生物必修2-第五章、第六章、第七章知识点框架图
生物必修2-第五章、第六章、第七章知识点框架图

第5章基因突变及其他变异一、本章总概念图:二、各节子概念图:5.1.1基因突变5.1.2 基因重组5.2 染色体变异5.3 人类遗传病三、基因突变、基因重组和染色体变异列表比较项目基因突变基因重组染色体变异适用范围生物种类所有生物(包括病毒)均可发生,具有普遍性自然状态下,只发生在真核生物的有性生殖过程中,细胞核遗传真核生物细胞增殖过程均可发生生殖无性生殖、有性生殖有性生殖无性生殖、有性生殖类型可分为自然突变和诱发突变,也可分为显性突变和隐性突变自由组合型、交叉互换型染色体结构的改变、染色体数目的变化发生时间有丝分裂间期和减数Ⅰ间期减数Ⅰ前期和减数Ⅰ后期细胞分裂期产生结果产生新的基因(产生了它的等位基因)、新的基因型、新的性状。
产生新的基因型,但不可以产生新的基因和新的性状。
不产生新的基因,但会引起基因数目或顺序变化。
镜检光镜下均无法检出,可根据是否有新性状或新性状组合确定光镜下可检出本质基因的分子结构发生改变,产生了新的基因,改变了基因的“质”,出现了新性状,但没有改变基因的“量”。
原有基因的重新组合,产生了新的基因型,使性状重新组合,但未改变基因的“质”和“量”。
染色体结构或数目发生改变,没有产生新的基因,基因的数量可发生改变条件外界条件剧变和内部因素的相互作用不同个体间的杂交,有性生殖过程中的减数分裂和受精作用存在染色体的真核生物特点普遍性、随机性、不定向性、低频率性、多害少利性原有基因的重新组合存在普遍性意义新基因产生的途径,生物变异的根本来源,也是生物进化的原材料是生物产生变异的来源之一,是生物进化的重要因素之一。
对生物的进化有一定的意义发生可能性可能性小,突变频率低非常普遍,产生的变异类型多可能性较小应用诱变育种杂交育种单倍体育种、多倍体育种生物多样性产生新的基因,丰富了基因文库产生配子种类多、组合方式多,受精卵多。
变异种类多实例果蝇的白眼、镰刀型细胞贫血症等豌豆杂交等无籽西瓜的培育等联系①三者均属于可遗传的变异,都为生物的进化提供了原材料;②基因突变产生新的基因,为进化提供了最初的原材料,是生物变异的根本来源;基因突变为基因重组提供大量可供自由组合的新基因,基因突变是基因重组的基础;③基因重组的变异频率高,为进化提供了广泛的选择材料,是形成生物多样性的重要原因之一;④基因重组和基因突变均产生新的基因型,可能产生新的表现型。
高中生物学科思维导图(人教版必修二)

高中生物学科思维导图(人教版必修二)遗传的基本规律与伴性遗传 1 遗传因子的发现豌豆的特点自花传粉、闭花受粉,自然状态下一般为纯种具有易于区分的性状,实验结果很容易观察和分析。
如:高茎和矮茎;圆粒和皱粒人工传粉过程人工去雄→套袋隔离→人工授粉→再套袋隔离相关概念相关符号意义 P:亲本;F1:子一代;F2:子二代;♀:母本;♂:父本;×:杂交;U :自交性状生物所表现出来的形态结构(双眼皮)、生理特征(B型血)和行为方式(左撇子)相对性状同种生物的同一种性状的不同表现类型分为显性性状(如豌豆的高茎)隐性性状(如豌豆的矮茎)等位基因位于同源染色体上控制相对性状的基因显性基因决定显性性状的基因(用大写字母表示)隐形基因决定隐性性状的基因(用小写字母表示)性状分离在杂种后代中,同时出现显性性状和隐性性状的现象表现型生物个体表现出来的性状,如豌豆的高茎和矮茎基因型与表现型有关的基因组成,如高茎豌豆的基因型是DD或Dd,矮茎豌豆的基因型是dd 纯合子基因组成相同的个体,如:DD、dd、YYRR、yyrr 杂合子基因组成不同的个体,如Dd、YyRr、Yyrr、yyRr 分离定律的发现过程及其内容实验过程及现象 P 高茎×矮茎→F1(全为高茎);F1自交→F2(高茎:矮茎=3:1)解释(提出假说)①生物的性状是由遗传因子(基因)决定的②体细胞中遗传因子(基因)是成对存在的③形成配子时,成对的遗传因子(基因)彼此分离,分别进入不同的配子。
配子中只含有每对遗传因子(基因)中的一个④受精时,雌雄配子的结合是随机的验证(演绎推理)设计测交实验:F1与隐性纯合子杂交,推测后代高茎:矮茎=1:1 实验验证:在得到的64株后代中,30株是高茎,34株是矮茎,比例接近1:1,验证了以上解释的正确性分离定律内容在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代自由组合定律的发现过程及其内容实验过程及现象 P 黄色圆粒×绿色皱粒→F1(全为黄色圆粒);F1自交→F2 (黄色圆粒:黄色皱粒:绿色圆粒:绿色皱粒=9:3:3:1)解释(提出假说)①纯种黄色圆粒和纯种绿色皱粒豌豆的基因型成分别是YYRR和yyrr,F1的基因型是YyRr ②F1形成配子时,每对基因彼此分离,不同对的基因自由组合。
高中生物知识结构网络图(完整版)

预祝2017级高考学子梦想实现。
高中生物知识结构网络图第一单元 生命的物质基础和结构基础(细胞中的化合物、细胞的结构和功能、细胞增殖、分化、癌变和衰老、生物膜系统和细胞工程)1.1化学元素与生物体的关系1.2生物体中化学元素的组成特点1.3生物界与非生物界的统一性和差异性1.4细胞中的化合物一览表1.5蛋白质的相关计算设 构成蛋白质的氨基酸个数m ,构成蛋白质的肽链条数为n ,构成蛋白质的氨基酸的平均相对分子质量为a , 蛋白质中的肽键个数为x , 蛋白质的相对分子质量为y ,控制蛋白质的基因的最少碱基对数为r ,则 肽键数=脱去的水分子数,为 n m x -= …………………………………①蛋白质的相对分子质量 x ma y 18-= ………………………………………②或者 x a ry 183-=………………………………………③ 1.6蛋白质的组成层次1.7核酸的基本组成单位1.8生物大分子的组成特点及多样性的原因1.9生物组织中还原性糖、脂肪、蛋白质和DNA的鉴定1.10选择透过性膜的特点1.11水被选择的离子和小分子其它离子、小分子和大分子亲脂小分子高浓度——→低浓度不消耗细胞能量(ATP)离子、不亲脂小分子低浓度——→高浓度需载体蛋白运载消耗细胞能量(ATP)1.12线粒体和叶绿体共同点1、具有双层膜结构2、进行能量转换3、含遗传物质——DNA4、能独立地控制性状5、内含核糖体6、有相对独立的转录翻译系统7、能自我分裂增殖1.13真核生物细胞器的比较1.14细胞有丝分裂中核内DNA、染色体和染色单体变化规律1.15理化因素对细胞周期的影响注:+ 表示有影响1.16细胞分裂异常(或特殊形式分裂)的类型及结果1.18已分化细胞的特点 1.19分化后形成的不同种类细胞的特点G 21.20分化与细胞全能性的关系1.211.22癌细胞的特点分化程度越低全能性越高,分化程度越高全能性越低分化程度高,全能性也高分化程度最低(尚未分化),全能性最高扁平梭形 球形成纤维细胞癌变如癌细胞膜糖蛋白减少,细胞黏着性降低,易转移扩散。
高中生物必修二全套知识结构图

高中生物必修2教案《遗传与进化》人类是怎样认识基因的存在的? 遗传因子的发现 基因在哪里? 基因与染色体的关系 基因是什么? 基因的本质 基因是怎样行使功能的? 基因的表达基因在传递过程中怎样变化? 基因突变与其他变异 人类如何利用生物的基因? 从杂交育种到基因工程生物进化历程中基因频率是如何变化的? 现代生物进化理论主线一:以基因的本质为重点的染色体、DNA 、基因、遗传信息、遗传密码、性状间关系的综合;主线二:以分离规律为重点的核基因传递规律及其应用的综合;主线三:以基因突变、染色体变异和自然选择为重点的进化变异规律及其应用的综合。
第一章 遗传因子的发现一、孟德尔简介二、杂交实验(一) 1956----1864------18721.选材:豌豆 自花传粉、闭花受粉 纯种 性状易区分且稳定 真实遗传2.过程:人工异花传粉 一对相对性状的 正交 P (亲本) 互交 反交F 1(子一代)纯合子、杂合子F 2(子二代) 分离比为3:13.解释①性状由遗传因子决定。
(区分大小写) ②因子成对存在。
③配子只含每对因子中的一个。
④配子的结合是随机的。
4.验证 测交 F 1是否产生两种 比例为1:1的配子5.分离定律在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
体现在 三、杂交实验(二)1.亲组合重组合2.自由组合定律控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
四、孟德尔遗传定律史记①1866年发表 ②1900年再发现③1909年约翰逊将遗传因子更名为“基因” 基因型、表现型、等位基因△基因型是性状表现的内在因素,而表现型则是基因型的表现形式。
表现型=基因型+环境条件。
五、小结1.第二章 基因与染色体的关系依据:基因与染色体行为的平行关系 减数分裂与受精作用 基因在染色体上 证据:果蝇杂交(白眼) 伴性遗传:色盲与抗V D 佝偻病 现代解释:遗传因子为一对同源染色体上的一对等位基因一、减数分裂1.进行有性生殖的生物在产生成熟生殖细胞时,进行的染色体数目减半的细胞分裂。
高中生物必修二全套知识结构图

高中生物必修2教案《遗传与进化》人类是怎样认识基因的存在的? 遗传因子的发现 基因在哪里? 基因与染色体的关系 基因是什么? 基因的本质 基因是怎样行使功能的? 基因的表达基因在传递过程中怎样变化? 基因突变与其他变异 人类如何利用生物的基因? 从杂交育种到基因工程生物进化历程中基因频率是如何变化的? 现代生物进化理论主线一:以基因的本质为重点的染色体、DNA 、基因、遗传信息、遗传密码、性状间关系的综合;主线二:以分离规律为重点的核基因传递规律及其应用的综合;主线三:以基因突变、染色体变异和自然选择为重点的进化变异规律及其应用的综合。
第一章 遗传因子的发现一、孟德尔简介二、杂交实验(一) 1956----1864------18721.选材:豌豆 自花传粉、闭花受粉 纯种 性状易区分且稳定 真实遗传2.过程:人工异花传粉 一对相对性状的 正交 P (亲本) 互交 反交F 1(子一代)纯合子、杂合子F 2(子二代) 分离比为3:13.解释①性状由遗传因子决定。
(区分大小写) ②因子成对存在。
③配子只含每对因子中的一个。
④配子的结合是随机的。
4.验证 测交 F 1是否产生两种 比例为1:1的配子5.分离定律在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
体现在 三、杂交实验(二)1.亲组合重组合2.自由组合定律控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
四、孟德尔遗传定律史记①1866年发表 ②1900年再发现③1909年约翰逊将遗传因子更名为“基因” 基因型、表现型、等位基因△基因型是性状表现的内在因素,而表现型则是基因型的表现形式。
表现型=基因型+环境条件。
五、小结1.第二章 基因与染色体的关系依据:基因与染色体行为的平行关系 减数分裂与受精作用 基因在染色体上 证据:果蝇杂交(白眼) 伴性遗传:色盲与抗V D 佝偻病 现代解释:遗传因子为一对同源染色体上的一对等位基因一、减数分裂1.进行有性生殖的生物在产生成熟生殖细胞时,进行的染色体数目减半的细胞分裂。
高中生物必修二全套知识结构图

自交表现高中生物必修2教案《遗传与进化》人类是怎样认识基因的存在的?遗传因子的发现基因在哪里? 基因与染色体的关系 基因是什么? 基因的本质基因是怎样行使功能的?基因的表达基因在传递过程中怎样变化? 基因突变与其他变异人类如何利用生物的基因?从杂交育种到基因工程生物进化历程中基因频率是如何变化的? 现代生物进化理论主线一:以基因的本质为重点的染色体、DNA 、基因、遗传信息、遗传密码、性状间关系的综合;主线二:以分离规律为重点的核基因传递规律及其应用的综合;主线三:以基因突变、染色体变异和自然选择为重点的进化变异规律及其应用的综合。
第一章 遗传因子的发现隐性遗传因子 隐性性状 性状分离 杂合子 相对性状显性遗传因子显性性状一、孟德尔简介二、杂交实验(一) 1956----1864------18721.选材:豌豆 自花传粉、闭花受纯种性状易区分且稳定真实遗传2.过程:人工异花传粉 一对相对性状的 正交 P (亲本) 互交 反交F 1(子一代 纯合子、杂合子F 2(子二代) 高茎 DD :高茎 Dd :矮茎dd1 :2 :1 分离比为3:1 3.解释 ①性状由遗传因子决定。
(区分大小写)②因子成对存在。
③配子只含每对因子中的一个。
④配子的结合是随机的。
4.验证 测交 F 1是否产生两种高 1 : 1 矮 比例为1:1的配子5.分离定律在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
三、杂交实验(二)体现在1.绿皱yyrryyR_ :绿皱yyrr 亲组合9 : 3 : 3 : 1 重组合2.自由组合定律控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
四、孟德尔遗传定律史记①1866年发表 ②1900年再发现 ③1909年约翰逊将遗传因子更名为“基因” 基因型、表现型、等位基因△基因型是性状表现的内在因素,而表现型则是基因型的表现形式。
高中生物必修二知识点整理思维导图

高中生物必修二 知识点整理第一章 遗传因子的发现相对性状概念同一种生物的同一种性状的不同表现类型显性性状与隐性性状性状分离:在杂种后代中出现不同于亲本性状的现象显性基因与隐性基因等位基因:决定1对相对性状的两个基因 (位于一对同源染色体上的相同位置上)纯合子与杂合子纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离)杂合子:由不同基因的配子结合成的合子发育成的个体如Aa (不能稳定的遗传,后代会发生性状分离)表现型与基因型表现型:指生物个体实际表现出来的性状。
分显性和隐形基因型+环境→表现型基因型:与表现型有关的基因组成杂交与自交测交:让F1与隐性纯合子杂交(可用来测定F1的基因型,属于杂交)孟德尔实验成功的原因正确选用实验材料豌豆是严格自花传粉植物(闭花授粉),自然状态下一般是纯种具有易于区分的性状由一对相对性状到多对相对性状的研究(从简单到复杂)对实验结果进行统计学分析严谨的科学设计实验程序:假说-演绎法第二章 基因和染色体的关系减数分裂减数分裂的概念进行有性生殖的生物,在产生成熟生殖细胞时进行的染色体数目减半的细胞分裂染色体只复制一次,而细胞分裂两次。
结果是成熟生殖细胞中的染色体数目比原始生殖细胞减少一半减数分裂的过程精子形成的过程(场所:精巢/睾丸)精原细胞曲细精管中初级精母细胞(减数第一次分裂)间期:染色体复制(包括DNA复制和蛋白质的合成)前期:同源染色体联会;四分体时期;四分体中的姐妹染色单体发生交叉互换中期:排列在赤道板上后期:同源染色体分开;非同源染色体自由组合末期:细胞质分裂,形成两个子细胞减数第二次分裂(无同源染色体)前期:染色体排列散乱中期:每条染色体的着丝粒都排列在细胞中央的赤道板上后期:姐妹染色单体分开,成为两条子染色体。
并分别移向细胞两极末期:细胞质分裂,每个细胞形成2个子细胞,最终共形 成4个子细胞精细胞(1个精原细胞产生4个精细胞)精子:由精细胞分化呈蝌蚪状,头部含有细胞核,尾长,能够摆动卵细胞形成过程(场所:卵巢)卵原细胞初级卵母细胞次级卵母细胞和极体卵细胞和极体减数第一次分裂减数第二次分裂精子和卵细胞形成过程的异同不同点精子形成部位精巢(哺乳动物称睾丸)过程有变形期子细胞数一个精原细胞形成4个精子卵细胞形成部位卵巢过程无变形期子细胞数一个卵原细胞形成1个卵细胞+3个极体相同点精子和卵细胞中染色体数目都是体细胞的一半注意点同源染色体形态、大小基本相同一条来自父方,一条来母方精原细胞和卵原细胞的染色体数目与体细胞相同。
全国高中生物必修二全套知识结构图

第一章遗传因子的发现—「隐性遗传因子 控制•隐性性状[ 性状分离崛自交 杂合子《卜相对性状矚慫润厲钐瘗睞枥庑赖。
I 显性遗传因子 ------------ 显性性状」 M表现、孟德尔简介、杂交实验(一)1956----1864——1872的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
爱氇谴净。
人类是怎样认识基因的存在的? 基因在哪里? 基因是什么? 基因是怎样行使功能的? 基因在传递过程中怎样变化?人类如何利用生物的基因?生物进化历程中基因频率是如何变化的? --》遗传因子的发现-- >基因与染色体的关系-- >基因的本质--»基因的表达--今 基因突变与其他变异-- >从杂交育种到基因工程-- >现代生物进化理论1.选材:豌豆自花传粉、闭花受粉 性状易区分且稳定2•过程:人工异花传粉 P (亲本)F 1 (子一代)F 2 (子二代)I ___ . 纯种真实遗传一对相对性状的Dd矮茎dd互交 反交纯合子、杂合子高茎DD :高茎Dd :矮茎de=•分离比为3: 13.解释①性状由遗传因子决定。
(区分大小写)③配子只含每对因子中的一个。
②因子成对存在。
④配子的结合是随机的。
4 .验证测交主线一:以基因的本质为重点的染色体、DNA 基因、遗传信息、遗传密码、性状间关系的综合;主线二:以分离规律为重点的核基因传递规律及其应用的综合;主线三:以基因突变、染色体变异和自然选择为重点的进化变异规律及其应用的综合。
\17 C Mdd1F 1是否产生两种比例为1 : 1的配子5•分离定律在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对高中生物必修2教案《遗传与进化》聞創沟燴鐺險三、杂交实验(二)1. 黄圆YYRR 绿皱yyrr黄圆YyRr黄圆YR :黄皱Y rr :绿圆yyR_ :绿皱yyrr 亲组合重组合2 •自由组合定律控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章基因突变及其他变异一、本章总概念图:二、各节子概念图:5.1.1基因突变5.1.2 基因重组5.2 染色体变异5.3 人类遗传病三、基因突变、基因重组和染色体变异列表比较项目基因突变基因重组染色体变异适用范围生物种类所有生物(包括病毒)均可发生,具有普遍性自然状态下,只发生在真核生物的有性生殖过程中,细胞核遗传真核生物细胞增殖过程均可发生生殖无性生殖、有性生殖有性生殖无性生殖、有性生殖类型可分为自然突变和诱发突变,也可分为显性突变和隐性突变自由组合型、交叉互换型染色体结构的改变、染色体数目的变化发生时间有丝分裂间期和减数Ⅰ间期减数Ⅰ前期和减数Ⅰ后期细胞分裂期产生结果产生新的基因(产生了它的等位基因)、新的基因型、新的性状。
产生新的基因型,但不可以产生新的基因和新的性状。
不产生新的基因,但会引起基因数目或顺序变化。
镜检光镜下均无法检出,可根据是否有新性状或新性状组合确定光镜下可检出本质基因的分子结构发生改变,产生了新的基因,改变了基因的“质”,出现了新性状,但没有改变基因的“量”。
原有基因的重新组合,产生了新的基因型,使性状重新组合,但未改变基因的“质”和“量”。
染色体结构或数目发生改变,没有产生新的基因,基因的数量可发生改变条件外界条件剧变和内部因素的相互作用不同个体间的杂交,有性生殖过程中的减数分裂和受精作用存在染色体的真核生物特点普遍性、随机性、不定向性、低频率性、多害少利性原有基因的重新组合存在普遍性意义新基因产生的途径,生物变异的根本来源,也是生物进化的原材料是生物产生变异的来源之一,是生物进化的重要因素之一。
对生物的进化有一定的意义发生可能性可能性小,突变频率低非常普遍,产生的变异类型多可能性较小应用诱变育种杂交育种单倍体育种、多倍体育种生物多样性产生新的基因,丰富了基因文库产生配子种类多、组合方式多,受精卵多。
变异种类多实例果蝇的白眼、镰刀型细胞贫血症等豌豆杂交等无籽西瓜的培育等联系①三者均属于可遗传的变异,都为生物的进化提供了原材料;②基因突变产生新的基因,为进化提供了最初的原材料,是生物变异的根本来源;基因突变为基因重组提供大量可供自由组合的新基因,基因突变是基因重组的基础;③基因重组的变异频率高,为进化提供了广泛的选择材料,是形成生物多样性的重要原因之一;④基因重组和基因突变均产生新的基因型,可能产生新的表现型。
四、染色体变异重难点解读(一)染色体变异的种类1.染色体结构的变异包括:⑴缺失、⑵重复、⑶倒位、⑷易位四种类型。
染色体结构的改变,都会使排列在染色体上的基因数目或排列顺序发生改变,从而使性状的改变。
如猫叫综合征,是5号染色体缺失造成的。
2.染色体数目的变异有两种类型:⑴个别染色体的增加或减少如人类的21三体综合症,是由于21号染色体有3条造成的。
⑵以染色体组的形式成倍的增加或减少如单倍体、多倍体的形成等。
(二)染色体组的概念及判断1.染色体组的概念染色体组是指细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部信息的一组染色体。
要构成一个染色体组,应具备以下条件:①一个染色体组中不含同源染色体;②一个染色体组中所含的染色体形态、大小和功能各不相同;③一个染色体组中含有控制生物性状的一整套基因,但不能重复。
2.染色体组数目的判别①根据染色体形态判断细胞内形态相同的染色体有几条,则含有几个染色体组。
②根据基因型判断在细胞或生物体的基因型中,控制同一性状的基因出现几次,则有几个染色体组。
③根据染色体数目和染色体形态判断染色体组的数目=染色体数/染色体形态数(三)单倍体、二倍体和多倍体的主要区别1.由配子发育形成的新个体,不管它含有多少个染色体组,都叫单倍体。
如蜜蜂的雄蜂、普通小麦的花粉经过花药离体培养得到的植株等。
2.由受精卵发育形成的新个体,体细胞有几个染色体组,就叫几倍体。
如蜜蜂的工蜂、果蝇、水稻等等。
区别的方法可简称为“二看法”:一看是由受精卵还是有配子发育成的,若是由配子发育成的个体,是单倍体;若是由受精卵发育成的个体,二看含有几个染色体组,就是几倍体。
(四)单倍体植株、多倍体植株和杂种植株的区别⑴单倍体植株:长得弱小,一般高度不育。
⑵多倍体植株:茎杆粗壮,叶片、果实、种子比较大,营养物质丰富,但发育迟缓结实率低。
⑶杂种植株:一般生长整齐、植株健壮、产量高、抗虫抗病能力强等特点。
(五)多倍体育种、单倍体育种区别⑴原理均属于染色体变异;⑵常用方法:多倍体育种是用秋水仙素处理萌发的种子或幼苗,而单倍体育种是在花药离体培养后,人工诱导染色体数目加倍(秋水仙素或低温诱导),形成纯合子;⑶优缺点:多倍体育种得到的植株器官大,提高产量和营养成分含量,但只能适用于植物,动物不适用,并且发育延迟,结实率低;单倍体育种能明显地缩短育种年限(一般两年),后代都是纯合子,但技术复杂,一般不育。
五、常见遗传病分类及遗传特点分类常见病例及表示方法遗传特点单基因病常染色体显性并指(T、t)1.无性别差异;2.含致病基因即患病多指软骨发育不全(A、a)隐性苯丙酮尿症(B、b)1.无性别差异;2.隐性纯合发病白化病(A、a)先天性聋哑镰刀型细胞贫血症(A、a)伴X染色显性抗维生素D佝偻病(X A、X a)1.与性别有关,含致病基因就患病,女性多发;2.有交叉遗传现象遗传性慢性肾炎(X B、X b)隐性进行性肌营养不良 1.与性别有关,女性纯合和男性含有患红绿色盲(X B、X b)体血友病(X H、X h)病,男性多发;2.有交叉遗传现象伴Y染色体如外耳道多毛征具有“男性代代传”的特点多基因病唇裂、无脑儿、原发性高血压、青少年型糖尿病1.常表现出家族聚集现象;2.易受环境影响染色体异常疾病21三体综合征、猫叫综合征、性腺发育不良等往往千万较严重的后果,甚至胚胎期就引起自然流产六、常见遗传病优生方案表解遗传方式组合方式优生方案常见病例单单基因病病病病常常染色体显性软骨发育不全夫妇均患病A ×Aa亲本有一方纯合患病,后代全病,否则应做产前基因诊断并指、多指、家庭性结肠息肉症一方患病 A ×aa夫妇均正常aa×aa 不需检测,全正常隐性白化病夫妇均患病aa×aa 后代全病,不宜生育苯丙酮尿症、先天性聋哑、镰刀型细胞贫血病、婴儿黑蒙性白痴一方患病 A ×aa 亲本有一方纯合正常,后代正常,否则应做产前基因诊断。
夫妇均正常A ×A伴X 染色体显性抗维生素D佝偻病夫妇均患病X A X×X A Y女性后代全病,男性后代应进行产前基因诊断。
遗传性肾炎一方患病X A X×X a Y女性患者后代均可能病,应进行产前基因诊断。
X a X a×X A Y 宜生男不生女夫妇均正常X a X a×X a Y 后代全部正常隐性血友病夫妇均患病X h X h×X h Y 后代全病,不宜生育进行性肌营养不良、色盲症一方患病X H X×X h Y后代均可能病,应做产前基因诊断X h X h×X H Y男性后代全病,宜生女孩夫妇均正常X H X×X H Y男性后代可能患病,宜生女孩伴Y染色体男病女不病宜生女不生男外耳道多毛症多基因病唇裂有患病史的夫妇,无论个体本身是否患病,后代均有患病可能呈家族聚集趋势,难以预测,无很好的预防方案无脑儿、原发性高血压、青少年型糖尿病染色体异常疾病(如“21三体”综合症) 不宜婚育猫叫综合症、性腺发育不良第6章从杂交育种到基因工程一、本章核心概念:主要:选择育种,杂交育种,诱变育种,基因工程次要:目的基因,基因的运载体,限制性内切酶,DNA连接酶,受体细胞二、本章总概念图:三、各节子概念图:第1节杂交育种与诱变育种6.1 杂交育种与诱变育种第2节基因工程及其应用6.2 基因工程及其应用第7章现代生物进化理论一、本章核心概念:主要:自然选择学说,生物进化,物种,生物多样性,种群,基因频率,隔离,共同进化次要:用进废退,获得性遗传,基因库,过度繁殖,生存斗争,遗传变异,适者生存二、本章总概念图:三、各节子概念图:第1节现代生物进化理论的由来7.1 现代生物进化理论的由来第2节现代生物进化理论的主要内容7.2 现代生物进化理论的主要内容四、遗传与进化概念辨析1.自交和自由交配一样吗?自交是泛指基因型相同的个体交配,自由交配是指无论基因型是否相同所有的个体之间都要进行交配。
2.基因组成为AaBb(A、a和B、b各自独立遗传)的一个精原细胞可能产生几种精子?事实上能产生几种呢?可能产生4种(AB和Ab和aB和ab)实际只产生2种(AB和ab或Ab和aB)3.表现型相同基因型一定相同吗?基因型相同表现型一定相同吗?表现型相同基因型不一定相同(如A对a有完全显性作用,基因型为AA和Aa的表现型相同),基因型形同的由于所处的外界条件不同有可能表现出不同的性状。
4.同源染色体的大小、形态一定相同吗?XY型性别决定的生物X、Y形态大小不同就是同源染色体。
5.病毒的遗传物质都是DNA吗?噬菌体的核酸为DNA,所以噬菌体应该为DNA;爱滋病病毒的核酸为RNA,所以爱滋病病毒应该为RNA。
6.DNA是主要的遗传物质,细胞生物的遗传物质主要是DNA吗?控制细胞生物核、质的遗传物质一定是DNA,只有少数RNA病毒遗传物质是RNA,DNA病毒的遗传物质是DNA。
7.DNA都是双链的吗?RNA都是单链的吗?某些DNA病毒(如腺联病毒)是单链的,某些RNA病毒(如呼肠孤病毒)是双链的。
8.DNA的载体一定是染色体吗?在真核细胞中染色体是DNA的主要载体,除此之外线粒体和叶绿体中也含有少量DNA;在原核细胞的核区中有裸露的大型环状DNA,在核区外还有一些小型环状DNA(质粒)。
9.DNA中一定是A=T、C=G吗?只有在DNA双链中才成立。
10.DNA复制n次和第n次复制一样吗?DNA复制n次新增加DNA(2n-1)个,DNA第n次复制新增加DNA(2n-2n-1=2n-1)个。
11.红绿色盲等同于色盲吗?色盲分全色盲、蓝黄色盲、红绿色盲等。
12.患病男孩和男孩患病一样吗?在计算遗传病发病率时患病男孩是指既要患病又要是男孩,而男孩患病是指已经是个男孩了,只需要计算出患病的概率。
13.所有生物都能基因突变、基因重组、染色体变异吗?所以有生物都可以发生基因突变(包括RNA病毒);狭义的基因重组只发生在有性生殖时(只有进行有性生殖的生物)广义的还应该包括基因重组技术;只有有染色体的真核生物才能发生染色体变异。
14.无子西瓜和无子番茄都可遗传吗?无子西瓜是利用了染色体数目变异的原理,可以遗传;而无籽番茄是利用外源生长素促进其发育的原理,不可遗传。