小学奥数知识点汇总基础知识点

合集下载

小学奥数所有知识点总结

小学奥数所有知识点总结

1-6 年级奥数所有知识点总结一、鸡兔同笼①:壮壮数他家的鸡和兔,有头共 16 个,有脚共 44 只。

问:壮壮家的鸡和兔共有多少只?二、火车问题②两列火车同向而行,甲火车的速度是 20 米/秒,乙火车的速度是25米/秒,已知甲车车身长 250米,乙车车身长 200 米,从乙车车头追上甲车车尾到乙车车尾离开甲车车头需要多少时间?③两辆火车相向而行,甲火车的速度是 20 米/秒,乙火车的速度是25米/秒,已知甲车长 250米,乙车长200 米,从两车车头到两车车尾离开,需要多少时间?三、流水问题(即流水行船问题)④一条船行驶在甲、乙两地之间,顺流速度为 42km/h,逆流速度为30km/h,求水流的速度?船在静水中的速度?四、植树问题⑤一个圆形池塘,它的周长是 150 米,每隔3米种一棵树,共需要树苗多少株?五、列车过桥问题⑥一列火车长 150 米,每秒钟行 19 米。

全车通过长 800 米的大桥,需要多少时间?六、剪绳问题⑦一根绳子对折 10次,用剪刀从中间剪了1刀,问:此绳子剪成了多少段?七、年龄问题⑧妈妈说:我在你这个年龄时,你才 2 岁;你到我这个年龄时我就77岁了。

问:现在女儿几岁了?八、盈亏问题⑨小朋友分包子,每人分9个要少8个,每人分7个要多6 个,一共有几人?九、和、差、倍问题⑩小明和妈妈年龄之和为 40 岁,妈妈的年龄是小明的3 倍,问小明多少岁?十、方阵问题11 .运动会开幕式上,三一班的同学排成一个实心方阵入场,最外层每边有 6人,三一班有多少个同学?十一、握手问题12 .6个人,每2人握一次手,一共要握多少次?十二、等差数列13.求自然数中所有三位数的和?一、鸡兔同笼公式:鸡数=(兔脚数X总头数-总脚数)(兔脚数-鸡脚数)兔数= (总脚数-鸡脚数X总头数)(兔脚数鸡脚数)①解:依据公式: 有兔=(44-2X16) (4-2)=12÷2=6 (只)有鸡=16-6=10 (只)答:壮壮家有兔6只有鸡10只二、火车问题基本数量关系:火车速度X时间=车长+桥长1、超车问题(同向运动、追击问题)路程差=车身长的和超车时间 =车身长的和速度差2、错车问题(反向运动、相遇问题)路程和=车身长的和错车时间=车身长的和速度和3、过人(将人看成是车身长度是0的火车)②解题思路:此类问题相当于追击问题,利用公式得(250+200)六(25-20)=90(秒)答:需要90秒。

小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点一、奥数概述小学奥数全称小学数学奥林匹克竞赛,是指面向小学生的一项数学竞赛活动。

通过奥数的学习和参与,可以提高学生的数学思维能力、逻辑推理能力、问题解决能力和创新思维。

二、奥数知识点汇总1. 数学基础知识a. 数的读写:正整数、负整数和小数的读写方法。

b. 分数与小数的换算:将分数转化为小数、将小数转化为分数。

c. 数轴:理解数轴上数的相对位置,掌握数轴上正数、负数和零的位置表示。

d. 数的比较大小:通过数的大小比较符号(>、<、=)来比较大小。

e. 数的倍数与因数:了解倍数与因数的概念,能够判断一个数是另一个数的倍数或因数。

f. 素数与合数:理解素数与合数的定义,能够判断一个数是素数还是合数。

2. 算术运算a. 四则运算:掌握加、减、乘、除四则运算的基本规则,能够进行简单的算术运算。

b. 多位数的加减法:掌握多位数的加减法运算方法,能够灵活运用。

c. 分数的运算:学会分数的加减乘除运算,能够进行分数的化简和比较。

d. 百分数的运算:掌握百分数的加减乘除运算,能够解决与百分数相关的问题。

3. 几何知识a. 图形的分类与性质:了解图形的基本分类(三角形、四边形、圆等),掌握各类图形的性质。

b. 直角、钝角与锐角:理解直角、钝角和锐角的概念,能够判断角的大小。

c. 周长与面积:掌握求图形周长和面积的方法,能够计算各类图形的周长和面积。

d. 空间几何:了解三维图形的基本概念,如长方体、立方体等,并能够计算它们的体积和表面积。

4. 数列与推理a. 数列的概念:理解数列的定义,能够判断数列的规律。

b. 算术数列:了解算术数列的特点,能够求解算术数列的通项公式和前n项和。

c. 几何数列:认识几何数列的特点,能够求解几何数列的通项公式和前n项和。

d. 推理与归纳:培养推理和归纳的能力,能够根据已知条件进行推理和推算。

5. 逻辑推理与证明a. 推理方法:学会使用归纳法、逆否命题、反证法等推理方法。

34个小学奥数核心知识点

34个小学奥数核心知识点

34个小学奥数必掌握知识点1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数棵数=段数-1棵距×段棵数=段数棵距×段数=总长=总长数=总长关键确定所属类型,从而确定棵数与段数的关系问题5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点在小学阶段,奥数作为一门拓展性的学科,能够帮助孩子们培养逻辑思维和解决问题的能力。

下面为大家汇总一些基础的小学奥数知识点。

一、数的认识1、整数整数包括正整数、零和负整数。

需要掌握整数的读法、写法、大小比较以及四则运算。

2、自然数自然数是用以计量事物的件数或表示事物次序的数,即用数码 0,1,2,3,4……所表示的数。

3、奇数和偶数奇数指不能被 2 整除的整数,数学表达形式为:2k+1,奇数可以分为正奇数和负奇数。

偶数是能够被 2 所整除的整数。

若某数是 2 的倍数,它就是偶数,可表示为 2k。

4、质数与合数质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。

二、数的运算1、四则运算加法、减法、乘法和除法统称四则运算。

在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。

算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算原则。

2、运算定律加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c三、图形的认识1、平面图形(1)三角形三角形具有稳定性。

三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形;按边分,可以分为等边三角形、等腰三角形和不等边三角形。

(2)四边形四边形包括平行四边形、长方形、正方形、梯形等。

平行四边形两组对边分别平行且相等。

长方形对边平行且相等,四个角都是直角。

小学奥数的27个知识点

小学奥数的27个知识点

小学奥数的27个知识点1. 倍问题(和差问题和倍问题差倍问题)已知条件:几个数的和与差;几个数的和与倍数;几个数的差与倍数①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数③和÷(倍数+1)=小数小数×倍数=大数和-小数=大数④差÷(倍数-1)=小数小数×倍数=大数小数+差=大数2.年龄问题的三个基本特征①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题(基本类型)①在直线或者不封闭的曲线上植树,两端都植树。

公式:棵数=段数+1②在直线或者不封闭的曲线上植树,两端都不植树公式:棵距×段数=总长棵数=段数-1③在直线或者不封闭的曲线上植树,只有一端植树公式:棵距×段数=总长棵数=段数解题关键:确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题(基本思路:用假设的办法求解)①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)6.盈亏问题(基本题型)①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学奥数最全知识点汇总

小学奥数最全知识点汇总

小学奥数的知识点汇总1、年龄问题的三大特征年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。

年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。

例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍?⑴ 父子年龄的差是多少?54 – 18 = 36(岁)⑵ 几年前父亲年龄比儿子年龄大几倍?7 - 1 = 6⑶ 几年前儿子多少岁?36÷6 = 6(岁)⑷ 几年前父亲年龄是儿子年龄的7倍?18 – 6 = 12 (年)答:12年前父亲的年龄是儿子年龄的7倍。

2、归一问题特点归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。

这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。

有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。

由上所述,解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。

3、植树问题总结植树问题基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式:棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系4、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.抽屉原理 410.定义新运算11.数列求和12.加法乘法原理和几何计数13.质数与合数 614.约数与倍数15.数的整除716.余数及其应用17.余数、同余与周期18.分数与百分数的应用819.分数大小的比较920.分数拆分21.完全平方数22.比和比例1023.综合行程24.工程问题25.逻辑推理1126.几何面积27.立体图形28.时钟问题—快慢表问题1229.时钟问题—钟面追及30.浓度与配比31.经济问题1332.经济问题33.循环小数142①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)6.盈亏问题.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学奥数知识点(30个)

小学奥数知识点(30个)

小学奥数知识点(30个)1、和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式:①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的: 和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数知识点汇总(基础知识点)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中, 垂线段最短7 平行公理经过直线外一点, 有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行, 这两条直线也互相平行9 同位角相等, 两直线平行10 内错角相等, 两直线平行11 同旁内角互补, 两直线平行12两直线平行,同位角相等13 两直线平行, 内错角相等14 两直线平行, 同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全23 角边角公理( ASA) 有两角和它们的夹边对应相等的两个三角形全24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点, 在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等( 即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等, 并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等, 那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中, 如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点, 在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称, 那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称, 如果它们的对应线段或延长线相交, 那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分, 那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b 的平方和、等于斜边c 的平方,即a A2+b A2=c A247 勾股定理的逆定理如果三角形的三边长a、b、c 有关系aA2+bA2=cA2 , 那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)X 180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直, 并且每一条对角线平分一组对角66菱形面积二对角线乘积的一半,即S= (a x b)宁267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角, 四条边都相等70 正方形性质定理2 正方形的两条对角线相等, 并且互相垂直平分, 每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形, 对称点连线都经过对称中心, 并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点, 并且被这一点平分, 那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等, 那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线, 必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线, 必平分第三边81 三角形中位线定理三角形的中位线平行于第三边, 并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底, 并且等于两底和的一半L= (a+b) + 2 S=L X h83 (1) 比例的基本性质如果a:b=c:d, 那么ad=bc如果ad=bc, 那么a:b=c:d84 (2)合比性质如果a/b二c/d,那么(a 士b) /b=(c 士d)/d85 (3)等比性质如果a/b=c/d=—=m/n(b+d+ …+n^ 0),那么(a+c+ …+m)/ (b+d+…+n)二a / b86 平行线分线段成比例定理三条平行线截两条直线, 所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线), 所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例, 那么这条直线平行于三角形的第三边89 平行于三角形的一边, 并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交, 所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等, 两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例, 两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比, 对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值, 任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值, 任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹, 是以定点为圆心, 定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹, 是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹, 是这个角的平分线108到两条平行线距离相等的点的轨迹, 是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

110 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心, 并且平分弦所对的两条弧③平分弦所对的一条弧的直径, 垂直平分弦, 并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114 定理在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等, 所对的弦的弦心距相等115 推论在同圆或等圆中, 如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中, 相等的圆周角所对的弧也相等118 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119 推论3 如果三角形一边上的中线等于这边的一半, 那么这个三角形是直角三角形120定理圆的内接四边形的对角互补, 并且任何一个外角都等于它的内对角121①直线L和O O相交d v r②直线L和O O相切d=r③直线L和O O相离d >r122 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理圆的切线垂直于经过切点的半径124 推论1 经过圆心且垂直于切线的直线必经过切点125 推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线, 它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等, 那么这两个弦切角也相等130相交弦定理圆内的两条相交弦, 被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交, 那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线, 切线长是这点到割线与圆交点的两条线段长的比例中项133 推论从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切, 那么切点一定在连心线上135①两圆外离d > R+r②两圆外切d=R+r③两圆相交R-r v d v R+r(R>r)④两圆内切d=R-r(R >r)⑤两圆内含d v R-r(R >r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n > 3): ⑴依次连结各分点所得的多边形是这个圆的内接正n 边形⑵经过各分点作圆的切线, 以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形138定理任何正多边形都有一个外接圆和一个内切圆, 这两个圆是同心圆139正n边形的每个内角都等于(n-2) X 180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141 正n 边形的面积Sn=pnrn/2 p 表示正n 边形的周长142正三角形面积"3a/4 a表示边长143 如果在一个顶点周围有k 个正n 边形的角,由于这些角的和应为360° ,因此k x (n-2)180 ° / n=360°化为(n-2) (k-2)=4144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R A2/ 360=LR/2146 内公切线长= d-(R-r) 外公切线长= d-(R+r)。

相关文档
最新文档