RF功放中保护控制电路的设计
华中科技大学硕士学位论文射频功率放大器的研究与设计-微波eda网

SiC材料具有宽禁带、高临界击穿电场、高热导率、高载流子饱和漂移速度等优良特性,这些特性决定了它在高温、大功率、高频和抗辐照等领域的有着广泛的应用前景.因此基于4H-SiC的功率微波器件--金属半导体场效应晶体管(MESFET)越来越受到人们的重视.本文就4H-SiC MESFET的微波特性研究中的大信号模型和射频电路设计两个方面进行了研究.本文提出了两种基于4H-SiC MESFET的材料特性参数和结构参数的大信号建模方法:一是通过建立适用于4H-SiC MESFET的高频小信号物理模型数值计算获得不同偏压下的高频小信号二端口Y矩阵参数,利用4H-SiC MESFET高频小信号等效电路,得到4H-SiCMESFET的直流、电容等非线性特性,建立基于物理模型的大信号模型;二是结合经验模型和解析模型建立4H-SiCMESFET的准解析参数模型,该模型能反映器件基本物理工作机理和适合射频电路CAD软件应用,该模型验证结果表明具有一定的准确性和合理性.利用所建立的4H-SiCMESFET的准解析参数模型,设计了4H-SiC MESFET射频功率放大器.本文的工作不仅为进一步研究4H-SiC MESFET的非线性微波特性、器件设计提供了参考,更重要的为进一步完善适合CAD软件的大信号模型、设计4H-SiCMESFET高频小信号放大器和功率放大器提供了一定的理论指导和实践途径.
8.学位论文王恺基站功率放大器的仿真与分析2008
近些年信息通信领域中,发展最快、应用最广的就是无线通信技术。在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。这一应用已深入到人们生活和工作的各个方面。其中3G、WLAN、UWB、蓝牙、宽带卫星系统都是21世纪最热门的无线通信技术的应用。 在世界范围内,无线通讯技术发展迅猛,从模拟通信到数字通信,再到3G,无论是数据传输速率还是通信质量,都有质的飞跃。无线网络朝着高速化、宽带化、泛在化发展,从话音和数据的融合到有线和无线的融合,从传送网和各种业务网的融合到最终实现三网的融合将成为未来网络发展的必然趋势。而RF功率放大器是无线通信系统的重要组成部分,它的性能将直接影响到信号质量的好坏,因此在制造工艺上的要求尤其严格。作为基站收发器中的最后一级,RF功放在基站系统,甚至在整个无线通信过程中起着举足轻重的作用。 其重要性主要体现在: 功率放大器和相关的射频器件占无线基站硬件成本的40%以上; 与其它无线通信器件相比,功率放大器是电信领域中唯一一个久经不衰的制造业,它在整个电信领域中具有独特的位置和极高的重要性; 功率放大器在所有的无线通信系统中是必不可少的关键部件,直接影响到通信质量; 整个无线通信市场对功率放大器的需求量巨大,且对产品质量的要求极高,尤其是在3G多信道、高速和宽带无线通信系统。功率放大器的效率特性,直接限制了无线基站的性能和通信质量。 目前无线通信系统中,功率放大器是最不稳定的器件之一。伴随着无线通信技术的进步,系统对功放的技术指标的要求也越来越高,例如更低的功耗、更高的效率等。 这就要求功率放大器不仅在设计上能达到理论上的指标,而且在实际的量产及测试过程中,各项性能参数能有较好的稳定性和平衡性,为此需要对射频功率放大器的工艺改进方法,最终达到较高的良品率。 本论文从射频功放的原理出发建立仿真模型,用SystemView搭建一个基本的射频功放电路,从理论角度分析前馈技术、交叉相抵技术在功放电路中的作用,从生产中得到初始测试数据,对比理论值
射频功放保护控制电路的设计与应用

当发 射 机 天 线 出现 故 障 时 , 射 机 输 出 的射 频 功 发
率不 能 得 到有 效 传输 , 产 生很 大 的 发射 功 率 , 重影 会 严
Vx
XP
反 向 功 率 检 测 电压
图 1 高 电压驻 波 比功 率保 护 电路 简 图
收 稿 日期 : O 2 O — 3 2O一 5 1
压 ( 0 8 V) 到 N。 的 同相输 入 端 ( V。 。 电源 约 .7 加 。 e 设 ) 当
图 2 机 内 高 温 降 功 率 电路 简 图
制 发 射 机 控 制 电 路 内 高温 降功 率 电路 工 作 , 射 频 输 使
出功率 降 低 。机 内高温 降 功率 电路 简 图如 图 2所 示 。 从 图 2可 以看 出 , 内高 温 降功 率 控制 , 机 实质 上 就 是 将 T ( 射 机 ) 面 板 功率 调 整 电位 器 RP 。 置 的 发 前 。 设 功 率直 流 控 制 电压 , R。 与 D。 一 路 ( 几 路 ) 经 。 。 某 或 开关 接 通 所 连 接 的 电 阻 ( ~ ) 行 分 压 处 理 , 送 入模 R 。 进 。 使 拟乘法器 V 端 的 电 压 降 低 , 而 使 射 频输 出功 率 降 从
低。
电压 正常 时 , 整 RP 。 V V。则 N。输 出低 电平 , 调 。 使 > , 。 e 这 个 电 平接 到 D。 1 ( 图 2 , D。 1 2脚 断 开 , 。 3见 / )使 。 . / 发 射 机 正 常输 出射 频 功 率 ; 电源 电压 降 低 时 , 。 的 当 R。 上 。
器N 的 V 输 入 端 功 率 直 流 控 制 电压 降 到 某 一 电平 ,
IACJ_RF电路设计规范

版本变更记录版本号. 变更日期变更简述备注0.1 Draft 1st Draft目录最小电容值通常取决于电容本身的谐振频率和接脚电感,C4的值就是据此选择的。
C3和C2的值由于其自身接脚电感的关系而相对比较大,从而RF去耦效果要差一些,不过它们较适合于滤除较低频率的噪音信号。
RF去耦则是由电感L1完成的,它使RF信号无法从电源线耦合到芯片中。
因为所有的走线都是一条潜在的既可接收也可发射RF信号的天线,所以,将射频信号与关键线路、零组件隔离是必须的。
2.2TX电路设计2.2.1Transmitter 的RF输出要预留匹配电路2.2.2TX SAW 输入输出需要预留匹配电路2.2.3PA 电路2.2.3.1PA 的输入输出需要预留匹配电路2.2.3.2PA 的电源供电需要参考2.1电源电路设计。
GSM PA 需要特别注意需要有一100uF 的钽电容(C2)滤除低频噪音。
CDMA PA 的C2 的电容可以是10uF 的陶瓷电容。
2.2.3.3PA 的控制Pin 脚上需要接几十pf 的退耦电容。
2.2.42.3RX电路设计2.3.1LNA 电路2.3.1.1LNA 的输入,输出需要预留匹配电路2.3.1.2LNA 电源滤波参考2.1电源电路设计。
2.3.2RX SAW 的输入输出需要预留匹配电路。
2.3.3Receiver 的输入电路需要预留匹配电路。
2.4本振电路设计2.4.1压控振荡器VCO压控振荡器(VCO)可将变化的电压转换为变化的频率,这一特性被用于高速频道切换,但它们同样也将控制电压上的微量噪音转换为微小的频率变化,而这就给RF信号增加了噪音。
总之,在压控振荡器处理过以后,再也没有办法从RF输出信号中将噪音去掉。
困难在于VCO控制线(control line)的期望频宽范围可能从DC到2MHz,而藉由滤波器来去掉这么宽的频带噪音几乎是不可能的;其次,VCO控制线通常是一个控制频率的反馈回路的一部份,它在很多地方都有可能引入噪音,因此必须非常小心处理VCO控制线。
射频功放设计步骤(思路)

射频功放设计步骤(思路)本文将对射频功放电路的设计过程进行简要地介绍,以便初涉射频功放开发的同仁参考。
第一步,制定设计方案在进行射频功放设计时,我们首先要根据给定(或需要)的技术指标和功能指标制定设计方案。
制定设计方案的主要依据是指标要求中的增益、额定输出功率、线性度(ACPR/IMD)、载波数、功耗/效率等指标。
1.在GSM及LTE基站系统中,由于对线性度要求不是很高或者额定输出功率不是很大,且在单载波情况下工作,所以我们选择传统的射频功放设计方案——功率回退法(高功放HPA)。
构成HPA放大器一般有两种工作状态:A类及AB类工作状态。
A类放大器具有良好的线性放大性能,其三阶交调产物与输出功率的变化关系是:输出信号功率减小3dB(即减小一半功率),则三阶交调产物改善6dB。
一般来讲,A类放大器在1dB压缩点输出时,三阶交调系数约为-23.7dB (通常取-20dB)。
为了达到一定的线性,并考虑到工程问题,A类放大器需回退15dB,此时放大器的三阶交调抑制可以达到-45~-50dBc。
然而使用A类放大器的最大缺点是效率低及成本较高。
这是因为A类放大器在它的1dB压缩点输出功率时,其效率只有10%。
比如,完成一个30W平均输出功率的HPA,就需要至少有300W的耗电,并且工作电流随输出功率变化的值不大。
若考虑回退12dB,则需要有480W平均功率输出,需耗电4.8kW。
为了达到30W的输出功率需要用较多的功率管。
这样就加大了HPA的成本和体积,增大了研制成本和难度。
为了避免这个问题,建议在小功率放大器(平均功率输出≤5W)设计中使用A类放大器;在中大功率放大器(平均功率输出>5W)设计中使用AB类放大器。
AB类放大器的特点是效率高、成本低。
由于单管的输出功率高,仅需少量的功率管即可做到较高的输出功率,所以成本较低,且散热和结构设计可以简单化。
目前用在AB类的管子主要选LDMOS管,AB类放大器用最大包络功率PEP来描述其功率容量,类似A类的1dB压缩点。
功放压限电路

功放压限电路
功放的压限电路是指将功放输出信号的幅度限制在一定范围内的电路。
这个电路的主要功能是防止功放输出信号过大,从而保护功放和扬声器不被过载损坏。
压限电路通常由压缩器和限幅器组成。
压缩器的作用是在输入信号幅度增大时,自动减小输出信号的幅度,以保持输出信号幅度恒定。
而限幅器则是在输入信号幅度超过一定值时,直接将输出信号的幅度限制在一定范围内,不再随输入信号幅度的增大而增大。
压限电路的工作原理是基于负反馈控制原理。
压缩器和限幅器中的控制电路会实时监测功放输出信号的幅度,并根据设定的阈值自动调整输出信号的幅度。
当功放输出信号的幅度超过设定的阈值时,控制电路会减小输出信号的幅度,从而保护功放和扬声器不受损坏。
除了保护功放和扬声器的作用外,压限电路还可以提高功放和扬声器的播放质量。
因为当功放输出信号的幅度过大时,会产生失真和噪声,影响播放质量。
通过压限电路的控制,可以避免这种情况的发生,从而提高了播放质量。
2.4G射频双向功放电路设计

2.4G射频双向功放电路设计在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。
前者实现成本较高,而后者则相对较便宜,且容易实现。
现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。
本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。
双向功率放大器的设计双向功率放大器设计指标:工作频率:2400MHz~2483MHz最大输出功率:+30dBm(1W)发射增益:≥27dB接收增益:≥14dB接收端噪声系数:< 3.5dB频率响应:<±1dB输入端最小输入功率门限:<?15dB m具有收发指示功能具有电源极性反接保护功能根据时分双工TDD的工作原理,收发是分开进行的,因此可以得出采用图1的功放整体框图。
功率检波器信号输入端接在RF信号输入通道上的定向耦合器上。
当无线收发器处在发射状态时,功率检波器检测到无线收发器发出的信号,产生开关切换信号控制RF开关打向发射PA通路,LNA电路被断开,双向功率放大器处在发射状态。
当无线收发器处在接收状态时,功率检波器由于定向耦合器的单方向性而基本没有输入信号,这时通过开关切换信号将RF 开关切换到LNA通路,PA通路断开,此时双向功率放大器处在接收状态。
下面介绍重点部位的设计:发射功率放大(PA)电路发射功率放大电路的作用是将无线收发器输入功率放大以达到期望输出功率。
此处选择单片微波集成电路(MMIC)作为功率放大器件,并采用两级级联的方式来同时达到最大输出功率与增益的要求。
前级功率放大芯片选择RFMD公司的RF5189,该芯片主要应用在IEEE802.11b WLAN、2.4GHz ISM频段商用及消费类电子、无线局域网系统、扩频与MMDS 系统等等。
射频功放设计步骤(思路)

射频功放设计步骤(思路)本文将对射频功放电路的设计过程进行简要地介绍,以便初涉射频功放开发的同仁参考。
第一步,制定设计方案在进行射频功放设计时,我们首先要根据给定(或需要)的技术指标和功能指标制定设计方案。
制定设计方案的主要依据是指标要求中的增益、额定输出功率、线性度(ACPR/IMD)、载波数、功耗/效率等指标。
1.在GSM及LTE基站系统中,由于对线性度要求不是很高或者额定输出功率不是很大,且在单载波情况下工作,所以我们选择传统的射频功放设计方案——功率回退法(高功放HPA)。
构成HPA放大器一般有两种工作状态:A类及AB类工作状态。
A类放大器具有良好的线性放大性能,其三阶交调产物与输出功率的变化关系是:输出信号功率减小3dB(即减小一半功率),则三阶交调产物改善6dB。
一般来讲,A类放大器在1dB压缩点输出时,三阶交调系数约为-23.7dB (通常取-20dB)。
为了达到一定的线性,并考虑到工程问题,A类放大器需回退15dB,此时放大器的三阶交调抑制可以达到-45~-50dBc。
然而使用A类放大器的最大缺点是效率低及成本较高。
这是因为A类放大器在它的1dB压缩点输出功率时,其效率只有10%。
比如,完成一个30W平均输出功率的HPA,就需要至少有300W的耗电,并且工作电流随输出功率变化的值不大。
若考虑回退12dB,则需要有480W平均功率输出,需耗电4.8kW。
为了达到30W的输出功率需要用较多的功率管。
这样就加大了HPA的成本和体积,增大了研制成本和难度。
为了避免这个问题,建议在小功率放大器(平均功率输出≤5W)设计中使用A类放大器;在中大功率放大器(平均功率输出>5W)设计中使用AB类放大器。
AB类放大器的特点是效率高、成本低。
由于单管的输出功率高,仅需少量的功率管即可做到较高的输出功率,所以成本较低,且散热和结构设计可以简单化。
目前用在AB类的管子主要选LDMOS管,AB类放大器用最大包络功率PEP来描述其功率容量,类似A类的1dB压缩点。
5、功率放大器保护电路

作用:
①防止在强信号输入或输出负载短路时,大电流烧坏功放输出管。
②防止在强信号输入或开机、关机时,大电流冲击而损坏扬声器。
1).保护电路的类型
常用的电子保护电路有:
①切断负载式;
②分流式;
③切断信号式;
④切断电源式。
2).保护电路的工作原理
(1)切断负载式保护电路工作原理:
电路主要由过载检测及放大电路、继电器两部分所组成。
当放大器输出过载或中点电位偏离零点较大时,过载检测电路输出过载信号,经放大后启动继电器动作,使扬声器回路断开。
(2)分流式保护电路的工作原理:
是在输出过载时,由过载检测电路输出过载信号,控制并联在两只功放管基极之间的分流电路,使其内阻减小,分流增加,减小了大功率管输出电流,保护了功放管和扬声器。
(3)切断信号式和切断电源式保护电路的工作原理:
这二种电路与前两种方式基本相同,不同的只是用过载信号去控制输入信号控制电路或电源控制电路,切断输入信号或电源。
切断信号式只能抑制强信号输入引起的过载,对其他原因导致的过载则不具备保护能力;切断电源式这种保护方式对电路的冲击较大,因此,这两种保护电路在实际中使用得较少。
3). 保护电路实例(桥式检测切断负载式保护电路)
该电路针对OCL电路输出中点电压失调而设计,可同时保护两个声道,并且有开机延时保护功能。
L端接左声道输出,R端接右声道输出,两路信号通过R1,R2在①点混合。
R1,R2和C1,C2组成低通滤波器,VD1~VD4组成射极耦合稳态继电器驱动电路。
JR,JL是继电器的两组常闭触点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RF功放中保护控制电路的设计
现代军用、民用超短波通信电台,为了满足其通信距离远的要求,其射频功率射频功率输出大,射频功放射频功放一般工作在大电流、高功率状态,为了使功放电路安全可靠地工作,在功放电路设置了比较完善的功放保护自动控制电路,包括有高压驻波比保护,机内高温保护和低电压降功率保护电路,使发射机的射频功放级在保证安全的前提下输出大的射频功率。
1 电压驻波比功率保护电路
1.1 功用
当发射机天线出现故障时,发射机输出的射频功率不能得到有效传输,会产生很大的发射功率,严重影
响功放级的安全。
因此,发射机控制电路中设置高压驻波比保护电路,在电压驻波比高于一定值时,控制射频功率输出降低有效的保护功放电路,其电路。
1.2 电路原理
图1是电压驻波比功率保护原理电路。
其工作原理由发射机功放输出端的定向耦合器检测输出的反向功率电压,经功放稳压电源中的有关电路处理后,送至发射机控制电路XP1/12A,然后经过反向功率检测电压补偿电路,加至N20B 放大器,经过N20B加到N20A的同相输入端,当该输入端电压达到大约300mV时,(当功放输出和天线阻抗失配阻抗失配时,电压驻波比大于 2.5:1),N23A输出电压大于6.2V,使VD5稳压管和V3导通。
V3导通使VD6导通,这样就使N23B同相输入端的电平降低,N23B输出端的电压也降低,以致于加到模拟乘法器N24的Vx输入端功率直流控制电压降到某一电平,最终使射频功放输出功率降低到某一数值,射频功放得以保护。
当电压驻波比不大于2.5:1时,反向功率检测电压较小,N23A输出的电压不足以使VD5导通,因此,VD6也因为反偏而截止,在N23B同相输人端所加的只有正常的前面板设置的功率直流控制电压,模拟乘法器Vx输入端所加电压也为正常值,发射机射频功放正常输出功率。
2 机内高温功率保护
双频段电台在射频功放级和功放稳压模块都设置有温度传感器,当机内温度超过65℃时,由监控模块微机控制风机加速转动;超过80℃时,由监控微机控制发射机控制电路内高温降功率电路工作,使射频输出功率降低。
机内高温降功率电路简图。
从图2可以看出,机内高温降功率控制,实质上就是将Tx(发射机)前面板功率调整电位器RP11设置的功率直流控制电压,经R168与D10某一路(或几路)开关接通所连接的电阻(R175~178)进行分压处理,使送入模拟乘法器Vx端的电压降低,从而使射频输出功率降低。
D10(MC14066)是一片四路模拟电子开关,其控制端(A、B、C)接受监控模块微机通过发射机数据接口电路输出的二进制数据的控制。
若温度不断升高,二进制数就逐渐增大,从而使D10接通的电阻增多,射频输出功率就逐渐下降。
D端所控制的是机内高温指示电路。
当D端为高电平时(机内高温),V5导通,使VD9发光二极管指示高温。
3 低电压降功率
发射机控制电路内,设置有电源电压监测电路(在音频处理电路图上),一旦检测到电源电压降低,就使功率直流控制电压降低,从而使射频输出功率降低。
其电路简图。
从图3可见,底座稳压电源输出+3 0V(不稳压)电压,经监控模块后,送至发射机音控板模块的XP2/4A。
这个+30V电压在RP10,R110,R113上产生压降,取R113上的压降(约
1.51V),经R114加至N19B电压比较器的反相输入端(设V2);发射机音控板内+10伏(稳压)电压经 R111(18k),R112(1.8k)分压,取R112上的电压(约0.87V)加到N19B的同相输入端(设V3)。
当电源电压正常时,调整 RP10使V2>V3,则N19B输出低电平,这个电平接到D10/13(见图2),使D10/1.2脚断开,发射机正常输出射频功率;当电源电压降低时,R113上的电压也降低,使V2<V3,N19B输出高电平,这个电平使D10/1.2脚接通,将功率直流控制电压经R168和R175分压后供给模拟乘法器VX输入端,使VX降低,从而使发射机输出的射频功率降低。
图3中的电容C52是保证确认电源电压降低时,才使N19B的V2<V3。
而不稳定的电源电压波动则予以滤除。
VD1和R114是保证N19B电压比较器迅速翻转工作而设置的,R115起正反馈作用,VD1为C52的快速放电提供通道。
4 结束语
射频功放电路经过实际应用证明,该电路设计新颖,电路简单实用,对射频功放在大电流高功率状态出现射频阻抗失配、机内温度较高和电源电压降低三种情况,能够自动控制保护射频功率放大电路,增加了电台工作的可靠性和使用寿命。