一元一次不等式的解法
一元一次不等式的解法

一元一次不等式的解法一元一次不等式是初等数学中重要的一种问题类型,其解法对于理解和掌握代数基础知识至关重要。
本文将介绍一元一次不等式的解法,帮助读者更好地理解和应用于实际问题中。
一、一元一次不等式的定义和性质一元一次不等式的一般形式为ax + b > 0或ax + b < 0,其中a和b是已知常数,x是未知变量。
一元一次不等式的解即是使不等式成立的取值范围。
在解一元一次不等式时,我们可以利用如下性质:1. 若a > b,则ax > bx;2. 若a > 0,则ax与x同号;3. 若a < b,则ax < bx;4. 若a < 0,则ax与x异号;5. 若a = b,则ax与bx同号。
利用以上性质,我们可以进行一元一次不等式的转化和简化操作,从而求得其解。
二、一元一次不等式的解法解一元一次不等式的一般思路是将不等式转化为等价的形式,并确定解的范围。
1. 消去常数项首先,我们可以通过消去常数项的方法简化不等式。
假设要求解的一元一次不等式为ax + b > 0,可以将其转化为ax > -b。
2. 移项与整理接下来,我们需要将x的系数变为正数,使得不等式更加方便计算。
若a < 0,则两边同时乘以-1,得到-a·x < b,将不等号翻转;若a = 0,则无解。
若a > 0,则不需要进行此步骤。
3. 求解接下来,我们将得到的一元一次等式ax < b求解。
若a > 0,则x <b/a;若a < 0,则x > b/a。
4. 确定解集最后,我们需要根据原始不等式的形式,确定解的范围。
若原始不等式为ax + b > 0,根据之前的求解结果,可得x ∈ (-∞, b/a);若原始不等式为ax + b < 0,则x ∈ (b/a, +∞)。
三、实例分析为了更好地理解一元一次不等式的解法,我们以一个具体的例子进行分析。
一元一次不等式的解法

孩子从母亲那里,得到最初的食物和衣着,看到世上第一张欢颜,听到人间第一句笑语……小小的心,像一只薄而透明的钵,盛满了乳色的爱,悄悄涟漪着。以孩子的智力,必认为这些都是上天无缘无故倾倒的琼浆玉液,是与生俱来的赠品。 作为施与的一方,母爱有时也是本能以致盲
目愚蠢的代名词。母爱单纯也复杂,清澈也浑浊,博大也狭窄,无偿也有偿。体验这种以血为缘的爱,感知它的厚重深远,纪念它的无私无畏,弘扬它的旗幡,播撒它的甘霖,需要灵敏的悟力和细腻的柔情。世人只知给予艰难,其实接受也非易事,需要虚怀若谷的智慧。只有容纳得多,
命天涯?嗨!说远了。我等凡人,还是回归到普通的日常小险上来吧。 ? ?每天都冒一点险,让人不由自主地兴奋和跃跃欲试,有一种新鲜的挑战性。我给自己立下的冒险范畴是:以前没干过的事,试一试。当然了,以不犯错为前提。以前没吃过的东西尝一尝,条件是不能太贵,且非国
家保护动物(有点自作多情。不出大价钱,吃到的定是平常物) 可惜因眼下在北师大读书,冒险的半径范围较有限。清晨等车时,悲哀地想到,"险"像金戒指,招摇而糜费。比如到西藏,可算是大众认可的冒险之举,走一趟,费用可观。又一想,早年我去那儿,一文没花,还给每月6元
是柔和的。 只有成长了自己的心,才会在不经意之间,收获了柔和。 我们的声音柔和了,就更容易渗透到辽远的空间。我们的目光柔和了,就更轻灵地卷起心扉的窗纱。我们的面庞柔和了,就更流畅地传达温暖的诚意。我们的身体柔和了,就更准确地表明与人平等的信念。
柔和,是力量的内敛和高度自信的宁馨儿。愿你一定在某一个清晨,感觉出柔和像云雾一般悄然袭身。 ? 提醒幸福 我们从小就习惯了在提醒中过日子。天气刚有一丝风吹草动,妈妈就说,别忘了多穿衣服。才相识了一个朋友,爸爸就说,小心他是个骗子。你取得了一点成功,还没容
一元一次不等式的解法

一元一次不等式的解法
解一元一次不等式的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤
系数化为1;⑥其中当系数是负数时,不等号的方向要改变。
(1)去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。
(2)去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和负号,括号里面的各项要改变符号。
(3)移项:根据不等式基本性质1,一般把含有未知数的项移到不等式的左边,常数项移到不等式的右边。
(4)合并同类项。
(5)将未知数的系数化为1:根据不等式基本性质2或3,特别要注意系数化为1时,系数是负数,不等号要改变方向。
(6)有些时候需要在数轴上表示不等式的解集。
不等式的基本性质1:不等式两边加或减同一个数或式子,不等号的方向不变。
用式子表示:如果a>b,那么a±c>b±c
不等式的基本性质2:不等式两边都乘或除以同一个正数,不等号的方向不变。
用式子表示:如果a>b,c>0,那么ac>bc
不等式的基本性质3:不等式两边乘或除以同一个负数,不等号的方向改变。
用式子表示:如果a>b,c<0,那么ac<bc
感谢您的阅读,祝您生活愉快。
一元一次不等式组的解法经典例题透析

经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。
思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。
解析:解不等式①,得x≥-;解不等式②,得x<1。
所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。
总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。
有等号画实心圆点,无等号画空心圆圈。
举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。
解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。
即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。
所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。
思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。
一元一次不等式的解法

一元一次不等式的解法一元一次不等式是数学中常见的一种不等式类型,它可以表示为ax + b > 0或ax + b < 0的形式,其中a、b是实数,且a≠0。
解一元一次不等式的过程不仅可以帮助我们求解数学问题,还能提高我们的逻辑思维和分析能力。
本文将介绍一元一次不等式的解法,并给出一些例子进行说明。
一元一次不等式的解法可以分为两种情况:当系数a大于0时,不等式的符号与等式相同;当系数a小于0时,不等式的符号与等式相反。
接下来,将分别讨论这两种情况的解法。
当系数a大于0时,不等式的符号与等式相同。
我们可以按照下列步骤求解不等式:步骤一:将不等式转化为等式,即ax + b = 0。
步骤二:求出等式的解x0。
步骤三:根据解x0的位置,判断不等式的解集。
举例来说,假设我们要求解不等式2x + 3 > 0。
步骤一:将不等式转化为等式,得到2x + 3 = 0。
步骤二:求出等式的解:2x + 3 = 0,解得x0 = -1.5。
步骤三:根据解x0的位置,即-1.5,我们可以知道不等式2x + 3 >0的解集为x > -1.5。
当系数a小于0时,不等式的符号与等式相反。
我们可以按照下列步骤求解不等式:步骤一:将不等式转化为等式,即ax + b = 0。
步骤二:求出等式的解x0。
步骤三:根据解x0的位置,判断不等式的解集。
举例来说,假设我们要求解不等式-2x + 3 > 0。
步骤一:将不等式转化为等式,得到-2x + 3 = 0。
步骤二:求出等式的解:-2x + 3 = 0,解得x0 = 1.5。
步骤三:根据解x0的位置,即1.5,我们可以知道不等式-2x + 3 > 0的解集为x < 1.5。
综上所述,一元一次不等式的解法可以分为两种情况:当系数a大于0时,不等式的符号与等式相同,解是大于等于或小于等于解的集合;当系数a小于0时,不等式的符号与等式相反,解是小于或大于解的集合。
一元一次不等式的解法

一元一次不等式的解法在代数学中,一元一次不等式是一个包含一个未知数的一次多项式不等式。
解一元一次不等式是找到使得不等式成立的未知数的取值范围。
本文将介绍常见的一元一次不等式的解法。
一、一元一次不等式的基本形式一元一次不等式的基本形式如下:ax + b > 0 (或ax + b ≥ 0)其中,a和b是已知实数,x是未知数。
二、两种基本解法解一元一次不等式有两种基本的解法:图解法和代数解法。
1. 图解法图解法是通过在数轴上绘制函数图像来找到不等式的解。
首先,我们将不等式中的等号改为等号,并根据系数a的正负性质判断函数图像的开口方向。
如果a > 0,函数图像开口向上;如果a < 0,函数图像开口向下。
然后,根据b的正负性质确定函数图像与x轴的交点。
如果b > 0,交点在x轴上方;如果b < 0,交点在x轴下方。
最后,确定不等式的解集。
如果不等式是大于号(>),解集为交点右侧的所有实数;如果不等式是大于等于号(≥),解集为交点及其右侧的所有实数。
图解法直观明了,可以直接观察出解集的范围。
2. 代数解法代数解法是通过对不等式进行变形和运算来找到不等式的解。
首先,根据不等式的形式,确定变式的目标。
如果目标是求x的取值范围,则可以将不等式进行变形,以消去a的系数。
然后,进行变形和运算,使得不等式的形式简化。
例如,可以根据a的正负性质将不等式改写为:x > -b/a 或x ≥ -b/a。
最后,根据不等式的形式确定解集的范围,并将解集用集合的符号表示出来。
代数解法较为繁琐,但可以精确得出解集的范围。
三、示例解析现以一个具体的例子来说明一元一次不等式的解法。
例:2x + 3 > 51. 图解法根据不等式的形式,将等号改为等号,得到2x + 3 ≥ 5。
由于a > 0,函数图像开口向上。
由于b > 0,交点在x轴上方。
解集为交点右侧的所有实数:x > 1。
微专题六 一元一次不等式(组)的解法及其应用

B品牌运动服/件
30
累计采购款/元
10 200
(1)A,B两种品牌运动服的进货单价各是多少元?
解:(1)设 A,B 两种品牌运动服的进货单价分别为 x 元和 y 元.
根据题意,得
+ = ,
= ,
解得
= ,
+ = ,
∴A,B 两种品牌运动服的进货单价分别为 240 元和 180 元.
①有哪几种购买方案?
②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?
解:(2)①设购买儿童口罩 m 包,则购买成人口罩(5-m)包.
+ (-) ≥ ,
根据题意,得
解得 2≤m≤3.
+ (-) ≤ ,
∵m 为整数,∴m=2 或 m=3.∴共有两种购买方案:
-
解不等式 x-4<
,得 x<2,
则不等式组的解集为-3≤x<2,
∴不等式组的所有负整数解为-3,-2,-1.
一元一次不等式的应用
6.某商城的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行
销售.已知这两种服装过去两次的进货情况如表所示:
进货批次
第一次
A品牌运动服/件
故此商场至少需购进6件A种商品.
一元一次不等式组的应用
8.小明网购了一本课外书,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”.乙说:“至多
22元,”丙说:“至多20元,”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为(
)
B
A.20<x<22
B.22<x<25
一元一次不等式的解法

一元一次不等式的解法一元一次不等式是数学中常见的问题,求解一元一次不等式可以帮助我们确定变量的取值范围。
本文将介绍一元一次不等式的常见解法方法,帮助读者更好地理解和应用。
一、加减法法则对于一元一次不等式,我们可以使用加减法法则进行求解。
举个例子,假设我们有一个一元一次不等式:2x + 3 > 5。
首先,我们将不等式转化为等式:2x + 3 = 5。
然后,我们使用加减法法则进行变换:2x= 5 - 3,得到2x = 2。
最后,我们将x的系数化简为1,得到x = 1。
因此,不等式的解为x > 1。
二、乘除法法则在一元一次不等式的求解过程中,乘除法法则也是非常常用的方法。
例如,我们有一个一元一次不等式:-4x / 2 ≤ 6。
首先,我们将不等式转化为等式:-4x / 2 = 6。
然后,我们使用乘除法法则进行变换:-4x =2 * 6,得到-4x = 12。
最后,我们将x的系数化简为1,得到x = -3。
因此,不等式的解为x ≤ -3。
三、绝对值法则绝对值法则在一元一次不等式的求解中也是常见的方法之一。
举个例子,假设我们有一个一元一次不等式:|2x - 1| < 5。
首先,我们将绝对值展开,并得到两个不等式:2x - 1 < 5 和 2x - 1 > -5。
然后,我们分别求解这两个不等式。
对于2x - 1 < 5,我们可以得到2x < 6,进而得到x < 3。
对于2x - 1 > -5,我们可以得到2x > -4,进而得到x > -2。
因此,不等式的解为-2 < x < 3。
四、图像法利用一元一次不等式的图像,我们也可以直观地求解不等式。
例如,对于一元一次不等式3x + 2 > 0,我们可以绘制出线性函数的图像y =3x + 2,并观察y大于0的部分所对应的x的取值范围。
从图像中可以看出,当x > -2/3时,不等式成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2>0 x-5≤-1
x ≥5 3x+5 >240
这些不等式有什么特 点? 给它们起个名字,就叫 一元一次不等式吧 只含有一个未知数,并且未知数的最高 次数是1的不等式法叫一元一次不等式.
例1:解不等式3-x<2x+6,并把它的 解集表示在数轴上. 哇 ! 一元 解:两边都加上x,得 一次解不 3-x+x<2x+6+x 等式可以 合并同类项,得 移项! 3<3x+6 两边都加上-6,得 3-6<3x+6-6 两边都除以3,得-1<x 即 x>-1
例4:小颖准备用21元钱买笔和笔记本. 每只笔3元,每个笔记本2.2元, 她买了 2个笔记本.她还可能买几只笔? 解: 设她还可能买n只笔, 根据题意,得 3n+2.2×2≤21 解这个不等式,得 n 16.6
3
因为n只能取正整数,所以小颖还可能 买1只、2只、3只、4只或只笔
P 17
作 业
x>-1
-1
0 1
2 3 4 5
6 7 8 9 10 11 12 13
x2 7 x 例2:解不等式 2 , 并把它的 3
解集表示在数轴上. 解:去分母,得 3(x-2)<≥2(7-x) 去括号,得 3x-6≥14-2x 移项合并同类项,得 5x≥20 两边都除以5,得 x ≥4
x≥4
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
P 15
作 业
P12
习 题 1.4
1、 2 ;
一元一次不等式的解法
不等式的基本性质 最 一元一次 去分母 性质2,3 简 步 不等式 不 骤 去括号 等 性质 1 移项 式 要特别注 合并同类项 意它们不一样 系数化为 1 性质 2,3 的地方!!! 没什么新鲜的, 跟解一元一次方程 差不多……
一元一次不等式的解法
什么是不等式? 一般地,用符号“<”(或 “≤”), “>”(或“≥”)连接的式 子叫做不等式 . 什么是不等式的解集 ? 一个含有未知数的不等式的所有 解,组成这个不等式的解集. 不等式解集的表示方 法 1.最简不等式法 ; 2.用数轴来表示
我们都见过哪些含有未知数的不等式
<-1
解不等式,并把它的 解集表示在数轴上.
(1) (2)
x x 1 2 3 x 3 x 2 5 2
怎样用一元一 次不等式解决实际 问题?
例3:一次环保知识竞赛共有25道题, 答对一道得4分,答错或不答一道扣1分. 竞赛中,小明被评为优秀(85或85分以 上),小明至少答对一道? 解: 设小明答对了x道题,则他答错 或不答的共有(25-x)道题. 根据题意,得 4x-1×(25-x)≥85 解这个不等式,得 x≥22 所以小明至少答对了22道题,由于共有 25道题,因而他可能答对2,23,24或25道
P17
习 题 1.5
1、2 、3;