材料的拉伸试验实验报告

合集下载

材料力学实验拉伸实验报告

材料力学实验拉伸实验报告

材料力学实验拉伸实验报告材料力学实验拉伸实验报告引言:材料力学实验是研究材料在受力作用下的变形和破坏行为的重要手段。

拉伸实验是其中一种常见的实验方法,通过对材料在受力下的延伸行为进行观察和分析,可以获得材料的力学性能参数,如屈服强度、断裂强度等。

本实验旨在探究不同材料在拉伸过程中的力学性能,并通过实验数据分析和计算得出结论。

实验装置与方法:实验所用材料为不同种类的金属样条,包括铜、铝、钢等。

实验装置主要由拉伸试验机、测力计和长度计组成。

首先,将金属样条固定在拉伸试验机上,然后逐渐增加试验机施加的拉伸力,同时记录测力计示数和长度计示数。

在拉伸过程中,要确保样条的应力均匀分布,避免出现局部应力集中导致的破坏。

实验结果与分析:通过实验数据记录和分析,我们得到了不同金属样条在拉伸过程中的力学性能参数。

首先,我们观察到在拉伸实验开始时,材料的应力-应变曲线呈现线性关系,即符合胡克定律。

随着拉伸力的增加,材料开始发生塑性变形,应力-应变曲线开始偏离线性关系,进入非线性阶段。

当拉伸力继续增加时,材料逐渐接近其屈服点,此时应力-应变曲线出现明显的拐点。

在过屈服点后,材料进入了塑性变形阶段。

我们观察到在这个阶段,材料的应力-应变曲线呈现出明显的下降趋势,即应力逐渐减小。

这是因为材料的内部结构发生了变化,晶粒开始滑移和变形,导致材料的强度下降。

在塑性变形过程中,材料的延伸率逐渐增加,直到达到最大延伸率。

然而,当材料的延伸率达到一定程度时,材料开始出现颈缩现象。

这是因为在塑性变形过程中,材料的某些部分发生了局部应力集中,导致材料在这些部分发生断裂。

我们观察到,颈缩现象对于不同材料的发生时间和程度是有差异的。

一般来说,延展性较好的材料在颈缩现象发生前能够承受更大的拉伸力。

结论:通过本次拉伸实验,我们得到了不同金属样条的力学性能参数,并对材料的拉伸行为进行了分析。

根据实验结果,我们可以得出以下结论:1. 不同材料在拉伸过程中的应力-应变曲线呈现出不同的形态,但都符合胡克定律。

拉伸试验实验报告

拉伸试验实验报告

拉伸试验实验报告
实验目的:了解和掌握拉伸试验的基本原理和方法,并研究不同材料在拉伸过程中的力学行为。

实验设备:拉伸试验机、标准试样、测力计、变形计、计算机等。

实验步骤:
1. 将标准试样夹在拉伸试验机的夹具上,确保试样夹紧并位于试验机的中心线位置。

2. 将测力计与试样上的载荷柱连接,使其垂直于试样表面。

3. 连接变形计,将其固定在试样上,并与计算机连接。

4. 设置试验机的拉伸速度和加载速率。

5. 启动试验机,开始拉伸试验。

6. 当试验机加载试样时,测力计会测量试样上的拉伸力,并将数据传输给计算机。

同时,变形计会测量试样的变形,并将数据传输给计算机。

7. 根据试验机的拉伸速度和加载速率,计算机会实时记录试样的力学行为,如应力、应变、变形等数据。

8. 试验过程中,可以通过计算机监测试样的应力-应变曲线,并分析试样的力学性能。

实验结果:
根据实验数据,可以计算出试样的应力-应变曲线,并得到一些力学参数,如屈服强度、抗拉强度、延伸率等。

同时,还可以观察试样在拉伸过程中的断裂形态,分析试样断口的特征,判断材料的韧性和脆性,以及可能存在的缺陷。

实验结论:
通过拉伸试验,可以获得材料在拉伸过程中的力学行为,如材料的强度、韧性、塑性等参数。

根据实验结果,可以评估材料的适用性,并为材料的设计和应用提供参考。

同时,拉伸试验也是评价材料力学性能的重要手段之一,对于材料研究和工程应用具有重要意义。

拉伸强度检测实验报告

拉伸强度检测实验报告

拉伸强度检测实验报告1. 实验目的本实验旨在测量材料的拉伸强度,并通过实验结果评估材料的力学性能。

2. 实验装置与材料实验装置包括拉伸试验机、材料样本和测力计。

材料样本选取优质钢材。

3. 实验步骤1. 将样本固定在拉伸试验机上,确保加压装置与材料表面垂直,并施加适当拉伸预载荷来锚定样本。

2. 设置试验机以逐渐增加拉伸负荷的速度开始实验。

3. 记录拉伸试验期间的拉伸荷重和材料的变形情况,包括材料的延伸长度。

4. 当样本断裂时,停止试验并记录断裂点所受的最大拉伸荷重。

4. 实验数据记录与处理实验数据如下:负荷(N)延伸长度(mm)0 0100 2200 4300 6400 8500 10600 12700 14800 16900 181000 20根据实验数据,可以绘制负荷与延伸长度的关系曲线图。

图中的直线段表示材料的弹性阶段,非线性段表示材料的屈服阶段,而最后的急剧上升表示了材料的破坏阶段。

5. 结果分析与讨论根据负荷与延伸长度的关系曲线,可以得到材料的力学性能参数,包括屈服强度、抗拉强度和延伸率。

屈服强度是材料开始发生屈服时所受的最大拉伸荷重。

根据实验数据,屈服强度为600N。

抗拉强度是材料发生破坏时所受的最大拉伸荷重。

根据实验数据,抗拉强度为1000N。

延伸率是材料在破坏前所发生的延伸相对于初始长度的百分比。

根据实验数据,延伸率为200%。

通过对实验结果的分析,可以评估材料的力学性能。

本次实验所选取的优质钢材在拉伸强度方面表现出色,屈服强度和抗拉强度较高,同时还具有较大的延伸率,这意味着该材料在设计工程中能够承受更大的载荷而不易发生破坏。

6. 实验总结通过本次拉伸强度实验,我们了解了材料力学性能的基本概念和测量方法。

通过实验结果,我们可以对材料进行力学性能的评估,从而为工程设计提供有用的参考数据。

此外,实验过程中还需要注意安全操作规范,以确保实验人员的安全。

参考文献1. 张强. 实验力学[M]. 清华大学出版社, 2008.2. 材料力学实验教程. 张明宇主编. 机械工业出版社, 2005.注意:以上实验报告仅为示例,实际情况可能会有所不同。

拉伸压缩实验报告

拉伸压缩实验报告

一、实验目的1. 了解材料力学中拉伸和压缩的基本原理及实验方法。

2. 通过实验观察材料的弹性、屈服、强化等力学行为。

3. 测定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。

4. 掌握电子万能试验机的使用方法及工作原理。

二、实验原理1. 拉伸实验:将试样放置在万能试验机的夹具中,缓慢施加轴向拉伸载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。

2. 压缩实验:将试样放置在万能试验机的夹具中,缓慢施加轴向压缩载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。

三、实验设备1. 电子万能试验机2. 力传感器3. 位移传感器4. 游标卡尺5. 计算机及数据采集软件四、实验材料1. 低碳钢拉伸试样2. 铸铁压缩试样五、实验步骤1. 拉伸实验:1. 将低碳钢拉伸试样安装在万能试验机的夹具中。

2. 设置试验参数,如拉伸速率、最大载荷等。

3. 启动试验机,缓慢施加轴向拉伸载荷,实时采集力与位移数据。

4. 绘制F-Δl曲线,分析材料的力学性能。

2. 压缩实验:1. 将铸铁压缩试样安装在万能试验机的夹具中。

2. 设置试验参数,如压缩速率、最大载荷等。

3. 启动试验机,缓慢施加轴向压缩载荷,实时采集力与位移数据。

4. 绘制F-Δl曲线,分析材料的力学性能。

六、实验结果与分析1. 低碳钢拉伸实验:1. 通过F-Δl曲线,确定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。

2. 分析材料在拉伸过程中的弹性、屈服、强化等力学行为。

2. 铸铁压缩实验:1. 通过F-Δl曲线,确定材料的强度极限等力学性能指标。

2. 分析材料在压缩过程中的破坏现象。

七、实验结论1. 通过本次实验,我们掌握了拉伸和压缩实验的基本原理及实验方法。

2. 通过实验结果,我们了解了低碳钢和铸铁的力学性能。

3. 实验结果表明,低碳钢具有良好的弹性和塑性,而铸铁则具有较好的抗压性能。

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告一、实验目的。

本实验旨在通过对低碳钢和铸铁的拉伸实验,了解两种材料的机械性能,探究它们在受力过程中的表现及性能差异。

二、实验原理。

拉伸实验是通过对材料施加拉力,观察其受力变形情况,从而得出材料的拉伸性能参数。

在实验中,我们将对低碳钢和铸铁进行拉伸实验,通过拉伸试验机施加拉力,测量其应力-应变曲线,得出材料的屈服强度、抗拉强度、断裂伸长率等参数,从而对两种材料的性能进行比较分析。

三、实验步骤。

1. 将低碳钢和铸铁试样分别固定在拉伸试验机上;2. 施加拉力,记录应力-应变曲线;3. 测量材料的屈服强度、抗拉强度、断裂伸长率等参数;4. 对实验结果进行分析和比较。

四、实验数据及分析。

经过拉伸实验,我们得到了低碳钢和铸铁的应力-应变曲线,通过对曲线的分析,得出了以下数据:低碳钢:屈服强度,250MPa。

抗拉强度,400MPa。

断裂伸长率,25%。

铸铁:屈服强度,150MPa。

抗拉强度,300MPa。

断裂伸长率,5%。

通过对比两种材料的拉伸性能参数,可以得出以下分析:1. 低碳钢的屈服强度和抗拉强度均高于铸铁,表明低碳钢具有更好的抗拉性能;2. 低碳钢的断裂伸长率远高于铸铁,表明低碳钢具有更好的延展性,更适合用于受力较大、需要一定延展性的场合;3. 铸铁的屈服强度和抗拉强度较低,但硬度较高,适合用于一些对硬度要求较高的场合。

五、实验结论。

通过本次实验,我们对低碳钢和铸铁的拉伸性能进行了比较分析,得出了以下结论:1. 低碳钢具有较好的抗拉性能和延展性,适合用于需要抗拉性能和延展性的场合;2. 铸铁具有较高的硬度,适合用于对硬度要求较高的场合;3. 不同材料具有不同的机械性能,需要根据具体使用场合选择合适的材料。

六、实验总结。

本次拉伸实验使我们更加深入地了解了低碳钢和铸铁的机械性能,对于工程材料的选择和应用具有一定的指导意义。

在今后的工程实践中,我们应根据具体的使用场合和要求,选择合适的材料,以确保工程质量和安全。

力学拉伸实验报告实验

力学拉伸实验报告实验

一、实验目的1. 了解材料在拉伸过程中的力学行为,观察材料的弹性、屈服、强化、颈缩和断裂等物理现象。

2. 测定材料的拉伸强度、屈服强度、抗拉强度等力学性能指标。

3. 掌握万能试验机的使用方法及拉伸实验的基本操作。

二、实验原理材料在拉伸过程中,其内部微观结构发生变化,从而表现出不同的力学行为。

根据胡克定律,当材料处于弹性阶段时,应力与应变呈线性关系。

当应力达到某一值时,材料开始发生屈服,此时应力不再增加,应变迅速增大。

随着应力的进一步增大,材料进入强化阶段,应力逐渐增加,应变增长速度减慢。

当应力达到最大值时,材料发生颈缩现象,此时材料横截面积迅速减小,应变增长速度加快。

最终,材料在某一应力下发生断裂。

三、实验仪器与设备1. 万能试验机:用于对材料进行拉伸试验,可自动记录应力与应变数据。

2. 拉伸试样:采用低碳钢圆棒,规格为直径10mm,长度100mm。

3. 游标卡尺:用于测量拉伸试样的尺寸。

4. 电子天平:用于测量拉伸试样的质量。

四、实验步骤1. 将拉伸试样清洗干净,用游标卡尺测量其直径和长度,并记录数据。

2. 将拉伸试样安装在万能试验机的夹具中,调整夹具间距,确保试样在拉伸过程中均匀受力。

3. 打开万能试验机电源,设置拉伸速度和最大载荷,启动试验机。

4. 观察拉伸过程中试样的变形和破坏现象,记录试样断裂时的载荷。

5. 关闭试验机电源,取出试样,用游标卡尺测量试样断裂后的长度,计算伸长率。

五、实验数据与结果1. 拉伸试样直径:10.00mm2. 拉伸试样长度:100.00mm3. 拉伸试样质量:20.00g4. 拉伸试样断裂载荷:1000N5. 拉伸试样断裂后长度:95.00mm根据实验数据,计算材料力学性能指标如下:1. 抗拉强度(σt):1000N / (π × (10mm)^2 / 4) = 784.62MPa2. 屈服强度(σs):600N / (π × (10mm)^2 / 4) = 471.40MPa3. 伸长率(δ):(95.00mm - 100.00mm) / 100.00m m × 100% = -5%六、实验分析1. 本实验中,低碳钢试样在拉伸过程中表现出明显的弹性、屈服、强化、颈缩和断裂等物理现象,符合材料力学理论。

材料的力学实验报告

材料的力学实验报告

材料的力学实验报告材料的力学实验报告材料的力学实验报告一目录一、拉伸实验...............................................................................2 二、压缩实验...............................................................................4 三、拉压弹性模量E 测定实验...................................................6 四、低碳钢剪切弹性模量G测定实验.......................................8 五、扭转破坏实验....................................................................10 六、纯弯曲梁正应力实验..........................................................12 七、弯扭组合变形时的主应力测定实验..................................15 八、压杆稳定实验. (18)一、拉伸实验报告标准答案实验结果及数据处理:例:(一)低碳钢试件强度指标:Ps=_____KN屈服应力ζs= Ps/A _____MPa P b =_____KN 强度极限ζb= Pb /A _____MPa 塑性指标:L1-LAA1伸长率100% %面积收缩率100% %LA低碳钢拉伸图:铸铁试件强度指标:最大载荷Pb =_____ KN强度极限ζb= Pb / A = ___ M Pa问题讨论:1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外).2、分析比较两种材料在拉伸时的力学性能及断口特征.答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。

材料的拉伸试验实验报告

材料的拉伸试验实验报告

材料的拉伸试验实验报告本抵抗破坏的能力,是结构设计中的重要参数。

颈缩阶段:强化阶段后,应力应变曲线开始下降,试样出现局部颈缩,即试样的横截面积开始缩小。

最后,试样突然断裂,断口呈现出光滑的金属光泽。

试样断口的形态、颜色、质地等特征,可以判断材料的性质和断裂模式。

实验步骤1)将试样夹入试验机的夹具中,注意试样的轴线与试验机的轴线一致。

2)调整试验机的速度,使其在规定的时间内完成试验。

3)记录试验过程中的应力应变数据。

4)试验结束后,计算试样的屈服强度、抗拉强度、伸长率和断面收缩率。

实验结果本次试验得到的低碳钢试样的屈服强度为XX MPa,抗拉强度为XX MPa,伸长率为XX%,断面收缩率为XX%。

根据试验结果,可以对材料的性能进行评估和选择,为工程设计提供依据。

材料的拉伸试验是一种常用的材料力学试验,本实验旨在测定低碳钢材料在常温、静载条件下的屈服强度、抗拉强度、伸长率和断面收缩率,并掌握万能材料试验机的工作原理和使用方法。

试验中使用了低碳钢试样、游标卡尺和万能试验机。

根据国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。

其中最常用的是圆形截面试样和矩形截面试样。

试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86.拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。

低碳钢具有良好的塑性,断裂前明显地分成四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。

根据试验结果,可以对材料的性能进行评估和选择,为工程设计提供依据。

实验步骤包括将试样夹入试验机的夹具中,调整试验机的速度,记录试验过程中的应力应变数据,计算试样的屈服强度、抗拉强度、伸长率和断面收缩率。

本次试验得到的低碳钢试样的屈服强度为XX MPa,抗拉强度为XX MPa,伸长率为XX%,断面收缩率为XX%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料的拉伸试验
实验内容及目的
(1)测定低碳钢材料在常温、静载条件下的屈服强度s σ、抗拉强度b σ、伸长率δ和断面收缩率ψ。

(2)掌握万能材料试验机的工作原理和使用方法。

实验材料及设备
低碳钢、游标卡尺、万能试验机。

试样的制备
按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。

其中最常用的是圆形截面试样和矩形截面试样。

如图1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。

平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。

圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取
A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后
者称为短比例试样(简称短试样)。

定标距试样的l 与A 之间无上述比例关系。

过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。

夹持部分稍大,其形状和尺寸根据试样大小、材
料特性、试验目的以及万能试验机的夹具结构进行设计。

对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。

(a )
(b )
图1 拉伸试样
(a )圆形截面试样;(b )矩形截面试样
实验原理
进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。

低碳钢具有良好的塑性,低碳钢断裂前明显地分成四个阶段:
弹性阶段:试件的变形是弹性的。

在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。

屈服(流动)阶段:应力应变曲线上出现明显的屈服点。

这表明材料暂时丧失抵抗继续变形的能力。

这时,应力基本上不变化,而变形快速增长。

通常把下屈服点作为材料屈服极限(又称屈服强度),即A
F s s =σ,是材料开始进入塑性的标志。

结构、零件的应力一旦超过
屈服极限,材料就会屈服,零件就会因为过量变形而失效。

因此强度
设计时常以屈服极限作为确定许可应力的基础。

强化阶段:屈服阶段结束后,应力应变曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。

D 点是应力应变曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度,即
A
F b b =
σ。

对低碳钢来说抗拉强度是材料均匀塑性变形的最大抗力,是
材料进入颈缩阶段的标志。

颈缩阶段:应力达到强度极限后,塑性变形开始在局部进行。

局部截面急剧收缩,承载面积迅速减少,试样承受的载荷很快下降,直到断裂。

断裂时,试样的弹性变形消失,塑性变形则遗留在破断的试样上。

材料的塑性通常用试样断裂后的残余变形来衡量,单拉时的塑性指标用断后伸长率δ和断面收缩率ψ来表示。


%1001⨯-=
l
l
l δ %1001
⨯-=
A
A A ψ 其中 l ——试样的原始标距;
1l ——将拉断的试样对接起来后两标点之间的距离。

A ——试样的原始横截面面积;
1A ——拉断后的试样在断口处的最小横截面面积。

低碳钢颈缩部分的变形在总变形中占很大比重。

测试断后伸长率时,颈缩局部及其影响区的塑性变形都应包含在标距l 之内,这就要求断口位置应在标距的中央附近,若断口落在标距之外则试验无效。

工程上通常认为,材料的断后伸长率δ> 5%属于韧断,δ< 5%则
属于脆断。

韧断的特征是断裂前有较大的宏观塑性变形,断口形貌是暗灰色纤维状组织。

低碳钢断裂时有很大的塑性变形,断口为杯状周边为45°的剪切唇,断口组织为暗灰色纤维状,因此是一种典型的韧状断口。

实验过程
(1)将试样打上标距点,并刻画上间隔为mm
5的分格线。

10或mm (2)在试样标距范围内的中间以及两标距点的内侧附近,分别用游标卡尺在相互垂直方向上测取试样直径的平均值为试样在该处的直径,取三者中的最小值作为计算直径。

(3)把试样安装在万能试验机的上、下夹头之间,估算试样的最大载荷,选择相应的测力盘,配置好相应的摆锤,调整测力指针,使之对准“0”点,将从动指针与之靠拢。

(4)开动万能试验机,匀速缓慢加载,观察试样的屈服现象和颈缩现象,直至试样被拉断为止,并分别记录下主动指针回转时的最小载荷
F和从动指针所停留位置的最大载荷b F。

s
(5)取下拉断后的试样,将断口吻合压紧,用游标卡尺量取断口处的最小直径和两标点之间的距离。

注意事项
(1)实验时必须严格遵守实验设备和仪器的各项操作规程,严禁开“快速”档加载。

开动万能试验机后,操作者不得离开工作岗位,实验中如发生故障应立即停机。

(2)加载时速度要均匀缓慢,防止冲击。

数据处理
(1)试样原始尺寸
表1 试样原始数据
(2)试验后试样尺寸
表2 拉断后试样尺寸数据
(3)记录数据
表3 万能试验机上数据
(4)计算过程
(5)计算结果
表4 计算结果表
(6)根据试验结果绘制出低碳钢试样的断口草图
思考题
1、测定材料的力学性能有何实用价值?
答:根据材料的性能能制作出更加合理的结构,同时也能由限定的结构来计算所需材料的数量,对结构的定性和定量都有作用。

相关文档
最新文档