数学相反数教案教学设计
1.2.2相反数教学设计2024-2025学年湘教版数学七年级上册

本节课的难点在于理解相反数的对称性和应用。具体难点包括:
(1)相反数的对称性:学生需要理解为什么每个数都有唯一的相反数,以及相反数与原数的对称性如何体现在数学运算中。
(2)相反数在乘法和除法运算中的应用:学生需要掌握如何在乘法和除法运算中正确地运用相反数,例如,如何利用相反数简化计算过程。
了解了相反数的定义和性质之后,我们来看一下它们在运算中的应用。
-在加法运算中,两个数相加,如果其中一个是负数,我们可以通过找到它的相反数,将问题转化为加法运算。
-在减法运算中,我们可以将减法问题转化为加法问题,即减去一个数等于加上它的相反数。
-在乘法运算中,两个负数相乘得到正数,而一个正数与一个负数相乘得到负数。这是因为负数是正数的相反数,它们相乘相当于正数与正数相乘。
(2)针对学生运算能力有待提高的问题,可以设计一些有针对性的练习题,加强学生的运算训练,提高学生的运算速度和准确性。
(3)针对学生学习积极性不高的问题,可以引入一些有趣的数学故事和实例,激发学生的学习兴趣,提高学生的学习积极性。
(4)可以组织一些数学竞赛和活动,鼓励学生积极参与,提高学生的学习动力和积极性。
(2)家庭作业:可以布置一些与相反数相关的家庭作业,让学生在课后巩固所学知识,例如,让学生设计一个关于相反数的数学小报。
(3)数学日记:鼓励学生写数学日记,记录自己在学习相反数过程中的所思所感,以及如何将相反数知识应用于生活。
(4)课后辅导:可以为学有余力的学生提供课后辅导,帮助他们更深入地学习相反数的相关知识,例如,介绍相反数在高等数学中的应用。
(5)可以加强与学生的交流和沟通,了解学生的学习需求和困难,提供个性化的辅导和指导,帮助学生更好地掌握相反数知识。
人教版数学七年级上册1.2.3《相反数》教学设计

人教版数学七年级上册1.2.3《相反数》教学设计一. 教材分析人教版数学七年级上册1.2.3《相反数》是学生在学习了有理数的概念之后,进一步探究有理数的性质。
相反数是数学中的一个基本概念,它有助于学生更好地理解有理数的大小比较和运算规则。
本节课的内容主要包括相反数的定义、求法以及相反数的性质。
通过学习,学生能够掌握相反数的定义,了解相反数的求法,以及熟练运用相反数进行有理数的运算。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和运算规则有了初步的认识。
但是,对于相反数这一概念,学生可能存在一定的理解难度。
因此,在教学过程中,需要教师通过生动的例子和实际操作,帮助学生理解和掌握相反数的概念。
三. 教学目标1.知识与技能:学生能够理解相反数的定义,掌握求相反数的方法,以及熟练运用相反数进行有理数的运算。
2.过程与方法:通过观察、操作、交流等活动,培养学生主动探究、合作学习的意识,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心,使学生体验到成功的喜悦。
四. 教学重难点1.教学重点:相反数的定义,求相反数的方法,以及相反数在有理数运算中的应用。
2.教学难点:相反数的性质,以及如何在实际问题中灵活运用相反数。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引导学生观察、思考,激发学生的学习兴趣。
2.合作学习法:学生进行小组讨论和交流,培养学生主动探究、合作学习的意识。
3.引导发现法:教师引导学生发现问题、解决问题,培养学生的分析问题和解决问题的能力。
六. 教学准备1.教具准备:黑板、粉笔、多媒体设备等。
2.学具准备:练习本、笔等。
3.教学素材:与相反数相关的实例和问题。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入相反数的概念,如:“一个人往东走了5步,他的相反方向就是往西走5步。
”让学生思考并回答:什么是相反数?怎样求一个数的相反数?2.呈现(10分钟)教师通过PPT展示相反数的定义和求法,以及相反数在有理数运算中的应用。
【教案】人教版七上教学设计-相反数

1.2.3 相反数教学内容课本第10页至第11页.教学目标1.知识与技能(1)借助数轴了解相反数的概念,知道两个互为相反数的位置关系.(2)给出一个数,能求出它的相反数.2.过程与方法借助数轴,通过观察特例,总结出相反数的概念.从数和形两个侧面理解相反数.3.情感态度与价值观鼓励学生积极进行归纳、比较交流等活动.重、难点与关键1.重点:理解相反数的意义,会求一个数的相反数.2.难点:理解和掌握双重符合的简化.3.关键:通过观察特例,以及互为相反数的两个数在数轴上的位置,•理解相反数.教学过程:一、预习作业点评二、5分钟知识点梳理1.只有____不同的两个数叫做互为相反数.2.除0外的两个相反数在数轴上位于原点的____侧,且到原点的距离____.3.相反数的求法:在任意一个数的前面添上“____”号,所得的数就是原数的相反数.4.把多重符号化成单一的符号由“-”的个数决定,若“-”的个数为偶数个,化简结果为____;若“-”的个数为奇数个,化简结果为____.三、相反数的概念及性质课堂小测(10分钟)1.-2的相反数是____;2.0的相反数是____.3.若x=-2.2,则-x=____.3.若-m=-11,则m=____.4.-5的相反数是()A.-5B.5C . 51- D.514.在数轴上表示互为相反数的两个点相距10个单位,则这两个数表示为( )A.6和-4B.5和-5C.10和-10D.2.5和-2.55.A,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )6.下列各式中,化简正确的是 ( )A.-(-7)=-7B.-(+7)=-7C.+(-7)=7D.-[+(-7)]=-77.-(-2 022)的相反数是 ____8.化简:(1)-(-2)=____;(2)+(+5)=____;(3)+(-3)=____;(4)-(+4)=____;(5)-[-(-9)]=____;(6)+[-(-2)]=____.9.若x 的相反数为它本身,则x= 010.x-y 是 y-x 或 -x+y 的相反数.归纳:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,那么称这两个点关于原点对称,如下图:-a a-2四、课堂小结本节课我们学习了相反数的概念、相反数的求法和双重符号的简化.理解相反数的意义,相反数总是一正一反成对出现(零除外),从数轴上看,表示互为相反数的两个点,分别在原点的两边,且到原点距离相等.要表示一个数的相反数,只要在这个数前面添“-”号,-a表示a的相反数,当a是正数时,-a表示一个负数;当a是负数时,则-a表示正数.此外我们还应该注意相反数和倒数的区别.五、作业布置1.本子作业:P14页第4题2.《顶尖》P8-9。
《相反数》教学设计

《相反数》教学设计教学目标:1.知识目标:学生掌握相反数的基本概念和性质,了解相反数的应用领域。
2.能力目标:培养学生对数的运算性质的理解和运用能力。
3.情感目标:培养学生合作学习和积极思考的习惯。
教学重点:1.相反数的基本概念和性质。
2.相反数的计算和应用。
教学难点:1.相反数的概念和性质的理解和运用。
教学准备:1.教师准备:多媒体课件,白板,黑板,书本相关资料。
2.学生准备:纸和笔。
教学过程:Step 1 引入新知识(10分钟)教师通过提问的方式引入新的知识,如:你们知道什么是相反数吗?相反数有什么特点?教师带领学生讨论相反数的定义和特点,引导学生认识到两个数互相取反就是相反数,并指出相反数在数轴上的位置。
Step 2 相反数的计算(20分钟)教师通过多种计算方式向学生介绍相反数的计算方法。
1.教师示范:2的相反数是-2,-2的相反数是22.学生练习:自主完成以下计算题目:a)5的相反数是多少?b)-10的相反数是多少?c)一个数的相反数与这个数的和是多少?d)两个互为相反数的数的和是多少?Step 3 相反数的性质(20分钟)教师通过讲解和例题的方式向学生介绍相反数的性质。
1.相反数和为0。
2.相反数的积为-13.相反数的和等于原数与0的差。
Step 4 相反数的应用(20分钟)教师向学生介绍相反数在实际问题中的应用。
1.教师示范:一个地点距离一些起点5公里,另一个地点距离起点7公里,两地点之间的距离是多少?2.学生练习:自主完成以下应用题目:a)一对相反数的和是-10,这对数分别是多少?b)一个温度计的指针指示-5度,过了一小时指示了多少度?c)在负数轴上点A、B的坐标分别是-3和5,求A、B的距离。
Step 5复习与总结(10分钟)教师与学生一起复习和总结相反数的概念、性质和应用。
教学延伸:教师可以通过为学生布置作业来巩固所学内容,如编写更多的应用题目来提高学生对相反数的运用能力。
教学反思:通过本节课的教学,学生能够掌握相反数的基本概念和性质,并能够应用相反数解决实际问题。
人教版数学七年级上册1.2.3《相反数》教学设计

"同学们,你们在生活中遇到过相反的现象吗?比如,温度有零上和零下,方向有东和西。那么,在数学中,是否存在这样的相反关系呢?今天我们将要学习一个新的概念——相反数。"
2.提问方式引入:教师提出关于正负数的问题,让学生回顾小学学过的相关知识,为新课的学习做好铺垫。
4.探究拓展题:鼓励学有余力的学生挑战更高难度的题目,提升他们的数学思维。
"对于学有余力的同学,我给你们推荐一道拓展题:如果a和b互为相反数,那么a^2和b^2有什么关系?请你们自行探究并证明。"
5.反思总结:要求学生在课后对今天的学习内容进行反思,总结自己在学习相反数过程中的收获和不足。
"请每位同学在课后写一段关于今天学习相反数的心得体会,包括你学到了什么,有哪些疑惑,及如何解决这些疑惑。"
4.培养学生勇于面对挑战,克服困难的意志品质,增强学生的自信心。
二、学情分析
针对七年级学生,他们在小学阶段已经接触过正负数的基本概念,具备了一定的数感和符号意识。在此基础上,学生对相反数的概念有了初步的认识,但对于相反数的性质和运算规律掌握不够深入。因此,在本章节的教学中,教师需要关注以下几点:
1.学生对相反数定义的理解程度,帮助他们从直观层面上升到抽象层面,理解相反数的本质。
4.能够运用相反数的知识解决实际问题,提高数学运算能力和逻辑思维能力。
(二)过程与方法
1.自主探究:引导学生自主发现相反数的定义和性质,通过实际操作和举例,让学生理解相反数的概念。
2.合作交流:鼓励学生在小组内或班级范围内进行讨论,分享彼此的发现和心得,培养学生合作学习的意识。
人教版七年级上数学《 相反数》教案

《相反数》教案一、教学目标(一)知识与技能借助数轴,理解相反数的概念,知道一对相反数所表示的量与它的表示符号的关系,进一步认识数轴,会用数轴上的点表示一对相反数。
(二)过程与方法通过观察、思考、探索等学习活动,经历认识相反数的过程,培养观察、比较、抽象能力以及自主学习能力。
(三)情感态度和价值观在认识相反数的过程中,感受到数学与生活的密切联系,体验到数学学习的乐趣。
二、目标分析本节课的教学目标是通过在数轴上表示相反数的位置,理解相反数的概念,会用数轴表示一对相反数。
同时,通过自主探索和合作交流,体验到数学学习的乐趣和数学与生活的密切联系。
三、教学重难点(一)教学重点理解相反数的概念,会用数轴上的点表示一对相反数。
(二)教学难点正确理解相反数的概念,知道一对相反数所表示的量与它的表示符号的关系。
四、教具准备直尺、圆规、数轴模型。
五、教学过程设计(一)导入新课,揭示课题1.让学生回答上一节课的复习题:什么叫做有理数?请举出一些有理数的例子。
2.导入新课。
生活中的许多事物都是成对出现的,如左右手、正反面等,而在数学中也有这样的一对对出现的事物,如正数和负数。
今天我们将学习一种新的数学概念——相反数(板书课题)。
设计意图:通过复习上一节课的内容,为引入新的概念做准备。
同时,通过类比生活中的成对出现的事物,引出数学中也有这样的一对对出现的事物,从而导入新课。
(二)探究新知,掌握概念1.认识相反数的概念。
(1)出示一些有理数(正数、0、负数),让学生观察并思考:这些有理数有什么特点?它们的符号和绝对值有什么关系?学生经过观察和思考后发现:正数和负数是符号不同而绝对值相等的两个数;0是符号和绝对值都是0的数。
(2)出示相反数的概念。
当两个数只有符号不同时,我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
特别地,0的相反数是0。
引导学生理解相反数的概念,明确互为相反数的两个数在数轴上的位置关系。
教师可以借助多媒体演示或实物模型帮助学生理解。
1.2.3相反数教学设计2024-2025学年人教版数学七年级上册

5. 培养团队合作和沟通能力:在小组讨论和实验操作的过程中,学生能够学会与他人合作,并能够有效地表达和交流自己的观点和想法。
6. 增强自我学习能力和解决问题的能力:通过自主学习和实践活动,学生能够培养自我学习能力,并能够独立思考和解决数学问题。
(3)学生对于相反数在实际问题中的应用。学生需要通过实际问题来理解相反数的作用和意义,需要教师通过例题和练习来引导学生。
四、教学资源
1. 软硬件资源:
- 教室内的投影仪和屏幕,用于展示PPT和板书;
- 白板和粉笔,用于板书和解释概念;
- 计算器,用于示范计算。
2. 课程平台:
- 学校的学习管理系统(LMS),用于发布学习资料和作业。
c. 相反数相加等于零,即a + (-a) = 0。
2. 教学难点
本节课的难点在于理解相反数的性质,特别是性质c。具体难点包括:
(1)学生对于“相反数”这个概念的理解。虽然学生已经学习过负数,但相反数的概念仍有其特殊性,需要通过具体的例题和练习来帮助学生理解。
(2)学生对于相反数性质c的理解。学生可能会对“相反数相加等于零”这一性质感到困惑,需要通过大量的练习和解释来帮助学生理解。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相反数的基本概念。相反数是指数值相等,但符号相反的两个数。例如,2和-2是一对相反数。相反数在数学中有着重要的作用,它们在运算中可以帮助我们简化计算过程。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相反数在实际中的应用,以及它如何帮助我们解决问题。例如,如果你有5个苹果,然后又给了别人5个苹果,你实际上是没有苹果的,这里的正负数就是相反数的应用。
1.2 第2课时 相反数 教学设计 2022—2023学年沪科版数学七年级上册

1.2 第2课时相反数教学设计一、教学目标1.理解相反数的概念,掌握相反数的性质。
2.能够根据给定的数,找到它的相反数。
3.能够计算带有正负号的数的相加、相减运算。
二、教学重点1.相反数的概念。
2.相反数的性质及运算法则。
三、教学难点1.解决实际问题时如何应用相反数的概念和性质。
四、教学过程1. 导入与引入通过老师提问导入相反数的概念:•什么是相反数?•相反数有什么特点?•如何判断两个数是否为相反数?让学生思考并给出答案。
2. 引入示例举例:小明每天骑自行车去学校,上坡时骑的辛苦,下坡时觉得轻松。
我们如何用数学的方法描述这种情况?•提问:上坡和下坡的数值关系?•引导学生:上坡可以用正数表示,下坡可以用负数表示。
那么,上坡和下坡时的数之间有什么关系呢?•引导学生尝试回答:上坡和下坡时的数是相反数。
3. 相反数的性质•提问:如果一个数加上它的相反数,得到的结果是什么?•引导学生思考:如果一个正数加上一个负数,它们的和是什么?如果一个负数加上一个正数,它们的和是什么?•提示学生:正数和负数的和等于0。
•引导学生总结:正数加上它的相反数等于0,负数加上它的相反数也等于0。
4. 找相反数•提问:如何找一个数的相反数?•引导学生:写出一个正数,如5。
我们怎样才能得到它的相反数?应该在这个数前加上一个什么符号?•引导学生总结:一个正数的相反数是在它前面加上负号。
一个负数的相反数是在它前面加上正号。
示例:给定一个数,让学生写出它的相反数。
5. 相反数的运算•提问:如果把两个相反数相加,结果是多少?•引导学生思考:如果一个数字加上它的相反数,结果是0。
那么两个相反数相加的结果应该是什么?•引导学生总结:两个相反数相加的结果等于0。
示例:让学生进行相反数的相加和相减的计算练习。
6. 实际问题的应用展示一个实际生活中的问题,通过应用相反数的概念解决问题。
示例:小明获得100元奖金,他花掉了其中的80元。
我们应该如何用数学的方法描述这个情况?•提问:小明花掉了多少钱?•引导学生思考:花掉的钱可以用负数表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学相反数教案教学设计
Teaching design of mathematics opposite number teaching pla n
数学相反数教案教学设计
前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
相反数
1、2.3 相反数
★ 目标预设
一、知识与能力
借助数轴理解相反数概念,知道互为相反数的一对数在数轴上位置关系。
会求一个有理数的相反数。
二、过程与方法
经历从实际中抽出数学模型,从数形结合两个侧面理解
问题,并能选择处理数学信息,做出大胆猜测。
三、情感态度与价值观
使学生能积极参与数学学习活动,对数学有好奇心和求
知欲。
★ 重点与难点
重点理解相反数的意义,理解相反数的代数意义与几何意义的一致性。
难点多重符号的化简。
★ 教学准备
多媒体教学平台
★ 教学过程
一、创设情景,谈话导入
1、画一个数轴,并在画的数轴上找出表示+5、-5、+3 、
-3 、1 、-1 各数的点来,并要标上字母。
(独立思考,发现新知)
2、观察上题中的+5、-5、+3 、-3 、1 、-1 ,发现这三对数有什么特点?
(小组讨论,代表发言,学生点评)
3、观察上题中的+5、-5、+3 、-3 、1 、-1 ,发现这三对数在数轴上的对应点的位置有什么特点?
(小组讨论,代表发言,学生点评)
二、精讲点拨,质疑问难
给出相反数定义
1、由以上几个问题,得出:像这样,只有符号不同的两个数,我们说它们互为相反数。
(相反数的代数意义)
2、也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为相反数。
(这个概念很重要,它帮助我们直观地看出相反数的意义,所以有的书上称它为相反数的几何意义)
3、特别地,0的相反数仍是0。
这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。
三、课堂活动,强化训练
例1、①分别写出9与-7的相反数。
②指出-2.4与各是什么数的相反数。
例 1由学生自己完成。
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的相反数如何表示?引导学生观察例1,自己得出结
论:数a的相反数是-a,即在一个数前面加上一个负号即是它的相反数。
1、当a=7时,-a=-7,7的相反数是-7;
2、当a=-5时,-a=-(-5),读作-5的相反数,-5的相反数是5,因此,-(-5)=5
3、当a=0时,-a=-0,0的.相反数是0,因此,-0=0
观察2,-a=-(-5)表示-5的相反数,那么-(-8 ),-(+4),-(- )各表示什么意思?引导学生回答:
-(-8)表示-8的相反数,-(+4)表示+4的相反数,-(- )表示- 的相反数
例
2、简化-(+3),-(-4),+(-6 ),+(+5)的符号。
能自己总结出简化符号的规律吗?
(小组讨论,积极探索,教师及时点评)
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号外的符号与括号内的符号异号,则简化符号后的数是负数;
课堂练习:
1、填空:
①+1.3的相反数是 ;
②-3的相反数是 ;
③ 的相反数是-1.7;
④ 的相反数是。
⑤-(+
4)是的相反数;⑥-(-7)是的相反数。
2、简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5)
3、下列两对数中,哪些是相等的数?哪对互为相反数? -(-8)与+(-8);-(+8)与+(-8)。
四、延伸拓展,巩固内化
例3、化简:
(1)-{-[―(-5)]},
(2)-{ - }
例4、若:a
(用连接)
(小组讨论,积极探索,教师及时点评)
思考 1、数轴上与原点的距离是2的点有个,这些点表示的数是,它们互为。
2、数轴上表示相反数的两个点的原点有什么关系?
(独立思考,发现新知,得出结论)
3、下列判断正确的是()
A、符号不同的两个数是互为相反数
B、相反数是不相等的两个数
C、互为相反数的两个数相加的和为零
D、一个数相反数一定是负数
练习:1、点C(-4.5)与原点之间的距离是。
2、点A
(3)与点C(-4.5)之间的距离是。
3、=- 1,求a 的相反数
4、m+1 的相反数为,m-1的相反数为。
5、已知:a+b=0,b+c=0,c+ d=0,d+f=0 ,探究a、 b、
c、d四个数中,哪些互为相反数?哪些数相等?
五、布置作业 P13,P17:3及《当堂反馈》
★教后反思
-------- Designed By JinTai College ---------。