大学物理习题集答案.doc
大物习题册答案及详解(山东理工大学大二上学期2020版)

4.如图所示,一点电荷q位于正立方体的A角上,则通过侧面abcd的电通量Φe=q/24ε0
考点: 高斯定理公式 (课本118页 6-18) 解法:1.建立一正方体高斯面(补7个如图正方体),使A点位于正中心
考点:电势是一个与引进电荷无关,完全由电场自身的性质和相对位置决定的物理量。电场中某点电势的大小与零 电势点的选取有关。
2.在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为
(B)
(A)Q/4πε0a
(B)Q/2πε0a
(C)Q/πε0a
(D)Q/2√2πε0a
q/(1/r-1/r0)/4πε0
考点:电势的计算
解法:U=∫
r0 r
E·dr
=∫
r0 qdr r 4πε0r
2
=q/(1/r-1/r0)/4πε0
(课本122页
6-29b)
பைடு நூலகம்
3.一质量为m、电量为q的小球,在电_场__力__作__用下,从电势为U的a点移动到电势为零的b点,若已知小球在b点的 速率为Vb,则小球在a点的速率Va=√Vb2-2qU/m
②均匀带电球面内的电势UP2=Q/4πε0R(课本123页例6-8结论得), ③UP=UP1+UP2.
6.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距 离分别为r1和r2,如图所示,则移动过程中电场力做的功为(C) (A)-Q(1/r1-1/r2)/4πε0 (B)qQ(1/r1-1/r2)/4πε0 (C)-qQ(1/r1-1/r2)/4πε0 (D)-qQ/4πε0(r2-r1) 考点:电场力的功 解法:Aeab=q(UA-UB)=q(-Q/4πε0r1— -Q/4πε0r2)=-qQ(1/r1-1/r2)/4πε0 (课本123页 6-31)
大学物理 和 习题答案

向走动时,则此平台相对地面旋转的角速度和旋转方向分别为
[A ]
(A) mR2 ( V ),顺时针。 JR
(B) mR2 ( V ),逆时针。 JR
——————3——————
大学物理习题集(上)
(C) mR 2 ( V ),顺时针。 (D) mR 2 ( V ),逆时针。
J mR 2 R
J mR 2 R
F
l 2
1 12
ml 2
A
Fl
1 3
ml 2
B
由上两式可解得 A
6F ml
,B
3F ml
,可见 A
B
所以应选(B)。
9.质量为 m 的小孩站在半径为 R 的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定轴自由转动,
转动惯量为 J,平台和小孩开始时均静止,当小孩突然以相对于地面为 v 的速率在平台边缘沿逆时针转
。
2
解答 以圆盘和橡皮沁组成一系统,则系统所受重力对铅直轴 O 的力矩为零,所以系统的角动量守
——————6——————
大学物理习题集(上)
恒,圆盘的角动量为
J0
,橡皮泥(视为质点)对
O
轴的转动惯量为
m
R 2
2
,则有
1 2
MR20
1 2
MR2
m
R 2
2
解得
1 2
MR
20
2M 0
1 2
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2. 均匀细棒 OA 可绕通过某一端 O 而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自
由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?
《大学物理习题集》(上)习题解答

)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
大学物理习题集上习题解答

大学物理习题集上习题解答文档编制序号:[KKIDT-LLE0828-LLETD298-POI08])2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 】(2) 质点作园周运动位置矢量大小一定不变。
【 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】(A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为s ,方向为A 点切线方向; (D) 大小为s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零 (B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(7)选择题(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=时,质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m *7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C) 02v 1kt 21v1+= (D)2v 1kt 21v 1+-= 二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
大学物理学(第三版)课后习题集参考答案解析

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ [答案:B] 1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s ,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V行走。
如人相对于岸静止,则1V 、2V 和3V的关系是 。
[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理试题集和答案

大学物理习题集上册大学物理教学部二00九年九月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习一质点运动的描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习二圆周运动相对运动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习三牛顿运动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四功和能┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五冲量和动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六力矩转动惯量转动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习七转动定律(续)角动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习八力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习九理想气体状态方程热力学第一定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十等值过程绝热过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十一循环过程热力学第二定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十二卡诺循环卡诺定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十三物质的微观模型压强公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十四理想气体的内能分布律自由程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十五热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十六谐振动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十七谐振动能量谐振动合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习十八波动方程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习十九波的能量波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习二十驻波多普勒效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习二十一振动和波习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习二十二光的相干性双缝干涉光程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习二十三薄膜干涉劈尖牛顿环┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄38 练习二十四单缝衍射光栅衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39 练习二十五光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄41 练习二十六光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43部分物理常量万有引力常量G=6。
大学物理习题集1-8答案

物理习题解答(48学时)注意:题号为红色字体的题目或者是标注过了解的计算题进行了解即可。
第一章 质点运动学一、选择题:1(D ),2(D ), 3(C ), 4(B ), 5(D ), 6(B ), 7(B ), 8(B ),9(D ), 10(C ), 11(B ), 12(C ) 二、填空题:1、 )]()5cos()5sin([50SI j t i t+-, 0, 圆;2、]sin 2cos )[(22t t Aetωβωωωββ+--, 2,1,0)21(=+n n ωπ;3、tS ∆,t v ∆-02 ;4、24020)(,R bt v b bt v +++;5、)/(4,1622s rad Rt ; 6、(1),(3),(4);7、)1(22S S +;8、)(4SI j i +-; 9、)/(20s m ;10、)/(1.02s m ;11、)(1,)(,2RC b cRct b c ±--;12、)/(20),/(3.17s m s m三、计算题1.解:(1))/(5.0/s m t x v -=∆∆=;(2)269/t t dt dx v -==, s m v /6)2(-=; (3)m x x x x s 25.2|)5.1()2(||)1()5.1(|=-+-=.2.解:t dt dv a 4/==,tdt dv 4=⎰⎰=tvtdt dv 04, 22t v =22/t dt dx v ==⎰⎰=xtdt t dx 10022)(103/23SI t x +=.3.(了解)解:(1)t v x 0=, 221gt y =轨迹方程是:2022/v g x y =.(2)0v v x =, gt v y =.速度大小为: 222022t g v v v v y x +=+=.方向为:与X轴的夹角)/(01v gt tg -=θ22202//t g v t g dt dv a t +==,与v 同向.222002122/)(t g v g v a g a tn +=-=,方向与t a 垂直.4.解:由t kv dt dv 2/-=ktdt v dv -=2 积分:⎰⎰-=tdt k vdv2 C kt v +-=-2211当0=t 时,0v v = 01v C -=∴ 得:21211v kt v += 5.解:设质点在x 处的速率为v ,262x dtdx dx dv dt dv a +=⋅==⎰⎰+=x vdx x vdv 020)62(s m x x v /)(22/13+=6.解:选地面为静止参考系s ,火车为运动参考系s ',雨滴为运动质点p : 已知:绝对速度:ps v大小未知,方向与竖直方向夹030牵连速度:s m v s s /35=',方向水平; 相对速度:s p v '大小未知,方向偏向车后045.ss '由速度合成定理:s s s p ps v v v ''+=由矢量关系式画出矢量图,由几何关系可得:3530sin 30cos 00=+ps ps v vs m v ps /6.25=.第二章 牛顿定律一、选择题:1(B ),2(D ), 3(E ), 4(C ), 5(B ), 6(C )。
刘果红-大学物理习题册答案

安徽建筑工业学院—刘果红 大学物理习题册答案练习一质点运动学1、 ,,26t i dt r d v +==j i v61+=j i tr r 26133+=-=-∆jv v 24131331=--=-2、0202212110v Kt v Ktdt v dvt Kv dt dv t v v +=⇒-⎰=⎰⇒-=所以选(C )3、因为位移,又因为。
所以选(B )00==r∆,v 0≠∆0≠4、选(C )5、(1)由,所以:,,mva Fv P ==dt dv a = dt dv mv P =⎰⎰=vtmvdvPdt 00积分得:mPt v 2=(2)因为,即:,有:m Pt dtdxv 2==dt m Ptdx tx⎰⎰=0022398t m P x =练习二 质点运动学 (二)1、平抛的运动方程为,两边求导数有:,那么2021gty tv x ==gt v v v y x ==0,,2220t g v v +=222022t g v t g dt dv a t +===-=22t n a g a 。
2220tg v gv +2、2241442s /m .a ;s /m .a n n ==3、(B )4、(A )练习三质点运动学1、0232332223x kt x ;tk )t (a ;)k s (t +===2、0321`=++v v v 3、(B )4、(C )练习四 质点动力学(一)1、mx ;i v912==2、(A )3、(C )4、(A )练习五 质点动力学(二)1、m'm muv )m 'm (v V +-+-=002、(A )3、(B )4、(C )5、(1)Nsv v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 17621212024=-=练习六、质点动力学(三)1、J9002、)R R R R (m Gm A E 2121-=3、(B )4、(D )5、)(21222B A m -ω练习七 质点动力学(四)1、)m m (l Gm v 212212+=2、动量、动能、功3、(B )4、(B )练习八 刚体绕定轴的转动(一)1、πωω806000.,.解:(1)摩擦力矩为恒力矩,轮子作匀变速转动因为;同理有0000120180ωωωββωω..t -=-=⇒+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明:字母为黑体者表示矢量一、选择题1. 关于静电场中某点电势值的正负,下列说法中正确的是: [ C ](A) 电势值的正负取决于置于该点的试验电荷的正负;(B) 电势值的正负取决于电场力对试验电荷作功的正负 ; (C) 电势值的正负取决于电势零点的选取;(D) 电势值的正负取决于产生电场的电荷的正负。
2. 真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷,如图所示。
设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处电势为:[ B ](A)q (B)1 ( qQ )Q4r4rRr P(C)q Q (D)1 ( qQ q ) O q R4 0 r4 0 rR3. 在带电量为- Q 的点电荷 A 的静电场中, 将另一带电量为 q 的点电荷 B 从 a 点移到 b 点,a 、 b两点距离点电荷A 的距离分别为r 1 和r 2,如图所示。
则在电荷移动过程中电场力做的功为[ C ](A)Q 11 (B)qQ1 1 Ar 1a4() ;() ;0 r1r 2 4 0 r 1r 2- QqQ 11qQr 2b(C)) ;(D)。
(r 2 4 0 ( r 2 r 1 )40 r14. 以下说法中正确的是 [ A ] (A)沿着电力线移动负电荷, 负电荷的电势能是增加的;(B) 场强弱的地方电位一定低 , 电位高的地方场强一定强; (C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷 , 仅在电场力作用下 , 总是从高电位处向低电位运动;(E) 场强处处相同的电场中 , 各点的电位也处处相同 .二、填空题R 1.电量分别为 q ,q , q 的三个点电荷位于一圆的直径上, 两个在qq 21123O3圆周上 , 一个在圆心 . 如图所示 . 设无穷远处为电势零点,圆半径为,则b 点处的电势U =1 ( q1q 3 ). bR4R2q 22.如图所示,在场强为 E 的均匀电场中, A 、B 两点间距离为 E, 连线方向与 E 的夹角为 . 从 A 点经任意路径到 B 点的d ABABd场强线积分E dl =Ed cos.AB3.如图所示 , BCD 是以 O 点为圆心 , 以 R 为半径的半圆弧 , 在 A C 点有一电量为 q 的点电荷 , O 点有一电量为 +q 的点R电荷 . 线段 BA = R . 现将一单位正电荷从 B 点沿半圆弧轨道q +qABO D移到 D 点,则电场力所作的功为q6R三、计算题1. 电量均匀分布在长为的细杆上,求:( 1)在杆延长线上与杆较近端距为处的电势;( 2)在杆中垂线上与杆距为处的电势。
解:( 1)电荷线密度q ,坐标如图 (a) 所示,距原点 O 为 x 处取电荷元 dqdx ,它2l在 a 点的电势 du1 dx4.0(rx)a 点的总电势udul1 dxl4 0 rx4 0 ln r lr lq ln rl8lrl( 2)坐标图 (b) 所示,电荷元 dqdx 在 Q 点的电势du1 dx4a 2 x 2Q 点的总电势udu21dxln1l 2a 2l4a 2 x 22 0rq lnll 2 r 24r2. 图示为一个均匀带电的球层,其电荷体密度为,球层内表面半径为为 R 2 。
设无穷远处为电势零点,求空腔内任一点的电势。
解:空腔内任一点的电势:r R2 E 1 R1 r E 3UE dldrE 2 drR1 drR2E 1 dSq 1又: q 14 R 23 R 133所以,E 1R 23 R 133 0 r 2同理: E 2 dSq 2q 24 r 333R 1得到,E 2r 3 R 133 0r2在球壳的内部,没有电电荷,所以,E 3综上, UR 23 R 13 1 2R 13 3 22R 23 0 2 R 2R 22 R 1即: UR 22R 122 0R 1 ,外表面半径R 1OR 2一、选择题1. 如图 , 真空中有一点电荷 Q 及空心金属球壳 A, A 处于静电平衡 , 球内有一点 M, 球壳中有一点 N, 以下说法正确的是A[ E ] (A)M ≠ 0, N =0 , Q 在 M 处产生电场 , 而在 N 处不产生电场;E E(B)E M =0, E N ≠0 , Q 在 M 处不产生电场 , 而在 N 处产生电场;QM(C)E = E =0 , Q 在 M 、 N 处都不产生电场;MN(D)E M ≠ 0, E N ≠0, Q 在 M 、 N 处都产生电场;(E) E M = E N =0 , Q 在 M 、 N 处都产生电场 .图 ,2. 如图 , 原先不带电的金属球壳的球心处放一点电荷q 1 , 球外放一点电荷 q 2 , 设 q 2 、金属内表面的电荷、外表面的电荷对 q 1 的作用力分别为 F 1、 F 2、 F 3 , q 1 受的 总电场力为 F , 则[ C ] (A) F 1=F 2=F 3=F =0.(B) 1 = q 1 q 2 / ( 4 0 2 2 3 = 0 , 1(C) F = qq / ( 4 2 F = 0 , F = q q / ( 4 q 21 2 0 d ) ,11 232d 2 ) ( 即与 F 1 反向 ), F =0 .d(D) F 1 = q 1 q 2 / ( 4d 2 ) ,F 2 =q 1 q 2 / ( 4d 2 )图Nq 1( 即与F1反向 ) , F3 =0,F=0 .(E) F 1= q 1 q 2/ ( 40d2) , F 2=q 1 q 2/ ( 40d2) (即与F1反向), F3=0,F=0.二. 填空题地球表面附近的电场强度约为100N/C , 方向垂直地面向下, 假设地球上的电荷都均匀分布在地表面上 , 则地面的电荷面密度=100 0,地面电荷是负电荷(填正或负) .三. 计算题1. 三个平行金属板A、B 和 C,面积都是200cm2,A、B 相距 4.0mm ,A、C相距2.0mm ,B、C两板都接地,如图所示。
如果使 A 板带正电×10-7C,略去边缘效应。
(1)求 B 板和 C 板上的感应电荷各为多少 ?(2)取地的电位为零,求 A 板的电位。
(1)A 板带正电荷 q 分布在左右两表面上,设 B 板感应电荷为 -q 1, C 板感应电荷为 -q 2,则q1q2qAB、 AC间均可视为匀强电场q1 q2E AB E AC0 S 0 Sq1 EABq2 EAC依题意u A u B u A u Cd AB EABdACEAC可得EABdAC 1 E AC d AB 2∴ q1 1.0 10 7C q2 2.0 10 7C即 B 板上感应电荷为q1 1.0 10 7 C ,C板上感应电荷为 q22.0 10 7 C A板的电势u A E AB d ABq10 Sd AB1.0 108.85 107 4.0 10 3 2.3 103V12 200 10 42. 点电荷 +Q 处于导体球壳的中心,壳的内外半径分别为 R 1 和 R 2,求电场强度分布和电势分布。
静电平衡时,导体球壳内、外表面均有感应电荷, 由于带电系统具有球对称性,所以内表面均匀分布有 -q 电荷,外表面均匀分布 +q 电荷,可判断电场分布具有球对称性,以任意半径 r 作一与球壳同心的高斯球面 S ,由高斯定理可得E dS4 r 2 Eq iEq i40 r 2当 rR 1q iqq ∴ E 10r 24R 1 r R 2q iq q 0∴E 2 0 rR 2q iq∴ E 3q4 0 r 2由电势定义式可求得电势分布rR 1u 1R 1 E 1 dr R 2E 3drr E 2 drqR 1 R 2R 1drq2 drr4 0r 2 R 24 0 rq1 11 q4 0r R 1 4R 2R 1 rR 2u 2R 2E 3 drE 2 drrR 2q 1 qR 24 0 r 2dr4 0 R 2r R 2u 3E 3 dr1drr4r2r1 q4 0 r3.半径为 R1=1.0cm 的导体球带电量 q1.0 10 10C,球外有个内外半径分别为 2R =3.0cm和 R =4.0cm 的同心导体球壳,壳上带有电量Q 11 10 10 C 。
求:3( 1)两球电势,( 2)若用导线把两球连接起来时两球的电势, ( 3)若外球接地时,两球的电势各为多少?(1)内球电荷 q 均匀分布在外表面, 外球内表面均匀感应电荷 -q ,外表面均匀分布电荷 q+Q , 由高斯定理可求得电场分布(略)r R 1E 1 0R 1 rR 2E 21 q4r2R 2 r R 3E 3 0rR 3E 41 q Q4r2由电势定义可求得内球电势u 内R 21q1 q QR 1 4 0 r 2 dr R 3 4 0 r 2 drq1 11 q Q 4R 1R 24R 39 10 91.0 10 1011912 10 100.019 100.040.033.30 102 Vu 外1 q Q1 qQ912 10 10R34r 2 dr49 100.040 R 32.70 102 V( 2)用导线把两球连接起来时,内球和外球内表面电荷中和,这时只有外球的外表面带有 q+Q 电荷,外球壳外场强不变, 外球电势不变,这时两球是等势体,其电势均为原外球壳电势 270V 。
( 3)若外球壳接地,外球电势为零,外球外表面电荷为零,内球的电荷以及外球内表面电荷分布不变,所以内球的电势u内R21 q dr q 1 1R1 4 0 r2 4 0 R1 R29 109 1.0 10 10 1 1 60V0.01 0.03。