二元系统气液平衡数据测定
二元系统汽液平衡数据的测定(精)

实验三二元系统汽液平衡数据的测定实验概括在化学工业中,蒸馏、吸收过程的工艺和设备设计都需要准确的汽液平衡数据,本实验就是利用双循环汽液平衡器测定的二元汽液平衡数据。
它对提供最佳化的操作条件,减少能源消耗和降低成本等,都有重要意义。
A实验目的⏹了解和掌握用双循环汽液平衡器测定二元汽液平衡数据的方法。
⏹了解缔合系统汽-液平衡数据的关联方法,从实验测得的T-p-x-y数据计算各组分的活度系数。
⏹学会二元汽液平衡相图的绘制。
B 实验原理 蒸馏循环线循环法测定汽液平衡数据的基本原理示意图 当体系达到平衡时,a 、b 容器中的组成不随时间的变化而变化,这时从a 和b 两容器中取样分析,可得到一组汽液平衡试验数据。
baC预习与思考⏹为什么即使在常低压下,醋酸蒸气也不能当作理想气体看待?⏹本实验中气液两相达到平衡的判据是什么?⏹设计用0.1mol/LNaOH标准液测定气液两相组成的分析步骤、并推导平衡组成计算式?⏹如何计算醋酸-水二元系的活度系数?⏹为什么要对平衡温度作压力校正?⏹本实验装置如何防止汽液平衡釜闪蒸、精馏现象发生?如何防止暴沸发生?D实验装置与流程(一)本实验采用改进的Ellis气液两相双循环型蒸馏器,如图所示。
D实验装置与流程(二)⏹改进的Ellis蒸馏器测定汽液平衡数据较准确,操作也简单,但仅适用于液相和气相冷凝液都是均相的系统。
温度测量用分度为0.1℃的水银温度计。
⏹平衡釜加热下方是一个磁力搅拌器,用以加热时搅拌液体;另还有一个电子控制装置,用以调节加热电压及上下两组电热丝保温的加热电压。
⏹分析测试汽液组成时,用化学滴定法。
E实验步骤及方法(一)⏹(1)加料从加料口加入配制好的醋酸-水二元溶液。
⏹(2)加热调节电压150~200V左右,开启磁力搅拌器,缓慢加热至釜液至沸,分别接通上、下保温电源,电压调节在10~15V.⏹(3)控温溶液沸腾,气相冷凝液出现,直到冷凝回流。
气相温度控制在比平衡温度高0.5~1 ℃左右。
二元气液相平衡数据的测定

二元气液相平衡数据的测定摘要:气液相平衡关系是精馏、吸收等单元操作的基础数据,随着化工生产的不断发展,现有气液相平衡数据远不能满足需求,许多物质的平衡数据,很难由理论直接计算得到,必须由实验测定。
平衡数据实验测定方法以循环法应用最为广泛。
本实验采用ellis 平衡釜,釜外具有真空夹套保温,可观察釜内的实验现象,在少量样品的情况下,能够迅速地测得平衡数据。
关键词:二元气液相平衡,循环法,苯,乙醇abstract: gas liquid equilibrium relationship is distillation, absorption unit operation of basic data, with the continuous development of chemical production, the existing gas liquid equilibrium data far cannot satisfy the demand, many material balance data, it is difficult to directly obtained by theory, must by experimental determination. balance data experimental determination method to cycle method used the most widely. this experiment using ellis balance kettle, still outside with vacuum jacketed insulation, can be observed in the kettle experimental phenomenon, in a small amount of sample cases, can quickly measure balance data.keywords: two sap liquid balance, circulation method, stupid, ethanol中图分类号: n941.8文献标识码:a 文章编号:1前言循环法测定气液相平衡的原理:如图1,图中a为盛有二元溶液的蒸馏器,b为逸出蒸汽经完全冷凝后的收集器。
南京工业大学化学工程与工艺专业实验》思考题答案

实验1二元体系汽液平衡数据测定1,实验测量误差及引起误差的原因答:(1)汽液两相平衡时,回流滴下来的流体速率平稳,大约每秒1~2滴,且在一段时间内温度维持不变。
2,影响汽液平衡数据测定的精确度的因素有哪些答:(2)影响准确度的因素有温度和压强,装置气密性,温度计灵敏度,折射仪读数准确性等。
实验3 二氧化碳临界现象观测及PVT关系的测定1,质面比常数K值对实验结果有何影响为什么答:任意温度任意压力下,质面比常数k均不变。
所以不会对实验结果又影响。
2,为什么测量25℃下等温线时,严格讲,出现第1个小液滴时的压力和最后一个小汽泡将消失时的压力应相等答:在出现第一个小液滴和最后一个汽泡消失过程中CO2处于汽液平衡状态。
根据相律得F=C-P+1=1-2+1=0,自由度为0,故过程中压力应为相等。
实验4 气相色谱法测定无限稀释溶液的活度系数1,无限稀释活度系数的定义是什么测定这个参数有什么作用答:定义:P29 公式(4-1),作用:通过测定两个组分的比保留体积和无限稀释下的活度系数,计算其相对挥发度.2,气相色谱基本原理是什么色谱仪有哪几个基本部分组成各起什么作用答:原理:因固定液对于样品中各组分溶解能力的差异而使其分离。
组成及作用:(1)载气系统气相色谱仪中的气路是一个载气连续运行的密闭管路系统。
整个载气系统要求载气纯净、密闭性好、流速稳定及流速测量准确。
(2)进样系统进样就是把气体或液体样品速而定量地加到色谱柱上端。
(3)分离系统分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分。
色谱柱分为填充柱和毛细管柱两类。
(4)检测系统检测器的作用是把被色谱柱分离的样品组分根据其特性和含量转化成电信号,经放大后,由记录仪记录成色谱图。
(5)信号记录或微机数据处理系统近年来气相色谱仪主要采用色谱数据处理机。
色谱数据处理机可打印记录色谱图,并能在同一张记录纸上打印出处理后的结果,如保留时间、被测组分质量分数等。
双液系气液平衡相图-学生用

冷凝液蒸汽RP 物理化学实验环己烷—乙醇恒压气液平衡相图绘制一、实验目的 1、 测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制101325Pa 下的沸点-组成的相图。
2、 掌握阿贝折射仪的原理和使用方法。
3、 掌握水银温度计与大气压力计的校正与使用方法。
二、实验原理液体混合物中各组分在同一温度下具有不同的挥发能力。
因而,经过气液间相变达到平衡后,各组分在气、液两相中的浓度是不相同的。
根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。
为了得到预期的分离效果,设计精馏装置必须掌握精确的气液平衡数据,也就是平衡时的气、液两相的组成与温度、压力间的依赖关系。
大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各组分。
其中,恒压数据应用更广,测定方法也较简便。
恒压测定方法有多种,以循环法最普遍。
循环法原理的示意图见图1。
在沸腾器P 中盛有一定组成的二元溶液,在恒压下加热。
液体沸腾后,逸出的蒸汽经完全冷凝后流入收集器R 。
达一定数量后逸流,经回流管流回到P 。
由于气相中的组成与液相中不同,所以随着沸腾过程的进行,P 、R 两容器中的组成不断改变,直至达到平衡时,气、液两相的组成也保持恒定。
分别从R 、P 中取样进行分析,即得出平衡温度下气相和液相的组成。
图 1 循环法原理示意图 图 2 在最低恒沸点的二元气液平衡相图本实验测定的恒压下环己烷-乙醇二元气液平衡相图,如图2所示。
图中横坐标表示二元系的组成(以B 的摩尔分数表示),纵坐标为温度。
显然曲线的两个端点*A t 、*B t 即指在恒压下纯A 与纯B 的沸点。
若溶液原始的组成为0x ,当它沸腾达到汽液平衡的温度为1t 时,其平衡汽液相组成分别为1y 与1x 。
用不同组成的溶液进行测定,可得一系列t −x −y 数据,据此画出一张由液相线与气相线组成的完整相图。
图2的特点是当系统组成为e x 时,沸腾温度为e t ,平衡的气相组成与液相组成相同。
二元系统汽液平衡数据测定实验讲义

二元系统汽液平衡数据的测定在化学工业中,蒸馏、吸收过程的工艺和设备设计都需要准确的汽液平衡数据,此数据对提供最佳化的操作条件,减少能源消耗和降低成本等,都具有重要的意义。
尽管有许多体系的平衡数据可以从资料中找到,但这往往是在特定温度和压力下的数据。
随着科学的迅速发展,以及新产品,新工艺的开发,许多物系的平衡数据还未经前人测定过,这都需要通过实验测定以满足工程计算的需要。
此外,在溶液理论研究中提出了各种各样描述溶液内部分子间相互作用的模型,准确的平衡数据还是对这些模型的可靠性进行检验的重要依据。
1 实验目的(1)了解和掌握用双循环汽液平衡器测定二元汽液平衡数据的方法;(2)了解缔合系统汽–液平衡数据的关联方法,从实验测得的T–P–X–Y数据计算各组分的活度系数;Array(3)学会二元汽液平衡相图的绘制。
2 实验原理汽液平衡数据实验测定是在一定温度压力下,在已建立汽液相平衡的体系中,分别取出汽相和液相样品,测定其浓度。
本实验采用的是广泛使用的循环法,平衡装置利用改进的Rose 釜。
所测定的体系为乙酸(1)—水(2),样品分析采用气相色谱分析法。
以循环法测定汽液平衡数据的平衡器类型很多,但基本原理一致,如图2–1所示,当体系达到平衡时,a、b容器中的组成不随时间而变化,这时从a和b两容器中取样分析,可得到一组汽液平衡实验数据。
3 实验装置与试剂实验装置见图3-1,其主体为改进的Rose 平衡釜-一汽液双循环式平衡釜。
改进的Rose 平衡釜汽液分离部分配有热电偶(配数显仪)测量平衡温度,沸腾器的蛇型玻璃管内插有300W电热丝,加热混合液,其加热量由可调变压器控制。
分析仪器:气相色谱实验试剂: 乙酸(分析纯), 去离子水图3-1 改进的Rose 釜结构图1-排液口2-沸腾器3-内加热器4-液相取样口5-汽室6-汽液提升管7-汽液分离器8-温度计套管9-汽相冷凝管 10-汽相取样口 11-混合器4 预习与思考(1)为什么即使在常低压下,醋酸蒸汽也不能当作理想气体看待?(2)本实验中气液两相达到平衡的判据是什么?(3)如何计算醋酸-水二元系的活度系数?5 实验步骤及方法:(1) 加料:从加料口加入配制好的醋酸–水二元溶液,接通平衡釜内冷凝水。
气液平衡数据的测定

浙江大学化学实验报告课程名称:化学专业实验Ⅰ实验名称:气液平衡数据的测定指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:1.实验目的通过测定常压下乙醇—水二元系统汽液平衡数据的实验,使同学们了解、掌握汽液平衡数据测定的方法和技能,熟悉有关仪器的使用方法,将课本上学到的热力学理论知识与实际运用有机地联系在一起。
从而既加深对理论知识的理解和掌握,又提高了动手的能力。
2.汽液平衡测定的种类由于汽液平衡体系的复杂性及汽液平衡测定技术的不断发展,汽液平衡测定也形成了特点各异的不同种类。
按压力分,有常减压汽液平衡和高压汽液平衡。
高压汽液平衡测定的技术相对比较复杂,难度较大。
常减压汽液平衡测定则相对较易。
按形态分,有静态法和动态法。
静态法技术相对要简单一些,而动态法测定的技术要复杂一些但测定较快较准。
在动态法里又有单循环法和双循环法。
双循环法就是让汽相和液相都循环,而单循环只让其中一相(一般是汽相)循环。
在一般情况下,常减压汽液平衡都采用双循环,而在高压汽液平衡中,只让汽相强制循环。
循环的好处是易于平衡、易于取样分析。
根据对温度及压力的控制情况,有等温法与等压法之分。
一般,静态法采用等温测定,动态法的高压汽液平衡测定多采用等温法。
总之,汽液平衡系统特点各异,而测定的方法亦丰富多彩。
本实验采用的是常压下(等压)双循环法测定乙醇—水的汽液平衡数据。
3.实验原理以循环法测定汽液平衡数据的平衡釜有多种型式,但基本原理是一样的。
如图1所示,当体系达到平衡时,A 和B 两容器中组成不随时间而变化,这时从A 和B 两容器中取样分析,可以得到一组汽液平衡实验数据。
根据相平衡原理,当汽液两相 达到相平衡时,汽液两相温度压力 相等,同时任一组分在各相中的逸 度相等,即: Li v i f f = (1) 这里 P y f i v i v i Φ= 0i i i L i f x r f =图13 循环法测定汽液平衡的原理对低压汽液平衡,其气相可以 视为理想气体混合物,即1=Φvi ,忽略压力对液体逸度的影响,即00i i P f =,从而得出低压下汽液平衡关系式:i i i i P x r Py = (2)式中 P —体系压力(总压)0i P --纯组分i 在平衡 温度下的饱和蒸汽压(可用Antoine 公式计算) i i y x ,--组分i 在液相、汽相中的摩尔分数。
化工专业实验全解

实验一二元气液平衡数据测定实验一. 实验目的1了解和掌握用双循环汽液平衡器测定二元系统汽液平衡数据的方法。
2.通过实验了解平衡釜的构造,掌握汽液平衡数据的测定方法和技能。
3.掌握二元系统平衡相图的绘制。
二. 设备的主要技术数据(一)平衡釜(如图一所示)(二)物系 (乙醇─正丙醇)1.纯度:分析纯. 乙醇沸点: 78.3℃; 正丙醇沸点:97.2℃.2.折光指数与溶液浓度的关系见表1。
对30℃下质量分率与阿贝折光仪读数之间关系也可按下列回归式计算:W=58.844116-42.61325 ×nD其中W为乙醇的质量分率; nD为折光仪读数 (折光指数).由质量分率求摩尔分率(XA):乙醇分子量MA=46; 正丙醇分子量MB=60BAAAAAAMWMWMWX)](1[)()(-+=三. 实验设备的基本情况实验设备流程示意图: 见图一所示.四. 实验方法及步骤1.将与阿贝折光仪配套的超级恒温水浴(用户自备)调整运行到所需的温度,并记下这个温度(例如30℃).2.测温管内倒入甘油,将标准温度计插入套管中。
3.配制一定浓度(体积浓度10%左右)的乙醇─正丙醇混合液(总容量50毫升),然后倒入平衡釜中。
4.打开冷凝器冷却水,接通电源缓慢加热,冷凝回流液控制在每秒2-3滴。
稳定回流20分钟,以建立平衡状态。
5.达到平衡时停止加热,用微量注射器分别取两相样品用阿贝折光仪分析其组成。
6.从釜中取出6毫升液体后,在补充6毫升的乙醇溶液,重新建立平衡。
7. 所加溶液视上一次的平衡温度定,以免实验数据点分布不均。
8. 检查数据合理后, 停止加料并将将加热电压调为零。
停止加热后10分钟,关闭冷却水,一切复原。
五. 使用本实验设备应注意事项1. 本实验过程中要特别注意安全,实验所用物系是易燃物品,操作过程中避免洒落以免发生危险。
2. 本实验设备加热功率由电位器来调解,固在加热时应注意加热千万别过快,以免发生爆沸(过冷沸腾),使液体从平衡釜冲出,若遇此现象应立即断电。
二元系统气液平衡数据测定

化工专业实验报告实验名称:二元系统气液平衡数据测定学院:化学工程学院专业:化学工程与工艺班级:化工班姓名:学号同组者姓名:指导教师:日期:一、实验目的1、了解和掌握用双循环气液平衡器测定二元系统气液平衡数据的方法。
2、了解缔合系统气—液平衡数据的关联方法,从实验测得的T-p-x-y 数据计算各组分的活度系数。
3、通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。
4、掌握二元系统气液平衡相图的绘制。
二、实验原理以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同。
如图1等,即逸度相等,其热力学基本关系为:Vi L i f f ˆˆ=is i i i V i x f py γφ=ˆ(1)常压下,气相可视为理想气体,1ˆ=v i φ;再忽略压力对液体逸度的影响,0i i p f =从而得出低压下气液平衡关系式为:py i =γi s i p ix (2)式中,p ——体系压力(总压);s i p ——纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算;x i 、y i ——分别为组分i 在液相和气相中的摩尔分率;γi ——组分i 的活度系数由实验测得等压下气液平衡数据,则可用si i i i p x py =γ(3)计算出不同组成下的活度系数。
本实验中活度系数和组成关系采用Wilson 方程关联。
Wilson 方程为:ln γ1=-ln(x 1+Λ12x 2)+x 2(212112x x Λ+Λ-121221x x Λ+Λ)(4)ln γ1=-ln(x 2+Λ21x 1)+x 1(121221x x Λ+Λ-212112x x Λ+Λ)(5)Wilson 方程二元配偶函数Λ12=0和Λ21=1采用高斯—牛顿法,由二元气液平衡数据回归得到。
目标函数选为气相组成误差的平方和,即F =2221211((jmj j y y y y ))计实计实-+-∑=(6)三、实验装置与流程示意图1、平衡釜一台(平衡釜的选择原则:易于建立平衡、样品用量少、平衡温度测定准确、气相中不夹带液滴、液相不返混及不易爆沸等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工专业实验
实验名称:二元系统气液平衡数据测定学院:化学工程学院
专业:化学工程与工艺
班级:化工092班
姓名:芦亚婷学号09402010206 指导教师:王剑锋
日期:2012年5月14日
一、实验目的
1. 了解和掌握用双循环汽液平衡器测定二元系统气液平衡数据的方法。
2. 了解缔合系统汽—液平衡数据的关联方法,从实验测得的T-p-x-y 数据计算各组分的活度系数。
3. 通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。
4. 掌握二元系统气液平衡相图的绘制。
二、实验原理
以循环法测定气液平衡数据的平衡虽多,但基本原理相同,如图1所示。
当体系达到平衡时,两个容器的组成不随时间变化,这时从A 和B 两容器中取样分析,即可得到一组平衡数据。
冷凝器
凝液
蒸气循环线
蒸气
加热
液体
液体循环线
图1 平衡法测定气液平衡原理图
B
A
图1 平衡法测定气液平衡原理图
当达到平衡时,除了两相的温度和压力分别相等外,每一组分化学位也相等,即逸度相等,其热力学基本关系为:
V i L i f f = (1) i i i x f py 0i i γφ=
常压下,气相可视为理想气体,再忽略压力对流体逸度的影响,0i i p f = 从而得出低压下气液平衡关系式为:
py i =γi 0i p i x (2) 式中,p —体系压力(总压);
0i p —纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算; x i 、y i —分别为组分i 在液相和气相中的摩尔分率; γi —组分i 的活度系数
由实验测得等压下气液平衡数据,则可用
i p x py i i
i =
γ (3) 计算出不同组成下的活度系数。
本实验中活度系数和组成关系采用Wilson 方程关联。
Wilson 方程为: ln γ1=-ln(x 1+Λ12x 2)+x 2(
2
12112
x x Λ+Λ-121221x x Λ+Λ) (4) ln γ2=-ln(x 2+Λ21x 1)+x 1(
121221x x Λ+Λ-2
12112x x Λ+Λ) (5)
Wilson 方程二元配偶函数Λ12和Λ21采用非线性最小二乘法,由二元气液平衡数据回归得到。
目标函数选为气相组成误差的平方和,即
F =2
221211((j m
j j y y y y ))计实计实-+-∑= (6)
三、主要仪器设备与实验装置流程图
1. 平衡釜一台
2. 阿贝折射仪一台
3. 超级恒温槽一台
4. 50-100十分之一的标准温度计一支
5. 所用试剂(无水甲醇、异丙醇)为分析纯试剂。
6. 1ML 注射器十支、5ML 注射器三支。
1
23
45
6
7
89
1011121314
15
16
图2-小气液平衡釜示意图
1-磨口;2-气相取样口;3-气相贮液槽;4-连通管;5-缓冲球;6-回流管;
7-平衡室;8-钟罩;9-温度计套管;10-液相取样口;11-液相贮液槽;12-提升管;13-沸腾室;14-加热套管;15-真空夹套;16-加料液面
四、实验步骤
1、测11组二元系统气液平衡标准数据。
实验室大气压值取101.325kPa。
2、平衡釜内加入一定浓度的甲醇-异丙醇溶液,并没过注射器针头。
打开冷却水,接通电源。
开始时加热电流给到0.2A,五分钟后给到0.24A,以平衡釜内液体沸腾,冷凝回流液控制在每秒1~2滴。
稳定回流约15min,以建立平衡状态。
3、到平衡后,记录温度计的读数,用微量注射器分别取两相样品,用阿贝折射仪测定其折射率。
4、注射器从釜中取出2ml混合溶液,然后加入等量的一种纯物质,重新加热建立平衡。
加入哪种物料,视上一次平衡组成而定,以免各实验点分布不均,重复实验5次。
5、实验完毕,关掉电源和水源,处理实验数据。
五、实验数据处理
(1) 数据处理
甲醇密度ρ= 0.792g/ml 甲醇摩尔质量= 32g/mol
异丙醇密度ρ= 0.785g/ml 异丙醇摩尔质量= 60g/mol
表1 二元系统气液平衡标准数据
甲醇的体积分数% 甲醇的摩尔分数% 折射率
100 100 1.3272
90 94.4523 1.3310
80 88.3271 1.3369
70 81.5294 1.3440
60 73.9419 1.3500
50 65.4185 1.3535
40 55.7746 1.3569
30 44.7739 1.3610
20 32.1081 1.3671
10 17.3684 1.3712
0 0 1.3761
表2 实验测定混合液两相平衡数据
组号平衡温度
折射率甲醇气相
摩尔分数
y1
甲醇液相
摩尔分数
x1
气相液相
1 69.9 1.3441 1.3514 0.7640 0.6120
2 70.
3 1.3446 1.3528 0.7526 0.5826
3 70.6 1.3450 1.3548 0.745
4 0.5419
4 71.
5 1.3508 1.3551 0.6265 0.5356
5 72.
6 1.3512 1.3590 0.6151 0.4541
查资料得,列表如下:
表3
组分 A B C
异丙醇 6.86634 1360.183 197.593
根据安托尼(Antoine)公式,lg(P s/kPa)=A-B/(C + t/℃),求得异丙醇在各温度下饱和蒸汽压。
甲醇的饱和蒸汽压数据由已知数据用内插法求得。
列表如下:
表4 各温度下组分的饱和蒸汽压
温度/℃甲醇的饱和蒸汽压P S/kPa 异丙醇的饱和蒸汽P S/kPa
69.9 126.5360.45
70.3 128.4361.52
70.6 129.8662.33
71.5 134.1564.81
72.6 139.3967.96
计算不同组成下的活度:
已知两个配偶系数分别为Λ12=0,Λ21=1,由式(4)和(5)求得ln γ1和ln γ2,再根据
s i i i
i p x py =
γ可求得y i。
所得数据如下表:
表5 各组分气相摩尔分数的计算值
温度/℃ γ1 γ2 气相甲醇计算值y 1
气相异丙醇计算值y 2
69.9 1.1085 1.8441 0.8472 0.4269 70.3 1.1307 1.7907 0.8350 0.4538 70.6 1.1672 1.7193 0.8106 0.4845 71.5 1.1735 1.7085 0.8321 0.5075 72.6
1.2758
1.5748
0.7970
0.5765
27988.0)5765.03849.0()797.06151.0()5075.03735.0()8321.06265.0()4845.02546.0()8106.07454.0()4538.02474.0()
835.07526.0()4269.0236.0()8472.0764.0(((22222222
222221
211=-+-+-+-+-+-+-+-+-+-=-+-=∑=j m
j j y y y y F ))计实计实(2) 气相组成实验值与计算值的比较
(3) 温度组成图t-x-y(甲醇)
六、实验结果与讨论
1. 影响气液平衡测定准确度的因素:
答:1) 阿贝折射仪的仪器误差;2) 阿贝折射仪的读数误差;3) 气液平衡时间的判定误差;4) 实验器材的气密性;5) 取样时存在的误差等。
2. 误差产生的原因:
答:1) 仪器本身存在的误差;2) 数据处理时有效值的取值存在误差;3) 用针筒取液体时存在主观误差;4) 实验所给的溶液的纯度存在误差。
七、思考题
1、实验中怎样判断气液两相已达到平衡?
答:气液两相达平衡时,回流滴下来的液体速率平稳,大约在每秒1-2滴,且在一段时间内温度维持不变。
2、影响气液平衡测定准确度的因素有那些?
答:影响准确度的因素有温度和压强,装置气密性,温度计灵敏度,折射仪读数准确性等。
3、为什么要确定模型参数,对实际工作有何作用?
答:用于研究生产可能性,在实际操作过程中,有时可以根据实验所得等比放大进行生产。