知O ⊙的半径为1,锐角ABC △内接于O ⊙,BD AC ⊥于点D ,OM AB ⊥于点M ,则sin CBD∠的值等于( ) A .OM 的长B .2OM 的长C .CD 的长D .2CD 的长11.近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入不断提高.下图统计的是某地区2004年—2008年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2006年的人均年纯收入增加的数量高于2005年人均年纯收入增加的数量;②与上一年相比,2007年人均年纯收入的增长率为35873255100%3255-⨯;③若按2008年人均年纯收入的增长率计算,2009年人均年纯收入将达到41403587414013587-⎛⎫⨯+ ⎪⎝⎭元.其中正确的是( )A .只有①②B .只有②③C .只有①③D .①②③12.在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ACE △≌△;②CDE △为等边三角形;③2EH BE =;④EDC EHC S AHS CH=△△.其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④DCBE AHOCB AD MBCOA第3页(共7页)第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分)13.在科学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:由此估计这种作物种子发芽率约为 (精确到0.01).14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .第15题图 第16题图16.如图,直线43y x =与双曲线k y x =(0x >)交于点A .将直线43y x =向右平移92个单位后,与双曲线k y x=(0x >)交于点B ,与x 轴交于点C ,若2AOBC=,则k = . 三、解答题(共9小题,共72分)17.(本题满分6分)解方程:2310x x --=.18.(本题满分6分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.19.(本题满分6分)如图,已知点E C ,在线段BF 上,BE CF AB DE ACB F =∠=∠,∥,.求证:ABC DEF △≌△.第1个图形第2个图形第3个图形第4个图形…20.(本题满分7分)小明准备今年暑假到北京参加夏令营活动,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次. (1)用树状图列举三次抛掷硬币的所有结果;(2)若规定:有两次或两次以上.......正面向上,由爸爸陪同前往北京;有两次或两次以上.......反面向上,则由妈妈陪同前往北京.分别求由爸爸陪同小明前往北京和由妈妈陪同小明前往北京的概率;(3)若将“每次掷一枚硬币,连掷三次,有两次或两次以上正面向上时,由爸爸陪同小明前往北京”改为“同时掷三枚硬币,掷一次,有两枚或两枚以上.......正面向上时,由爸爸陪同小明前往北京”.求:在这种规定下,由爸爸陪同小明前往北京的概率.21.(本题满分7分)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,. (1)请直接写出点A 关于y 轴对称的点的坐标;(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形,直接写出点B 的对应点的坐标; (3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.22.(本题满分8分)如图,Rt ABC △中,90ABC ∠=°,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;CE BF DA第5页(共7页)(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.23.(本题满分10分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?CEB AOFD24.(本题满分10分)如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E . (1)求证:ABF COE △∽△;(2)当O 为AC 边中点,2AC AB =时,如图2,求OFOE 的值; (3)当O 为AC 边中点,AC n AB =时,请直接写出OFOE的值.25.(本题满分12分)如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B . (1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.BBAACOE D DEC O F 图1图2F参考答案一.选择题(共12小题)1.B 2.B 3.C 4.D 5.B 6.B 7.C 8.A 9.D 10.A 11.D 12.B二.填空题(共4小题)13.0.94 14.46 15.-1<x<2 16.12三.解答题(共9小题)17.18.19.20.21.22.23.24.25.第7页(共7页)。

往年湖北省黄冈市中考数学真题及答案

往年湖北省黄冈市中考数学真题及答案

往年年湖北省黄冈市中考数学真题及答案一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|= .10.(3分)分解因式:(2a+1)2﹣a2= .11.(3分)计算:﹣= .12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 度.13.(3分)当x=﹣1时,代数式÷+x的值是.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= .15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(, ),B(, ),D(, ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= (用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O 出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.往年年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(往年•黄冈)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:A.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(往年•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°【分析】根据互为余角的定义,可以得到答案.【解答】解:如果α与β互为余角,则α+β=900.故选:D.【点评】此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(往年•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5【分析】根据同底数幂的乘法和除法法则可以解答本题.【解答】解:A.x2•x3=x5,故A错误;B.x6÷x5=x,故B正确;C.(﹣x2)4=x8,故C错误;D.x2+x3不能合并,故D错误.故选:B.【点评】主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(往年•黄冈)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,象一个大梯形减去一个小梯形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(往年•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(往年•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40【分析】根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(往年•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.【点评】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(往年•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC 边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(往年•黄冈)计算:|﹣|= .【分析】根据负数的绝对值等于它的相反数,可得答案案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(往年•黄冈)分解因式:(2a+1)2﹣a2= (3a+1)(a+1).【分析】直接利用平方差公式进行分解即可.【解答】解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(往年•黄冈)计算:﹣= .【分析】先进行二次根式的化简,然后合并同类二次根式求解.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(往年•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 60 度.【分析】延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.【解答】解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(往年•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.【分析】将除法转化为乘法,因式分解后约分,然后通分相加即可.【解答】解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(往年•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= 4.【分析】连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB 得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(往年•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为或5或10 cm2.【分析】因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF=AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.【点评】本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(往年•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(往年•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?【分析】设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.【解答】解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(往年•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(往年•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(往年•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.【分析】(1)连接OD,由BC是⊙O的切线得出∠BCA=90°,由DE是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.【解答】(1)证明:连接OD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠BCA=90°.又∵DE是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答.21.(7分)(往年•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.【点评】本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(往年•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2 , ),B( 2 , ﹣),D ( 1 , ﹣1 ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.【分析】(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.【解答】解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,k1=,k2=4,又∵k≠,∴k=4,则当k=4时,▱ADBC是矩形.【点评】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(往年•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN 上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)【分析】(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x 的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.【解答】解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈126.3海里,∵126.3>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(往年•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= 0.01k(x﹣n)+70(n<x≤6000)(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?【分析】(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.【解答】解:(1)由题意得当0≤x≤n时,y=70;当n<x≤6000时,y=0.01k(x﹣n)+70(n<x≤6000);(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.【点评】本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(往年•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.【分析】(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=(t=0舍去),∴t=时,点O(1,﹣1)在抛物线y=x2﹣x上,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1(t=0舍去),∴t=1时,点Q(3,﹣1)在抛物线y=x2﹣x上.(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=S△OPQ=×(2t)×=t2,②1<t≤1.5时,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=S梯形OABC﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+=﹣2t2+8t﹣;所以,S与t的关系式为S=.。

黄冈中学2009年秋季初三年级期末考试 数学试题

黄冈中学2009年秋季初三年级期末考试  数学试题

黄冈中学2009年秋季初三年级期末考试数学试题一、选择题(A、B、C、D四个答案中,有且只有一个是正确的,请将题中唯一正确答案的序号填入题后的括号内,不填、填错或多填均不得分,每小题3分,满分18分)1、下面的几个实数中,最小的数是()A.-1B.C.0D.2、下列计算正确的是()A.B.C.D.3、化简的结果是()4、下列正多边形中,中心角等于内角的是()A.正三边形B.正四边形C.正五边形D.正六边形5、如图,绕点逆时针旋转得到,若,,则的度数是()A.30°B.40°C.50°D.60°6、A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,两车在行驶过程中速度始终不变.两车之间的距离S(km)与甲车行驶的时间t(h)之间的函数关系的图象为图中折线CDEF,则下列说法不正确的是()A.A、B两城之间的距离为600km;B.当甲车行驶5h时,甲、乙两车相遇;C.甲车的速度为80km/h;D.乙车在相遇后2.5h到达A城.二、填空题(每空3分,满分36分)7、的相反数是__________;的倒数是__________;的立方根是__________.8、计算:|-2|=__________;=__________;(2ab)2=__________.9、在实数范围内因式分解:x2-3=__________;当x=__________时,代数式无意义;据0.000 207用科学记数法表示为__________(保留两个有效数字).10、已知点(,)在第四象限内,且在其角平分线上,则k=__________.11、在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB=3cm,高OC=4cm.则这个圆锥漏斗的侧面积是__________cm2.(结果保留π)12、如图,B1(x1,y1)、B2(x2,y2),…,B n(x n,y n)在函数(x>0)的图A1,△B2A1A2,△B3A2A3,…,△B n A n-1A n都是等边三角形,边OA1,A1A2,…,象上,△OB1A n-1A n都在x轴上,则y1+y2+…+y n=__________.三、解答题(共8道大题,满分66分)13、(满分5分)解方程:.14、(满分6分)如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.试判断四边形ADCE的形状,并说明理由.15、(满分6分)甲、乙两个不透明的纸盒中分别装有形状、大小和质地完全相同的四张和三张卡片.甲盒中的四张卡片上分别标有数字-1,0,1和2,乙盒中的三张卡片上分别标有数字-2,-1和1.小明从甲、乙两个纸盒中各随机抽取一张卡片,并分别将其卡片上的数字记为x,y,然后计算出S=x-y的值.请结合“树状图法”或“列表法”,求出当S<2时的概率.16、(满分7分)如图,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,BC=DC,过点C作CE⊥AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若AB=10,AC=8,求tan∠DCE的值.17、(满分7分)2009年11月20日,澳门回归祖国十周年纪念日.为庆祝这一特殊节日,表达莘莘学子对澳门回家十年喜悦之情,某校举办了“寄语澳门、盛世濠江”为主题的宣传海报展比赛活动.该校聘请了10位老师和10位学生担任评委,其中甲班的得分情况如下统计图(表)所示.(1)在频数分布直方图中,自左向右第四组的频数为__________;(2)学生评委计分的众数是__________分;(3)计分办法规定:老师、学生评委的计分各去掉一个最高分、一个最低分,先分别计算平均分,再按老师、学生各占60%、40%的方法计算各班最后得分,求甲班最后得分.18、(满分10分)如图,在某海域内有两个港口A、C.港口在港口北偏东60°方向上.一艘船以每小时20海里的速度沿北偏东30°的方向驶离A港口3小时后到达B 点位置处,此时发现船舱漏水,海水以每分钟0.8吨的速度渗入船内.当船舱渗入的海水总量超过70吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75°方向上.若船上的抽水机每小时可将6吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向港口C停靠,才能保证船在抵达港口前不会沉没.19、(满分11分)随着近几年城市建设的快速发展,对花木的需求量逐年提高,某园林专业户计划投资15万元种植花卉和树木. 根据市场调查与预测,种植树木的利润y(万1=2x;种植花卉的利润y2(万元)与投资量x(万元)元)与投资量x(万元)成正比例关系:y1的函数关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点;AB∥x轴).关于投资量x的函数关系式;(1)写出种植花卉的利润y2(2)求此专业户种植花卉和树木获取的总利润W(万元)关于投入种植花卉的资金t(万元)之间的函数关系式;(3)此专业户投入种植花卉的资金为多少万元时,才能使获取的利润最大,最大利润是多少?20、(满分14分)如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.动点P从A点出发沿线段AB以每秒2个单位长度的速度向终点B运动;同时动点Q从B点出发沿线段BC以每秒1个单位长度的速度向终点C运动.设运动的时间为t秒.(1)写出A,B,C三点的坐标和抛物线顶点D的坐标;(2)连接PC,求当t=3时△PQC的面积;(3)连接AD,当t为何值时,PQ∥AD;(4)当t为何值时,△PQB为等腰三角形.提示:6、A、B两城之间距离为600km,甲车行驶5h,两车相遇行驶15小时到达B城,所以甲车的速度为乙车速度为乙车在相遇后到达A城的时间为所以A、B对,C错.答案:7、5,,;8、2,1,9、,-2,;10、-211、15π12、提示:12、分别过B1、B2、B3作B1C1⊥x轴于C1,B2C2⊥x轴于C2,B3C3⊥x轴于C3.13、x=214、菱形,证明△AOD≌△COE;15、16、(1)连接OC,∵DC=BC,∴,∵,∴,∴,∴OC∥AD,∵CE⊥AD,∴OC⊥CE,∴CE是⊙的切线;(2)连接BD,∵AB是直径,∴,∵CE⊥AD,∴CE∥BD,∴,∵,∴中,.17、(1)5;(2)95分;(3)94.4分.18、易求AB=60,,设航行速度为每小时x海里,则.(3)种植花卉的投资量为4万元时,才能使获取的利润最大,最大利润是为46万元.20、(1)A(-7,0),B(3,0),C(0,4),;(2);(3)(过C作CE∥AD交x轴于E,△PBQ∽△EBC);(4)解析:(4)①若BP=BQ,则10-2t=t,.②若PB=PQ,则过P作PM⊥BC于M,。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 ( 1 3 4 + 4 + 2 2 + 2 1 1 + 2 )=0. (1 分) 10
乙种电子钟走时误差的平均数为:
1 ( 4 3 1 + 2 2 + 1 2 + 2 2 + 1 )=0. (1 分) 10
∴两种电子钟走时误差的平均数都是 0 秒. (2 分) (2) S甲 =
∠H 2 MB = 30° ,
故 BH 2 = 30 3 < 60. 故临海市会受到台风侵袭. (5 分) (2)以点 B 为圆心,60 为半径作圆与射线 MN 分别交于 T1 , T2 , 故 BT1 = BT2 = 60. 在 △BT1 H 2 中, (滨海市) A T2
61 2
sin ∠BT1 H 2 = BH 2 30 3 3 = = . BT1 60 2
2 2
3°若 PQ = PF, ( 5t 8 ) + 100 = 182 即
2
∴ ( 5t 8 ) = 224, 由于 224 ≈ 15, 0 ≤ 5t ≤ 22.5, 又
2
29 841 ∴8 ≤ 5t 8 ≤ 14.5, 14.5 = = < 224. 4 2
2
2
故无 0 ≤ t ≤ 4.5 满足此方程. (13 分) 综上所述, t =

彰显数学魅力!演绎网站传奇! 彰显数学魅力!演绎网站传奇!
QD QC t 1 = = = . DP OP 4t 4 QC CE 1 t 1 故 = = , 即 = . 同理 QC ‖ AF, AF EA 4 AF 4 ∴ AF = 4t = OP. ∴ PF = PA + AF = PA + OP = 18. (9 分)
10 x ( x = 1, 3,或0 ≤ x ≤ 4且x为整数 ) 2, 4 (8 分) (2)∴ s = 20 x 90 ( x = 5, 7,9或5 ≤ x ≤ 9且x为整数 ) 6, 8, 1112 10 x + 210 ( x = 10,, 或10 ≤ x ≤ 12且x为整数 )
1 7. ::
1 3
1 4
3 x
8. 3 ;
1 x ; 16a 2 3
9. 6a ( a + 3)( a 3) ; 24° ≤ 4 ;
10. y =
11. 70° 20° 或
12. 12π
注:第 11 题答对一种情况得 2 分. 三,解答题 13. (满分 5 分) 解:由 3 ( x + 2 ) < x + 8 得 3x + 6 < x + 8 即 2x < 2 ∴ x < 1. ① (2 分) 又由
∴ CE ‖ AF, CE ‖AF. ∴
∴ 四边形 ACEF 是平行四边形. (6 分)
15. (满分 7 分) 证明:∵ AB 是 ⊙O 的直径, ∴∠ACB = 90° (1 分) 又 CD ⊥ AB 于 D, ∴∠BCD = ∠A . (2 分) 又∵ ∠A = ∠F , (同弧所对的圆周角相等) (3 分) ∴∠F = ∠BCD = ∠BCG. (4 分) 在 △BCG 和 △BFC 中,
2
1 2 2 2 2 1 0 ) + ( 3 0 ) + ( 4 0 ) + + ( 2 0 ) ( 10 1 2 = × 60 = 6 ( 秒 ). (4 分) 10 1 2 2 2 2 S乙 = ( 4 0 ) + ( 3 0 ) + + (1 0 ) 10 1 2 = × 48 = 4.8 ( 秒 ). 10
x x 1 ≤ 得 3 x ≤ 2 ( x 1). 2 3 故 ② 即 3 x ≤ 2 x 2. x ≤ -2. (4 分) 综①,②得原不等式的解集为 x ≤ 2. (5 分)
14. (满分 6 分) 证明:∵ ∠ACB = 90° AE = EB. , B ∴ CE = AE = EB. (1 分) E 2 D 又∵ AF = CE F 1 3 ∴ AF = CE = AE = EB. (2 分) 又 ED ⊥ BC,EB = EC C A ∴∠1 = ∠2. (3 分) 又 ∠2 = ∠3 (对顶角相等) , 由 AE = AF, ∠3 = ∠F. 知 (4 分) ∴∠2 = ∠F. (5 分)
于是 A (18,),B ( 0, 10 ),C ( 8, 10 ). 0 顶点坐标为 4,
(2)若四边形 PQCA 为平行四边形,由于 QC ‖ PA, 故只要 QC = PA 即可,而
PA = 18 4t,CQ = t, 18 4t = t, t = 故 得
18 . (7 分) 5
2
∴ a = 40. y = 10 ( x 4 ) 40 = 10 x 2 80 x + 120. 即 (3 分)
2
学数学 用专页专页

彰显数学魅力!演绎网站传奇! 彰显数学魅力!演绎网站传奇!
2
16. (满分 6 分) 解:画出如图的树状图 1 2 3 4 …… 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 (3 分)
6 = 2 + 4 = 3 + 3 = 4 + 2,= 4 + 4 8 3 +1 1 ∴小彦中奖的概率为 = . (6 分) 4× 4 4
17. (满分 7 分) (注:不带单位不扣分, , (1)(2)问不作答共扣 1 分) 解: (1)甲种电子钟走时误差平均数为:
4 14 2 时, △PQR 为等腰三角形. (14 分) 5
第 5 页 共 5 页
学数学 用专页
即 B ( 0, 10 ). (2 分) 故点 C 的纵坐标为-10. 由于 BC ‖ OA, 由 10 =
1 2 4 x x 10 得 x = 8 或 x = 0. 18 9
即 C ( 8, 10 ) 且易求出顶点 4,
98 (3 分) . 9 98 (4 分) . 9
学数学 用专页
第 1 页 共 5 页
少智报 版权所有 少智报数学专页

∠BCG = ∠F, ∠GBC = ∠CBF,
彰显数学魅力!演绎网站传奇! 彰显数学魅力!演绎网站传奇!
∴△BCG ∽△BFC. (6 分) BC BG ∴ = BF BC
即 BC = BG BF (7 分)

彰显数学魅力!演绎网站传奇! 彰显数学魅力!演绎网站传奇!
年初中毕业生 黄冈市 2009 年初中毕业生升学考试
数学试题参考答案及评分说明
一,选择题(每小题 3 分,满分 18 分) 选择题( 1.A 2.D 3.B 4.A 5.C 6.B 填空题( 二,填空题(每空 3 分,满分 36 分)
又点 Q 到直线 PF 的距离 d = 10,
1 1 ∴ S△ PQF = = × 18 × 10 = 90. PF d 2 2
于是, S△ PQF 的面积总为定值 90. (10 分) (4)由前面知道, P ( 4t,),F (18 + 4t,),Q ( 8 t, 10 ),≤ t ≤ 4.5. 0 0 0 构造直角三角形后易得
∵ AM = 61 2, AH1 = 61 > 60. 故 (2 分)
学数学 用专页
第 2 页 共 5 页
少智报 版权所有 少智报数学专页

彰显数学魅力!演绎网站传奇! 彰显数学魅力!演绎网站传奇!
∴滨海市不会受到台风的侵袭. (3 分) 再过 B 作 BH 2 ⊥ MN 于 H 2 . 由于 MB = 60 3, (4 分)
2 2
224 . 25
∵ 2 ≤ t + 2 ≤ 6.5, t + 2 = ∴
224 4 14 = . 25 5
∴t =
4 14 2. (11 分) 5
2 2
2° 若 QP = QF, ( 5t 8 ) + 100 = ( 5t + 10 ) + 100. 即
即 ( 5t 8 ) = ( 5t + 10 ) , 0 ≤ t ≤ 4.5 的 t 满足. (12 分) 无
60 5 = (小时) (9 分) . 72 6 5 ∴临海市受到台风侵袭时间为 小时. (10 分) 6
T1T2 上所用的时间
19. (满分 11 分) (1)设直线 OA 的方程为 y = kx, 则由 ( 0,),4, 40 ) 在该直线上, 40 = k i 4, 0 ( 得
k = 10.
(3)设点 P 运动 t 秒,则 OP = 4t,CQ = t, < t < 4.5. 0 说明 P 在线段 OA 上,且不与 点 O,A 重合. 由于 QC ‖ OP 知 △QDC ∽△PDO.
学数学 用专页
第 4 页 共 5 页
少智报 版权所有 少智报数学专页

(注:解析式每对 1 个给 1 分,取值范围全正确给 1 分,共 4 分) (3)由(2)知, x = 1 2, 4 时,s 均为-10; x = 5, 7,9 时, s = 20 x 90 ,s 有最 , 3, 6, 8, 大值 90,而在 x = 10,, 时, s = 10 x + 210, x = 10 时, s 有最大值 110,故在 x = 10 1112 在 时, s 有最大值 110.即第 10 个月公司所获利润最大,它是 110 万元. (11 分) 20. (满分 14 分) 解: (1) y =
PQ 2 = ( 4t 8 + t 2 ) + 102 = ( 5t 8) + 100,
2
FO 2 = (18 + 4t 8 + t ) + 102 = ( 5t + 10 ) + 100.
相关文档
最新文档