最新半导体材料测试与分析培训资料

合集下载

半导体材料(复习解析)解析

半导体材料(复习解析)解析

半导体材料(复习解析)解析半导体材料复习资料0:绪论1.半导体的主要特征:(1)电阻率在10-3 ~ 109 ??cm 范围(2)电阻率的温度系数是负的(3)通常具有很高的热电势(4)具有整流效应(5)对光具有敏感性,能产生光伏效应或光电导效应2.半导体的历史:第一代:20世纪初元素半导体如硅(Si)锗(Ge);第二代:20世纪50年代化合物半导体如砷化镓(GaAs)铟磷(InP);第三代:20世纪90年代宽禁带化合物半导体氮化镓(GaN)碳化硅(SiC)氧化锌(ZnO)。

第一章:硅和锗的化学制备第一节:硅和锗的物理化学性质1.硅和锗的物理化学性质1)物理性质硅和锗分别具有银白色和灰色金属光泽,其晶体硬而脆。

二者熔体密度比固体密度大,故熔化后会发生体积收缩(锗收缩5.5%,而硅收缩大约为10%)。

硅的禁带宽度比锗大,电阻率也比锗大4个数量级,并且工作温度也比锗高,因此它可以制作高压器件。

但锗的迁移率比硅大,它可做低压大电流和高频器件。

2)化学性质(1)硅和锗在室温下可以与卤素、卤化氢作用生成相应的卤化物。

这些卤化物具有强烈的水解性,在空气中吸水而冒烟,并随着分子中Si(Ge)?H键的增多其稳定性减弱。

(2)高温下,化学活性大,与氧,水,卤族(第七族),卤化氢,碳等很多物质起反应,生成相应的化合物。

注:与酸的反应(对多数酸来说硅比锗更稳定);与碱的反应(硅比锗更容易与碱起反应)。

2.二氧化硅(SiO2)的物理化学性质物理性质:坚硬、脆性、难熔的无色固体,1600℃以上熔化为黏稠液体,冷却后呈玻璃态存在形式:晶体(石英、水晶)、无定形(硅石、石英砂) 。

化学性质:常温下,十分稳定,只与HF、强碱反应3.二氧化锗(GeO2)的物理化学性质物理性质:不溶于水的白色粉末,是以酸性为主的两性氧化物。

两种晶型:正方晶系金红石型,熔点1086℃;六方晶系石英型,熔点为1116℃化学性质:不跟水反应,可溶于浓盐酸生成四氯化锗,也可溶于强碱溶液,生成锗酸盐。

半导体材料的基本特性参数培训资料

半导体材料的基本特性参数培训资料

▪ 强电场作用下的载流子散射
弱电场下,μ为常数; 强电场下,μ随电场增加而减小 强电场下载流子漂移速度偏离弱场规律, 主要有两种表现:
速度饱和效应 负微分迁移率现象
▪ 迁移率与外场的关系
μμ 0[1212
13(μ 0 E)2]1/2
8u
μ 0 为电子与晶格处于热平衡时的迁移率,μ为热
电子的迁移率,u为格波传播的速度,
τ W
2 b
B
2 DP
载流子迁移率大小的影响因素
▪ 散射对载流子的迁移率具有重要影响
主要的散射机构有:晶格振动散射、电离 杂质散射、载流子之间的散射等体材料中 载流子散射以及表面散射
▪ 晶格振动的散射
用电子和声子相互作用来描述。 在轻参杂时,占主导地位。 载流子被晶格散射过程,可以是吸收或发射 声学声子,也可以是吸收或发射光学声子。
▪ 负微分迁移效应
由于电子的不等价能谷间转移形成的。热电子 有主能谷跃迁到能量较高的自能谷,子能谷的迁 移率较低,如果迁移电子数量较多,平均的漂移 速度会降低。
▪ 表面散射及表面迁移率
表面散射:各种与表面相关联的因素对载流子迁移 率的附加影响;
越靠近表面,影响越大,对电子影响大于空穴;
第二节 载流子密度和电阻率
0
V



NC
2
2
m nkT h3
3/2
T 3/2
N V 2
2 m pkT
h3
3/2
T 3/2
m

n
m

p








简并半导体的载流子密度统计
n0 2NCF1/2EFKTEC

半导体基础知识PPT培训课件

半导体基础知识PPT培训课件
半导体基础知识ppt培 训课件
目录
• 半导体简介 • 半导体材料 • 半导体器件 • 半导体制造工艺 • 半导体技术发展趋势 • 案例分析
半导体简介
01
半导体的定义
总结词
半导体的定义
详细描述
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材 料有硅、锗等。
半导体的特性
总结词
化合物半导体具有宽的禁带宽度和高 的电子迁移率等特点,使得化合物半 导体在光电子器件和高速电子器件等 领域具有广泛的应用。
掺杂半导体
掺杂半导体是在纯净的半导体中掺入其他元素,改变其导电 性能的半导体。
掺杂半导体的导电性能可以通过掺入不同类型和浓度的杂质 来调控,从而实现电子和空穴的平衡,是制造晶体管、集成 电路等电子器件的重要材料。
掺杂的目的是形成PN结、调控载流 子浓度等,从而影响器件的电学性能。
掺杂和退火的均匀性和控制精度对器 件性能至关重要,直接影响最终产品 的质量和可靠性。
半导体技术发展趋势
05
新型半导体材料
硅基半导体材料
宽禁带半导体材料
作为传统的半导体材料,硅基半导体 在集成电路、微电子等领域应用广泛。 随着技术的不断发展,硅基半导体的 性能也在不断提升。
半导体制造工艺
04
晶圆制备
晶圆制备是半导体制造的第一步,其目的是获得具有特定晶体结构和纯度的单晶硅 片。
制备过程包括多晶硅的提纯、熔炼、长晶、切磨、抛光等步骤,最终得到可用于后 续工艺的晶圆。
晶圆的质量和表面光洁度对后续工艺的成败至关重要,因此制备过程中需严格控制 工艺参数和材料质量。
薄膜沉积
输入 标题
详细描述
集成电路的制作过程涉及微电子技术,通过一系列的 工艺步骤,将晶体管、电阻、电容等电子元件集成在 一块硅片上,形成复杂的电路。

半导体材料的培训概要

半导体材料的培训概要

半导体材料的培训概要导语:随着信息技术的发展,半导体材料在电子设备制造中扮演着重要的角色。

为了提升半导体材料的应用技术、培养专业人才,开展半导体材料培训十分必要。

本文将对半导体材料培训的概要进行讨论,包括培训目标、课程设置、培训方法以及培训评估等方面的内容。

一、培训目标1.深入理解半导体材料的基本概念和原理;2.掌握半导体材料的制备方法和工艺;3.熟悉半导体材料的物理、光学和电学性质;4.熟练使用半导体材料的测试与表征设备;5.能够应用半导体材料解决实际工程问题。

二、课程设置1.半导体材料基础知识:介绍半导体材料的基本概念、结构和特性;2.半导体材料制备技术:介绍半导体材料的制备方法(如薄膜沉积、离子注入等);3.半导体材料测试与表征:介绍半导体材料的测试与表征方法(如光电子显微镜、X射线衍射等);4.新型半导体材料与应用:介绍当前研究领域的新型半导体材料及其应用领域(如碳纳米管、钙钛矿材料等);5.实践案例分析:通过实际案例分析,让学员将所学知识应用于解决实际问题。

三、培训方法1.理论授课:通过讲座、研讨会等形式,向学员传授半导体材料的相关理论知识;2.实验操作:设置实验室环节,让学员亲自操作半导体材料的制备、测试与表征等器材,提升他们的实践能力;3.病例分析:结合实际案例,引导学员分析解决问题的思路和方法,培养学员解决实际问题的能力;4.小组讨论:组织小组讨论,让学员互相交流、分享经验和想法,提高学员之间的互动和合作能力。

四、培训评估为确保培训效果,应对学员进行培训评估。

评估方式包括以下几个方面:1.知识测试:通过笔试、实验报告等方式,对学员的知识掌握情况进行评估;2.实践操作评估:对学员在实验操作环节的实际操作能力进行评估;3.病例分析评估:对学员在病例分析环节的问题解决能力进行评估;4. 反馈survey:组织学员填写反馈问卷,收集对培训质量、内容和教学方法的意见和建议,以便进一步完善培训计划。

半导体测试与分析-PPT精选文档

半导体测试与分析-PPT精选文档

二探针法
用两根探针借助于电位差计量取 样品表面某两点(实际上是某两 个等位面)间的电位差U,并量出 流经样品的电流值I,即可算出 该两个等位面间的长方体的电阻 值R。精确量出探针间距L及样 品截面积S, 则样品的电阻率为

两个改进措施
1. 补偿法来测量电压,以避免探针与半导体之间 高阻接触对测量结果的影响 2. 两个端电极与被测半导体之间为欧姆接触,因 而避免了少数载流子的注入
半导体电阻率的测量与导体的电阻率测量是有区 别的
1、在金属与半导体接触的界面附近也要产生一个耗尽层。因为金属 的电子密度极高,因而这个耗尽层展宽在半导体一边。耗尽层中只有 不能自由运动的电离杂质,它们不能参与导电,因而这是一个高阻层。 同时,任何两种材料的小面积接触都会在接触处产生扩展电阻。尤其 是对金属—半导体点接触,这个扩展电阻会很大,人们常常把这两个 因接触而产生的高电阻统称为接触电阻。因此,当用欧姆表来测量半 导体时,这个巨大的接触电阻就会使结果面目全非,毫不可信。
2、功函数不同的两种金属制品在接触时也要因接触电势差而在界面
上出现一个电荷偶层,但这个空间电荷层极薄,每边只有约一个原于 层厚,远小于电子的扩散长度,因而对载流子没有阻挡作用。同时, 金属与金属的小面积接触的扩展电阻也很小。因此,上述方法对测量 金属导体的电阻率是精确的。
3、由非平衡载流子的电注入效应可以想到,如果被测半 导体是n型,那么测量电流将通过正电极向半导体注入空 穴;若被测半导体是P型则会从负电极向半导体注入电子。 这些注入的少数载流子在外电场的驱使下向另一电极漂移, 参与导电。在注入电极附近的某一范围内,载流子密度因 此而高于载流子的热平衡密度,因而测量结果不能反映材 料电阻率的真正大小。对于热平衡载流子密度较低的高阻 材料,其接触电阻更大,少子注入的影响也更加严重。

半导体材料测试与分析

半导体材料测试与分析

半导体中各种复合过程示意图(a)带间跃迁(b) 带-杂质中心辐射复合跃迁(c)施主-受主对辐射 复合跃迁
在上述辐射复合机构中,前两种 属于本征机构,后面几种则属于非本 征机构。由此可见,半导体的光致发 光过程蕴含着材料结构与组份的丰富 信息,是多种复杂物理过程的综合反 映,因而利用光致发光光谱可以获得 被研究材料的多种本质信息。
光致发光光谱PL
主要内容:
• 光致发光基本原理 • 仪器及测试 • 应用
一、光致发光的基本原理
• 1. 定义:光致发光(Photoluminescence) 指的是以光作为激励手段,激发材料中的 电子从而实现发光的过程。它是光生额外 载流子对的复合过程中伴随发生的现象。
ቤተ መጻሕፍቲ ባይዱ
• 2. 基本原理:由于半导体材料对能量高于 其吸收限的光子有很强的吸收,因此在材 料表面约1μm厚的表层内,由本征吸收产 生了大量的额外电子-空穴对,使样品处于 非平衡态。这些额外载流子对一边向体内 扩散,一边通过各种可能的复合机构复合 。其中,有的复合过程只发射声子,有的 复合过程只发射光子或既发射光子也发射 声子。
二、仪器及测试
• 测量半导体材料的光致发光光谱的基 本方法是,用紫外、可见或红外辐射 等激发光源产生能量大于被测材料的 禁带宽度Eg、且电流密度足够高的光 子流去入射被测样品,同时用光探测 器接受并识别被测样品发射出来的光 ,分析该材料的光学特性。
TRIAX550 PL谱仪
样品架
制冷仪
光致发光光谱测量装置示意图
E6 E5
E2
E0
自 由 载 流 子 复 合
束 缚 激 e-h 子 自 e-h e-A 声子参与 复 由 合 激 子 D-h 复 合
浅 能 级 与 本 征 带 间 的 载 流 子 复 合

半导体材料培训

半导体材料培训

1.2半导体材料的类别
对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、 化合物半导体和固溶半导体三大类,见表1。 在化合物阶段, 所以本书在叙述中只限于无机化合物半导体材料,简称化合物半导体材料。
例如我们看砷化镓:它是半导体,如果把Ga下面的In替换镓,就变成InAs, 也是半导体,同样,如果把As替换成P或Sb,同样也是半导体。 这种替换是垂直方向的,它服从周期表的规律,即从上往下金属性变强, 最后就不是半导体了。 也可以在周期表中进行横向置换,仍以GaAs为中心,Ga向左移变成Zn,As 向右移变成Se,ZnSe是半导体。 这些置换都要注意原子价的平衡。在垂直移动时,原子价不发生变化,但 在横向移动时,就要考虑两个元素同时平移。 同时在原子价总和不变的前提下也可以用两元素取代一个,例如ZnSe,Zn 是二价,与可以用其左右的Cu与Ga取代,即CuGaSe2也是半导体材料。这样 可以导出三元化合物半导体。 另外可用莫塞(Mooser)-皮尔狲(Pearson) 法则来进行推算,此法能预 测大多数化合物是否具有半导体性质,但对某些化合物,如金属的硼化物的 判断就不够准确。
BC 硼碳
Si P S 硅磷硫 Ge As Se 锗砷硒 Sn Sb Te I 锡锑碲碘
图1.1元素半导体在周期表中的位置
在磷的同素异形体中,只有黑磷具有半导体性质,由于制备黑磷及其单晶的难 度较大,未获工业应用。 砷的同素异形体之一的灰砷具有半导体性质,但由于制备单晶困难,且其迁移 率较低,故未获应用。 锑的同素异形体之一的黑锑具有半导体性质,但它在0oC以上不稳定,亦未获 应用。 硫的电阻率很高,属绝缘体,但它具有明显的光电导性质。硫作为半导体材料 还未获得应用。 硒的半导体性质发现得很早,现用于制作整流器、光电导器件等。 碲的半导体性质已有较多的研究,但因尚未找到n型掺杂剂等原因,未得到应 用。

半导体产品培训资料

半导体产品培训资料
可靠性问题
随着半导体产品在各个领域的广泛应用,产品的可靠性问题越来越突 出,如何提高产品的可靠性和稳定性是当前面临的重要挑战。
技术创新与突破
新材料的应用
通过研发和应用新材料,如新型半导体材料、新型绝缘材 料等,可以突破现有技术的限制,提高半导体产品的性能。
制程技术的改进
通过改进制程技术,如纳米压印技术、电子束光刻技术等, 可以提高制程精度和良品率,降低生产成本。
人工智能和云计算的发展将推动半导体市场的增长,特别是在高性 能计算、数据中心等领域。
05
半导体产品研发与技术创新
当前技术挑战
摩尔定律的极限
随着半导体工艺的不断发展,制程技术已经接近物理极限,如何突 破技术瓶颈成为当前面临的重要挑战。
高性能计算需求
随着人工智能、云计算等技术的快速发展,对高性能计算的需求越 来越高,如何提高半导体产品的计算性能是当前面临的重要挑战。
产业协同与合作
面对全球半导体市场的激烈竞争,企业间需要加强合作与协同,共同应对供应链风险,推动产业健康 发展。
人才培养与教育
随着半导体技术的不断发展,对专业人才的需求也将持续增长。未来需要加强半导体专业人才的培养 和教育,为产业发展提供有力的人才保障。
THANKS
感谢观看
生激光光束。
02
半导体产品分类
按材料分类
硅基半导体
硅是最常用的半导体材料,具有 高稳定性、低成本和成熟的制造
工艺等优点。
化合物半导体
如砷化镓、磷化铟等化合物,具有 高电子迁移率和光子吸收性能,常 用于高速电子器件和光电器件。
宽禁带半导体
如硅碳化物、氮化镓等,具有高热 导率、高击穿场强和高电子饱和速 度等特点,适用于高功率和高频率 器件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同温度下GaN的光致发光
• 随温度升高,晶 格振动增强光 谱的半峰宽度 明显地增大, 峰值波长向长 波方向移动。 光谱中的肩峰 逐渐消失。形 成一宽的谱带
• 进而通过拟合 可以得到温度 和半峰宽之和 的关系
• 光致发光可以提供有关材料的结构、成分 及环境原子排列的信息,是一种非破坏性 的、灵敏度高的分析方法。激光的应用更 使这类分析方法深入到微区、选择激发及 瞬态过程的领域,使它又进一步成为重要 的研究手段,应用到物理学、材料科学、 化学及分子生物学等领域,逐步出现新的 边缘学科。
• 从微观上讲,光致发光可以分为两个 步骤:
第一步是以光对材料进行激励, 将其中电子的能量提高到一个非平衡 态,也就是所谓的“激发态”;
第二步,处于激发态的电子自发 地向低能态跃迁,同时发射光子,实 现发光。
• 光致发光:通过光 照射使系统跃迁到 E6 激发态,再通过非 E5 平衡辐射发光
• 基本原理:设系统 的能级结果如图所 E2 示,E0是基态, E1-E6是激发态, 受到激发后,系统 从低能级被激发到 高能级,再从高能 E0 级跃迁到低能级, 其中,E2 到E1或 E0有可能发光
半导体材料测试与分析
主要内容:
• 光致发光基本原理 • 仪器及测试 • 应用
一、光致发光的基本原理
• 1. 定义:光致发光(Photoluminescence) 指的是以光作为激励手段,激发材料中的 电子从而实现发光的过程。它是光生额外 载流子对的复合过程中伴随发生的现象。
• 2. 基本原理:由于半导体材料对能量高于 其吸收限的光子有很强的吸收,因此在材 料表面约1μm厚的表层内,由本征吸收产 生了大量的额外电子-空穴对,使样品处于 非平衡态。这些额外载流子对一边向体内 扩散,一边通过各种可能的复合机构复合 。其中,有的复合过程只发射声子,有的 复合过程只发射光子或既发射光子也发射 声子。
A对应自由激子谱区,其峰值能 量为3.57eV,大于体GaN材料的带隙 能量,说明GaN和衬底间大的失配( 晶格失配为13.8,热失配为25.5)虽 经过渡层仍未将其压缩应力完全消 除。13.8meV的半峰宽是谱峰交叠 的结果。无法确定自由激子从导带 到三个不同价带跃迁的精细结构。
B和C对应于束缚激子区。B对 应于束缚于N空位相关的中心施主 [Dº、x],C对应束缚于深受主的[ Aºd、x],其峰值能量分别为 3.476eV和3.467eV。其半峰宽分别 为10.8meV和15.6meV。
• 光致发光光谱(Photoluminescence,简称 PL),指物质吸收光子(或电磁波)后重新 辐射出光子(或电磁波)的过程。从量子 力学理论上,这一过程可以描述为物质吸 收光子跃迁到较高能级的激发态后返回低 能态,同时放出光子的过程。光致发光是 多种形式的荧光(Fluorescence)中的一 种。
TRIAX550 PL谱仪
样品架
制冷仪
光致发光光谱测量装置示意图
测试步骤:
1. 放置样品(晶片,粉体,薄膜) 2. 抽真空 3. 降温 4. 激光器使用 5. 光谱仪自检 6. 校准 7. 样品发光光谱测量 8. 变温测量 9. 变功率测量 10.关机
三、PL谱的应用
• 由于PL谱与晶体的电子结构(能带结 构)、缺陷状态、和杂质等密切相关 ,因此,光致发光被广泛用来研究半 导体晶体的物理特性。
• 光致发光光谱的测试以其简单、可靠 ,测试过程中对样品无损伤等优点而 得到广泛的应用。
PL可以应用于:
(1)带隙检测、(2)缺陷检测、(3)复合机 制以及材料品质鉴定、(4)对少子寿命的研究、 (5)测定半导体固溶体的组分、(6)测定半导体 中浅杂质的浓度、(7)半导体中杂质补偿度的测 定、(8)对半导体理论问题的研究等。
应用领域举例:
LED外延片,太阳能电池材料,半导体晶 片,半导体薄膜材料等检测与研究。
在IIK温度下,用很弱的激光激发GaN所测量 光致发光的光谱图示如。通过高斯型分峰拟 合得到A、B、C、D四个谱峰。
用MOCVD技术在Al2O3衬底上外延GaN的光致发光研究 中国科学院长春物理研究所 高瑛、缪国庆等人
谢谢!
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好! 谢谢!
在上述辐射复合机构中,前两种 属于本征机构,后面几种则属于非本 征机构。由此可见,半导体的光致发 光过程蕴含着材料结构与组份的丰富 信息,是多种复杂物理过程的综合反 映,因而利用光致发光光谱可以获得 被研究材料的多种本质信息。
二、仪器及测试
• 测量半导体材料的光致发光光谱的基 本方法是,用紫外、可见或红外辐射 等激发光源产生能量大于被测材料的 禁带宽度Eg、且电流密度足够高的光 子流去入射被测样品,同时用光探测 器接受并识别被测样品发射出来的光 ,分析该材料的光学特性。



自 由 载 流
e-h 自 e-h 由 声子参与
激 子 复 e-A 合Fra bibliotek能 级 与 本 征 带
子激 复子
间 的 载
合复 合
D-h 流



施 主 e-D+ 受 主 对 符 合
(a)
(b)
电 子 空 穴 对 通 过 深
D-A 能
级 的 复 合
(c)
半导体中各种复合过程示意图(a)带间跃迁(b) 带-杂质中心辐射复合跃迁(c)施主-受主对辐射 复合跃迁
D是氧杂质作用于替位受主的 结果,峰值能量为3.419eV,半峰宽 度为500meV。由于深能级与晶格间 较强的耦合会使光谱宽度明显增加 。这与氧产生峰值能量在3.414 ~ 3.422eV光谱的结果一致,B-C确定 了NH3中的氧和离子注入的氧所形 成光谱的峰值能量为 3.424eV(4.2K)。这些数据证实了 在样品中存在着氧的影响。
相关文档
最新文档