安徽省亳州市2019-2020学年中考中招适应性测试卷数学试题(4)含解析
2019-2020学年安徽省亳州市中考数学达标测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.1652.下列图形中,阴影部分面积最大的是A.B.C. D.3.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=4.如图,已知O的周长等于6cmπ,则它的内接正六边形ABCDEF的面积是()A.934B.34C.32D.35.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.46.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45︒B.50︒C.60︒D.75︒8.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤23-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)10.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.15二、填空题(本题包括8个小题)11.若一个多边形的内角和是900º,则这个多边形是边形.12.如果关于x的方程2x2x m0-+=(m为常数)有两个相等实数根,那么m=______.13.12019的相反数是_____.14.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.15.写出一个一次函数,使它的图象经过第一、三、四象限:______.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数等级餐厅五星四星三星二星一星合计甲 538 210 96 129 27 1000 乙 460 187 154 169 30 1000 丙4863888113321000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.18.如图,这是一幅长为3m ,宽为1m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m 1.三、解答题(本题包括8个小题)19.(6分)如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.20.(6分)如图,在ABC 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O 交BC 于点G ,交AB 于点F ,FB 恰为O 的直径.求证:AE 与O 相切;当14cos 3BC C ==,时,求O 的半径.21.(6分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .试判断DE 与⊙O 的位置关系,并说明理由;过点D 作DF ⊥AB 于点F ,若3DF=3,求图中阴影部分的面积.22.(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是;搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.23.(8分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.24.(10分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?25.(10分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.26.(12分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=35时,求AF的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】 【分析】连接AM ,根据等腰三角形三线合一的性质得到AM ⊥BC ,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN 的长. 【详解】 解:连接AM ,∵AB=AC ,点M 为BC 中点, ∴AM ⊥CM (三线合一),BM=CM , ∵AB=AC=5,BC=6, ∴BM=CM=3,在Rt △ABM 中,AB=5,BM=3, ∴根据勾股定理得:AM= 22AB BM -=2253-=4,又S △AMC =12MN•AC=12AM•MC , ∴MN=·AM CM AC=125. 故选A . 【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边. 2.C 【解析】 【分析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可: 【详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C . 3.A 【解析】 【分析】根据应用题的题目条件建立方程即可. 【详解】 解:由题可得:1(1)472x x -=⨯ 即:1(1)282x x -= 故答案是:A. 【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.4.C【解析】【分析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12 AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH=33cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×33=273(cm2).故选C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.5.B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.6.C【解析】【分析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y=308x=240x,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.7.C【解析】【分析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用. 8.C 【解析】 【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误; ②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴-2ba=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0), ∴a-b+c=3a+c=0, ∴a=-3c. 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点), ∴2≤c≤3, ∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ), ∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),∴抛物线y=ax2+bx+c与直线y=n只有一个交点,又∵a<0,∴抛物线开口向下,∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.9.D【解析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=1 3.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.10.D【解析】【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为=210=15.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.二、填空题(本题包括8个小题)11.七【解析】【分析】根据多边形的内角和公式()2180n-⋅︒,列式求解即可.【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,解得7n=.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键. 12.1【解析】析:本题需先根据已知条件列出关于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为113.1 2019 -【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】 12019的相反数是−12019. 故答案为−12019. 【点睛】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.14.3 【解析】【分析】利用特殊三角形的三边关系,求出AM,AE 长,求比值.【详解】解:如图所示,设BC=x ,∵在Rt △ABC 中,∠B=90°,∠A=30°,∴AC=2BC=2x ,AB=3BC=3x ,根据题意得:AD=BC=x ,AE=DE=AB=3x ,如图,作EM ⊥AD 于M ,则AM=12AD=12x , 在Rt △AEM 中,cos ∠EAD=3263XAM AE x==, 故答案为:3 6.【点睛】特殊三角形: 30°-60°-90°特殊三角形,三边比例是13:2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.15.y=x ﹣1 (答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).16.2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.17.丙【解析】【分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【点睛】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.18.1.4【解析】【分析】由概率估计图案在整副画中所占比例,再求出图案的面积.【详解】估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.故答案为1.4【点睛】本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例. 三、解答题(本题包括8个小题)19.可以求出A、B之间的距离为111.6米.【解析】【分析】根据OD OEOB OA=,AOB EOD∠=∠(对顶角相等),即可判定AOB EOD∽,根据相似三角形的性质得到13DE OEAB OA==,即可求解.【详解】解:∵OD OE OB OA =,AOB EOD ∠=∠(对顶角相等), ∴AOB EOD ∽, ∴13DE OE AB OA ==, ∴37.213AB =, 解得111.6AB =米.所以,可以求出A 、B 之间的距离为111.6米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.20. (1)证明见解析;(2)32. 【解析】【分析】(1)连接OM ,证明OM ∥BE ,再结合等腰三角形的性质说明AE ⊥BE ,进而证明OM ⊥AE ;(2)结合已知求出AB ,再证明△AOM ∽△ABE ,利用相似三角形的性质计算.【详解】(1)连接OM ,则OM=OB ,∴∠1=∠2,∵BM 平分∠ABC ,∴∠1=∠3,∴∠2=∠3,∴OM ∥BC ,∴∠AMO=∠AEB ,在△ABC 中,AB=AC ,AE 是角平分线,∴AE ⊥BC ,∴∠AEB=90°,∴∠AMO=90°,∴OM ⊥AE ,∵点M 在圆O 上,∴AE 与⊙O 相切;(2)在△ABC 中,AB=AC ,AE 是角平分线, ∴BE=12BC ,∠ABC=∠C , ∵BC=4,cosC=13∴BE=2,cos ∠ABC=13, 在△ABE 中,∠AEB=90°, ∴AB=cos BE ABC∠=6, 设⊙O 的半径为r ,则AO=6-r ,∵OM ∥BC ,∴△AOM ∽△ABE , ∴∴OM AO BE AB=, ∴626r r -=, 解得32r =, ∴O 的半径为32. 【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.21.(1)DE 与⊙O 相切,理由见解析;(2)阴影部分的面积为2π﹣332. 【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案; (2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE 与⊙O 相切,理由:连接DO ,∵DO=BO ,∴∠ODB=∠OBD ,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD=∠DBO ,∴∠EBD=∠BDO ,∴DO ∥BE ,∵DE ⊥BC ,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB ,∴DE=DF=3,∵3,∴223+33(), ∵sin ∠DBF=31=62, ∴∠DBA=30°,∴∠DOF=60°,∴sin60°=332DF DO DO ==, ∴3,则3 260(23)1333322ππ⨯=-. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.22.(1)23;(2)49【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率. 【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是2 3 .(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是4 9 .【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.23.(1)50,30%;(2)不能,理由见解析;(3)P=2 3【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可. 【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P=812=23.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.24.(1)20%;(2)能.【解析】【分析】(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.25.(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.【解析】【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【详解】(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.26.(1)见解析(2)5 4【解析】【分析】(1)连接OE,BE,因为DE=EF,所以DE=FE,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55OE rOA r==-从而可求出r的值.【详解】解:(1)连接OE,BE,∵DE=EF,∴DE=FE∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=35,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55 OE rOA r==-∴15,8r=∴15552.84 AF=-⨯=【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°2.已知二次函数y =ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a ﹣b+c >1;③abc >0;④4a ﹣2b+c <0;⑤c ﹣a >1,其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤3.如图,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )A .一直增大B .一直减小C .先减小后增大D .先增大后减小4.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或105.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定6.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.158.如图,⊙O 是等边△ABC 的外接圆,其半径为3,图中阴影部分的面积是()A.πB.32πC.2πD.3π9.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,2C.1,1,3D.1,2,310.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.5B.5C.5 D.6二、填空题(本题包括8个小题)11.如图,点G是ABC的重心,AG的延长线交BC于点D,过点G作GE//BC交AC于点E,如果BC6=,那么线段GE的长为______.12.如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=42cm,则EF+CF的长为cm.13.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.14.计算:|-3|-1=__.15.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)16.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.17.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.三、解答题(本题包括8个小题)19.(6分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=nx(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=32.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(6分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?21.(6分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.22.(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.23.(8分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
安徽省亳州市2019-2020学年中考数学四模试卷含解析

安徽省亳州市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm,设金色纸边的宽为xcm,那么x满足的方程是()A.213014000x x+-=B.2653500x x+-=C.213014000x x--=D.2653500x x--=2.若数a使关于x的不等式组() 3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.23.不等式2x﹣1<1的解集在数轴上表示正确的是()A.B.C.D.4.欧几里得的《原本》记载,形如22x ax b+=的方程的图解法是:画Rt ABC∆,使90ACB∠=o,2aBC=,AC b=,再在斜边AB上截取2aBD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长5.如图,已知函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+3x>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>06.下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩8.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()A.B.C.D.9.(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A .B .C .D .10.若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥B .M N ≤C .M N >D .M N <11.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .1912.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+14=c+dD .a+d =b+c二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若一组数据1,2,3,x 的平均数是2,则x 的值为______.14.如图,△ABC 中,AB=AC ,以AC 为斜边作Rt △ADC ,使∠ADC=90°,∠CAD=∠CAB=26°,E 、F 分别是BC 、AC 的中点,则∠EDF 等于__________°.15.如图,AB ∥CD ,点E 是CD 上一点,∠AEC =40°,EF 平分∠AED 交AB 于点F ,则∠AFE =___度.16.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____. 17.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm )整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm ﹣175cm 之间的人数约有_____人.18.已知,则=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.20.(6分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.(1)求抛物线的解析式;(2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;②当k= 时,点F是线段AB的中点;(3)如图2,M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.21.(6分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣3|+(3)﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.(1)求被覆盖的这个数是多少?(2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.22.(8分)先化简,再求值:221121()1a aa a a a-+-÷++,其中a=3+1.23.(8分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,已知M(22,22),N(22,﹣22),在A(1,0),B(1,1),C2,0)三点中,是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N(32,﹣12),点D是线段MN关于点O的关联点.①∠MDN的大小为;②在第一象限内有一点E3,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线y=﹣33x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.24.(10分)“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.25.(10分)如图,直线y=2x+6与反比例函数y=kx(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?26.(12分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.27.(12分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知A B C D,,,分别为“果圆”与坐标轴的交点,直线334y x=-与“果圆”中的抛物线234y x bx c=++交于B C、两点(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被y轴截得的线段BD的长;(2)如图,E为直线BC下方“果圆”上一点,连接AE AB BE、、,设AE与BC交于F,BEF△的面积记为BEFSV,ABFV的面积即为ABFS△,求ABFBEFSSVV的最小值(3)“果圆”上是否存在点P,使APC CAB∠=∠,如果存在,直接写出点P坐标,如果不存在,请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B 【解析】 【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程. 【详解】由题意,设金色纸边的宽为xcm , 得出方程:(80+2x )(50+2x )=5400, 整理后得:2653500x x +-= 故选:B. 【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键. 2.D 【解析】 【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可. 【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3, 即-2<a≤4,即a=-1,0,1,2,3,4, 分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个, 故选:D . 【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 3.D 【解析】 【分析】先求出不等式的解集,再在数轴上表示出来即可. 【详解】移项得,2x <1+1, 合并同类项得,2x <2, x 的系数化为1得,x <1. 在数轴上表示为:.故选D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键. 4.B 【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.【解答】用求根公式求得:22221244b a a b a ax x -+-+-==∵90,2aC BC AC b ∠=︒==,, ∴224a ABb =+,∴2222442a a b a aAD b +-=+=AD 的长就是方程的正根. 故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键. 5.C 【解析】 【分析】首先求出P 点坐标,进而利用函数图象得出不等式ax 2+bx+3x>1的解集. 【详解】 ∵函数y=﹣3x与函数y=ax 2+bx 的交点P 的纵坐标为1, ∴1=﹣3x, 解得:x=﹣3, ∴P (﹣3,1), 故不等式ax 2+bx+3x>1的解集是:x <﹣3或x >1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.6.D【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.8.B【解析】【分析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B.9.D【解析】解:如图取CD 的中点F ,连接BF 延长BF 交AD 的延长线于G ,作FH ⊥AB 于H ,EK ⊥AB 于K .作BT ⊥AD 于T .∵BC ∥AG ,∴∠BCF=∠FDG ,∵∠BFC=∠DFG ,FC=DF ,∴△BCF ≌△GDF ,∴BC=DG ,BF=FG ,∵AB=BC+AD ,AG=AD+DG=AD+BC ,∴AB=AG ,∵BF=FG ,∴BF ⊥BG ,∠ABF=∠G=∠CBF ,∵FH ⊥BA ,FC ⊥BC ,∴FH=FC ,易证△FBC ≌△FBH ,△FAH ≌△FAD ,∴BC=BH ,AD=AB ,由题意AD=DC=4,设BC=TD=BH=x ,在Rt △ABT 中,∵AB 2=BT 2+AT 2,∴(x+4)2=42+(4﹣x )2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y ,DE=z ,∵AE 2=AK 2+EK 2=AD 2+DE 2,BE 2=BK 2+KE 2=BC 2+EC 2,∴42+z 2=y 2①,(5﹣y )2+y 2=12+(4﹣z )2②,由①②可得y=,∴S △ABE =×5×=,故选D .点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题. 10.C 【解析】∵223824M x N x x =+=+,,∴222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∴M N >. 故选C. 11.A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.12.A【解析】【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据这组数据的平均数是1和平均数的计算公式列式计算即可. 【详解】∵数据1,1,3,x 的平均数是1, ∴12324x+++=,解得:2x =. 故答案为:1. 【点睛】本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键. 14.51 【解析】Q E 、F 分别是BC 、AC 的中点.12EF AB ∴P ,Q ∠CAB=26°26EFC ∴∠=︒又90ADC ∠=︒Q12DF AC AF ∴== Q ∠CAD =26°52CFD ∴∠=︒ 78EFD ∴∠=︒ AB AC =QEF FD ∴=18078512EDF ︒-︒∴∠==︒! 15.70°. 【解析】 【分析】由平角求出∠AED 的度数,由角平分线得出∠DEF 的度数,再由平行线的性质即可求出∠AFE 的度数. 【详解】 ∵∠AEC =40°,∴∠AED =180°﹣∠AEC =140°,∵EF平分∠AED,∴1702DEF AED∠=∠=︒,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案为:70【点睛】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.16.1 3【解析】【分析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【详解】解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为39=13.故答案为:13.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.17.1【解析】【分析】用总人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例.【详解】估计该校男生的身高在170cm-175cm之间的人数约为300×1261016126++++=1(人),故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.3【解析】【分析】依据可设a=3k,b=2k,代入化简即可.【详解】∵,∴可设a=3k,b=2k,∴=3故答案为3.【点睛】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)作图见解析;(2)3;(3)7 12【解析】【分析】(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;(3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.【详解】解:(1)该班团员人数为:3÷25%=12(人),发了4条赠言的人数为:12−2−2−3−1=4(人),将条形统计图补充完整如下:(2)该班团员所发赠言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案为:3;(3)∵发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,∴发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,方法一:列表得:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;方法二:画树状图如下:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP A n=. 20.(1)2114y x =+;(2)①见解析;②3±(3)存在点B ,使△MBF 的周长最小.△MBF 周长的最小值为11,直线l 的解析式为5212y x =+. 【解析】 【分析】(1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.(2)①由于BC ∥y 轴,容易看出∠OFC =∠BCF ,想证明∠BFC =∠OFC ,可转化为求证∠BFC =∠BCF ,根据“等边对等角”,也就是求证BC =BF ,可作BD ⊥y 轴于点D ,设B (m ,2114m +),通过勾股定理用m 表示出BF 的长度,与BC 相等,即可证明.②用m 表示出点A 的坐标,运用勾股定理表示出AF 的长度,令AF BF =,解关于m 的一元二次方程即可.(3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M 作MN ⊥x 轴于点N ,交抛物线于点B 1,过点B 作BE ⊥x 轴于点E ,连接B 1F ,通过第(2)问的结论将△MBF 的边BF 转化为BE ,可以发现,当B 点运动到1B 位置时,△MBF 周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点M 与F 的坐标求出MF 的长度,再加上MN 即是△MBF 周长的最小值;将点M 的横坐标代入二次函数求出1B ,再联立1B 与F 的坐标求出l 的解析式即可. 【详解】(1)解:将点(-2,2)和(4,5)分别代入2y ax c =+,得:42165a c a c +=⎧⎨+=⎩解得: 141a c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为:2114y x =+. (2)①证明:过点B 作BD ⊥y 轴于点D , 设B (m ,2114m +), ∵BC ⊥x 轴,BD ⊥y 轴,F (0,2)∴BC =2114m +, BD =|m|,DF =2114m - 222211(1)144BF m m m =+-=+∴BC =BF ∴∠BFC =∠BCF又BC ∥y 轴,∴∠OFC =∠BCF ∴∠BFC =∠OFC ∴FC 平分∠BFO . ②33±(说明:写一个给1分)(3)存在点B ,使△MBF 的周长最小.过点M 作MN ⊥x 轴于点N ,交抛物线于点B 1,过点B 作BE ⊥x 轴于点E ,连接B 1F 由(2)知B 1F =B 1N ,BF =BE∴△MB 1F 的周长=MF+MB 1+B 1F =MF+MB 1+B 1N =MF+MN △MBF 的周长=MF+MB+BF =MF+MB+BE 根据垂线段最短可知:MN <MB+BE ∴当点B 在点B 1处时,△MBF 的周长最小 ∵M (3,6),F (0,2)∴223(62)5MF =+-=,MN =6 ∴△MBF 周长的最小值=MF+MN =5+6=11 将x =3代入2114y x =+,得:∴B 1(3,134) 将F (0,2)和B 1(3,134)代入y=kx+b ,得:13342k b b ⎧+=⎪⎨⎪=⎩, 解得:5122k b ⎧=⎪⎨⎪=⎩∴此时直线l 的解析式为:5212y x =+. 【点睛】本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅助线,进行适当的转化是解答关键. 21.(1)3;(2)α=75°. 【解析】 【分析】(1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案; (2)直接利用特殊角的三角函数值计算得出答案. 【详解】解:(1)原式=33﹣□+1=1, ∴□=33﹣1=3; (2)∵α为三角形一内角, ∴0°<α<180°,∴﹣15°<(α﹣15)°<165°, ∵2tan (α﹣15)°=3∴α﹣15°=60°, ∴α=75°. 【点睛】此题主要考查了实数运算,正确化简各数是解题关键. 22.13【解析】 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值. 【详解】原式=()()()211·11a a a a a a a ++-+- =()211a -,当时,原式=13. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.23.(1)C ;(2)①60;②E 1);③点F 的横坐标x F 【解析】 【分析】(1)由题意线段MN 关于点O 的关联点的是以线段MN C 满足条件;(2)①如图3-1中,作NH ⊥x 轴于H .求出∠MON 的大小即可解决问题;②如图3-2中,结论:△MNE 是等边三角形.由∠MON+∠MEN=180°,推出M 、O 、N 、E 四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;③如图3-3中,由②可知,△MNE 是等边三角形,作△MNE 的外接圆⊙O′,首先证明点E 在直线上,设直线交⊙O′于E 、F ,可得F (,32),观察图形即可解决问题; 【详解】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,22为半径的圆上,所以点C满足条件,故答案为C.(2)①如图3-1中,作NH⊥x轴于H.∵N(32,-12),∴tan∠NOH=33,∴∠NOH=30°,∠MON=90°+30°=120°,∵点D是线段MN关于点O的关联点,∴∠MDN+∠MON=180°,∴∠MDN=60°.故答案为60°.②如图3-2中,结论:△MNE是等边三角形.理由:作EK⊥x轴于K.∵E3,1),∴tan∠EOK=33,∴∠EOK=30°,∵∠MON+∠MEN=180°,∴M、O、N、E四点共圆,∴∠MNE=∠MOE=60°,∵∠MEN=60°,∴∠MEN=∠MNE=∠NME=60°,∴△MNE是等边三角形.③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,易知E31),∴点E在直线y=-33x+2上,设直线交⊙O′于E、F,可得F(32,32),观察图象可知满足条件的点F的横坐标x的取值范围32≤x F3.【点睛】此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.24.(1) 3.4棵、3棵;(2)1.【解析】【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】解:(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是1223312485461 3.430⨯+⨯+⨯+⨯+⨯+⨯=(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有73007030⨯=户, 故答案为:1.【点睛】 此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.25.(1)m =8,反比例函数的表达式为y =8x;(2)当n =3时,△BMN 的面积最大. 【解析】【分析】(1)求出点A 的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)∵直线y=2x+6经过点A (1,m ),∴m=2×1+6=8,∴A (1,8),∵反比例函数经过点A (1,8),∴8=1k , ∴k=8,∴反比例函数的解析式为y=8x. (2)由题意,点M ,N 的坐标为M (8n ,n ),N (62n -,n ), ∵0<n <6, ∴62n -<0, ∴S △BMN =1×(|6n -|+|8|)×n=1×(﹣6n -+8)×n=﹣1(n ﹣3)2+25,26.(1)CH=AB .;(2)成立,证明见解析;(3)32+3【解析】【分析】(1)首先根据全等三角形判定的方法,判断出△ABF ≌△CBE ,即可判断出∠1=∠2;然后根据EH ⊥BF ,∠BCE=90°,可得C 、H 两点都在以BE 为直径的圆上,判断出∠4=∠HBC ,即可判断出CH=BC ,最后根据AB=BC ,判断出CH=AB 即可.(2)首先根据全等三角形判定的方法,判断出△ABF ≌△CBE ,即可判断出∠1=∠2;然后根据EH ⊥BF ,∠BCE=90°,可得C 、H 两点都在以BE 为直径的圆上,判断出∠4=∠HBC ,即可判断出CH=BC ,最后根据AB=BC ,判断出CH=AB 即可.(3)首先根据三角形三边的关系,可得CK <AC+AK ,据此判断出当C 、A 、K 三点共线时,CK 的长最大;然后根据全等三角形判定的方法,判断出△DFK ≌△DEH ,即可判断出DK=DH ,再根据全等三角形判定的方法,判断出△DAK ≌△DCH ,即可判断出AK=CH=AB ;最后根据CK=AC+AK=AC+AB ,求出线段CK 长的最大值是多少即可.【详解】解:(1)如图1,连接BE ,,在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°,∵点E 是DC 的中点,DE=EC ,∴点F 是AD 的中点,∴AF=FD ,∴EC=AF ,在△ABF 和△CBE 中,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△CBE ,∴∠1=∠2,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC ,∴CH=BC ,又∵AB=BC ,∴CH=AB .(2)当点E 在DC 边上且不是DC 的中点时,(1)中的结论CH=AB 仍然成立.如图2,连接BE ,,在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°,∵AD=CD ,DE=DF ,∴AF=CE ,在△ABF 和△CBE 中,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△CBE ,∴∠1=∠2,∵EH ⊥BF ,∠BCE=90°,∴C 、H 两点都在以BE 为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC ,∴CH=BC ,又∵AB=BC ,∴CH=AB .,∵CK≤AC+AK ,∴当C 、A 、K 三点共线时,CK 的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE ,∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH ,在△DFK 和△DEH 中,KDF HDE DF DEDFK DEH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DFK ≌△DEH ,∴DK=DH ,在△DAK 和△DCH 中,DA DC KDA HDC DK DH =⎧⎪∠=∠⎨⎪=⎩∴△DAK ≌△DCH ,∴AK=CH又∵CH=AB ,∴AK=CH=AB ,∵AB=3,∴AK=3,2,∴CK=AC+AK=AC+AB=323,即线段CK 长的最大值是323.27. (1)239344y x x =--;6;(2)ABF BEFS S V V 有最小值54;(3)103P -(,),23P -(3,). 【解析】【分析】 (1)先求出点B ,C 坐标,利用待定系数法求出抛物线解析式,进而求出点A 坐标,即可求出半圆的直径,再构造直角三角形求出点D 的坐标即可求出BD ;(2)先判断出要求ABF BEFS S V V 的最小值,只要CG 最大即可,再求出直线EG 解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG 解析式,即可求出CG ,结论得证.(3)求出线段AC ,BC 进而判断出满足条件的一个点P 和点B 重合,再利用抛物线的对称性求出另一个点P .【详解】解:(1) 对于直线y=34x-3,令x=0, ∴y=-3,∴B (0,-3),令y=0, ∴34x-3=0, ∴x=4,∴C (4,0),∵抛物线y=34x 2+bx+c 过B ,C 两点, ∴3164043b c c ⎧⨯++⎪⎨⎪-⎩== ∴943b c ⎧-⎪⎨⎪-⎩=,=∴抛物线的解析式为y=239344x x --; 令y=0, ∴239344x x --=0, ∴x=4或x=-1,∴A (-1,0),如图2,记半圆的圆心为O',连接O'D,∴O'A=O'D=O'C=1 2AC=52,∴OO'=OC-O'C=4-52=32,在Rt△O'OD中,OD=22O D OO'-'=2,∴D(0,2),∴BD=2-(-3)=5;(2) 如图3,∵A(-1,0),C(4,0),∴AC=5,过点E作EG∥BC交x轴于G,∵△ABF的AF边上的高和△BEF的EF边的高相等,设高为h,∴S△ABF=12AF•h,S△BEF=12EF•h,∴ABFBEFSSVV=1•21•2AF hEF h=AFEF∵ABFBEFSSVV的最小值,∴AFEF最小,∴AF AC 5EF CG CG == ∴5CG最小,即:CG 最大, ∴EG 和果圆的抛物线部分只有一个交点时,CG 最大,∵直线BC 的解析式为y=34x-3, 设直线EG 的解析式为y=34x+m ①, ∵抛物线的解析式为y=34x 2-94x-3②, 联立①②化简得,3x 2-12x-12-4m=0,∴△=144+4×3×(12+4m )=0,∴m=-6,∴直线EG 的解析式为y=34x-6, 令y=0,∴34x-6=0, ∴x=8,∴CG=4,∴ABF BEF S S V V =54AF AC EF CG ==; (3)103P -(,),233P -(,).理由:如图1,∵AC 是半圆的直径,∴半圆上除点A ,C 外任意一点Q ,都有∠AQC=90°,∴点P 只能在抛物线部分上,∵B (0,-3),C (4,0),∴BC=5,∵AC=5,∴∠BAC=∠ABC,当∠APC=∠CAB时,点P和点B重合,即:P(0,-3),由抛物线的对称性知,另一个点P的坐标为(3,-3),即:使∠APC=∠CAB,点P坐标为(0,-3)或(3,-3).【点睛】本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG最大时,两三角形面积之比最小是解本题的关键.。
安徽省亳州市2019-2020学年中考第四次适应性考试数学试题含解析

安徽省亳州市2019-2020学年中考第四次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数2.在下列实数中,﹣3,2,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.2D.﹣13.将1、2、3、6按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A.6B.6 C.2D.34.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙5.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高A.—7℃B.7℃C.—1℃D.1℃6.在平面直角坐标系xOy中,将点N(–1,–2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(–1,2)C.(–1,–2)D.(1,–2)7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C .D .8.下列计算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 6C .a 2+a 2=a 3D .a 6÷a 2=a 39.在实数﹣3 ,0.21,2 ,18,0.001 ,0.20202中,无理数的个数为( ) A .1B .2C .3D .4 10.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.如果将直线l 1:y =2x ﹣2平移后得到直线l 2:y =2x ,那么下列平移过程正确的是( ) A .将l 1向左平移2个单位B .将l 1向右平移2个单位C .将l 1向上平移2个单位D .将l 1向下平移2个单位12.数据4,8,4,6,3的众数和平均数分别是( )A .5,4B .8,5C .6,5D .4,5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知△ABC 中,BC=4,AB=2AC ,则△ABC 面积的最大值为_______.14.若a ,b 互为相反数,则a 2﹣b 2=_____.15.因式分解:a 2b-4ab+4b=______.16.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC 中,DB =1,BC =2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,则CD 的长为_____.17.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_____秒.18.点A (1,2),B (n ,2)都在抛物线y=x 2﹣4x+m 上,则n=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在直角坐标系中,过原点O 及点A (8,0),C (0,6)作矩形OABC 、连结OB ,点D 为OB 的中点,点E 是线段AB 上的动点,连结DE ,作DF ⊥DE ,交OA 于点F ,连结EF .已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t 秒.如图1,当t=3时,求DF 的长.如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.连结AD ,当AD 将△DEF 分成的两部分的面积之比为1:2时,求相应的t 的值.20.(6分)先化简:21111x x x ⎛⎫-÷ ⎪+-⎝⎭,再请你选择一个合适的数作为x 的值代入求值. 21.(6分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频 分组频数 频率 0.5~50.50.1 50.5~20 0.2 100.5~150.5200.530 0.3 200.5~250.5 10 0.1率分布表和频率分布直方图(如图).(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD 的面积是 ;这次调查的样本容量是 ;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.22.(8分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x﹣5),求当x=12和x=﹣12时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.23.(8分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽16cmAB ,水面最深地方的高度为4cm,求这个圆形截面的半径.24.(10分)计算:﹣(﹣2)2+|﹣3|﹣20180×32725.(10分)计算:|3-2|+2﹣1﹣cos61°﹣(1﹣2)1.26.(12分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.27.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差2.B【解析】|﹣3|=3,22,|0|=0,|2|=2,|﹣1|=1,∵3>22>1>0,∴绝对值最小的数是0,故选:B.3.B【解析】【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1,则(1,5)与(13,1)表示的两数之积是1.故选B.4.B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.B【解析】【分析】求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.【详解】3-(-4)=3+4=7℃.故选B.【分析】根据点N (–1,–2)绕点O 旋转180°,所得到的对应点与点N 关于原点中心对称求解即可.【详解】∵将点N (–1,–2)绕点O 旋转180°,∴得到的对应点与点N 关于原点中心对称,∵点N (–1,–2),∴得到的对应点的坐标是(1,2).故选A.【点睛】本题考查了旋转的性质,由旋转的性质得到的对应点与点N 关于原点中心对称是解答本题的关键. 7.B【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误;B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.8.B【解析】试题解析:A.235,a a a ⋅=故错误. B.正确.C.不是同类项,不能合并,故错误.D.624.a a a ÷=故选B.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.,0.21,2π ,18 ,0.20202中,2π,共三个. 故选C .10.A【解析】试题分析:根据y 随x 的增大而减小得:k <0,又kb >0,则b <0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A .考点:一次函数图象与系数的关系.11.C【解析】【分析】根据“上加下减”的原则求解即可.【详解】将函数y =2x ﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y =2x .故选:C .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.12.D【解析】【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5; 故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.163【解析】【分析】设AC=x,则AB=2x,根据面积公式得S △ABC ,由余弦定理求得 cosC 代入化简S △ABC ,由三角形三边关系求得443x << ,由二次函数的性质求得S △ABC 取得最大值.【详解】设AC=x,则AB=2x,根据面积公式得:c=1sin 2sin 2AC BC C x C ⋅⋅= .由余弦定理可得:2163cos 8x C x-= ,∴S △ABC 由三角形三边关系有2442x x x x+>⎧⎨+>⎩ ,解得443x <<,故当x =时, 443x <<取得最大值163, 故答案为:163. 【点睛】本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.14.1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=1,∴a 2﹣b 2=(a+b )(a ﹣b )=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.15.2(2)b a -【解析】【分析】先提公因式b ,然后再运用完全平方公式进行分解即可.【详解】a 2b ﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2,故答案为b(a﹣2)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.16.3 2【解析】【分析】设AB=x,利用△BCD∽△BAC,得BCBA=BDBC,列出方程即可解决问题.【详解】∵△BCD∽△BAC,∴BCBA=BDBC,设AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4-1=3,∵△BCD∽△BAC,∴CDAC=BDBC=12,∴CD=32.故答案为3 2【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD∽△BAC解答.17.5310-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.005=5×10-1,故答案为:5×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18.1【解析】【分析】根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值.【详解】:∵点A(1,2),B(n,2)都在抛物线y=x2-4x+m上,∴,解得或,∴点B为(1,2)或(1,2),∵点A(1,2),∴点B只能为(1,2),故n的值为1,故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)3;(2)∠DEF的大小不变,tan∠DEF=34;(3)7541或7517.【解析】【详解】(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34 DF DMDE DN==,∵∠EDF=90°,∴tan∠DEF=34 DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:8043k bk b+=⎧⎨+=⎩,解得:346kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=34(t﹣3),∴AF=4﹣MF=﹣34t+254,∵点G为EF的三等分点,∴G(3236t+,13t),代入直线AD的解析式y=﹣34x+6得:t=7517;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为7541或7517.考点:四边形综合题.20.x﹣1,1.【解析】【分析】先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可.【详解】解:原式=(1)(1)1xxxxx++⨯-=x﹣1,根据分式的意义可知,x≠0,且x≠±1,当x=2时,原式=2﹣1=1.【点睛】本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零.21.⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】【分析】(1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5;0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..【详解】解:()1填表如下:(2)长方形ABCD的面积为0.25,样本容量是100;()3提出这项建议的人数()10000.30.10.05450=⨯++=人.【点睛】本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.22.小亮说的对,理由见解析【解析】【分析】先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.【详解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,当x=12时,原式=12+7=712;当x=﹣12时,原式=12+7=712.故小亮说的对.【点睛】本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法. 23.这个圆形截面的半径为10cm.【解析】分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.解答:解:如图,OE⊥AB交AB于点D,则DE=4,AB=16,AD=8,设半径为R ,∴OD=OE-DE=R-4,由勾股定理得,OA 2=AD 2+OD 2,即R 2=82+(R-4)2,解得,R=10cm .24.﹣1【解析】【分析】根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.【详解】原式=﹣1+3﹣1×3=﹣1. 【点睛】本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.25.【解析】【分析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.【详解】解:原式=1121122--= 【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.26.内错角相等,两直线平行【解析】【分析】根据内错角相等,两直线平行即可判断.【详解】∵∠EPA=∠CAP ,∴m ∥l (内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.27.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.。
【附5套中考模拟试卷】安徽省亳州市2019-2020学年中考数学模拟试题(4)含解析

安徽省亳州市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知e →为单位向量,a r=-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r与e →方向相同 D .a r与e →方向相反2.-sin60°的倒数为( ) A .-2B .12C .-33D .-2333.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A .30,28B .26,26C .31,30D .26,22 4.若|a|=﹣a ,则a 为( ) A .a 是负数B .a 是正数C .a=0D .负数或零5.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则BDAD的值为( )A .1B .22C .2-1D .2+16.实数a b 、在数轴上的点的位置如图所示,则下列不等关系正确的是( )A .a+b>0B .a-b<0C .a b<0 D .2a >2b7.如图,在Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB′C′(点B 的对应点是点B′,点C 的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B 的大小是( )A.32°B.64°C.77°D.87°8.若,则的值为()A.﹣6 B.6 C.18 D.309.人的头发直径约为0.00007m,这个数据用科学记数法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×10510.如图,在矩形ABCD 中,AB=2a,AD=a,矩形边上一动点P 沿A→B→C→D 的路径移动.设点P 经过的路径长为x,PD2=y,则下列能大致反映y 与x 的函数关系的图象是()A.B.C.D.11.在下列交通标志中,是中心对称图形的是()A.B.C.D.12.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算(+1)(-1)的结果为_____.14.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.15.如图,点A在反比例函数y=kx(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.16.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.17.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为cm.18.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.20.(6分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.21.(6分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?22.(8分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.(1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.23.(8分)观察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的规律,写出第⑥个等式:_____;(2)模仿上面的方法,写出下面等式的左边:_____=502;(3)按照上面的规律,写出第n个等式,并证明其成立.24.(10分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.(1)求证:四边形DEBF是菱形;(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为,并在图上标出此时点P的位置.25.(10分)如图1,已知抛物线y=﹣3x2+23x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.26.(12分)解分式方程:33x-1=13-x27.(12分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC 沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由向量的方向直接判断即可.【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单. 2.D 【解析】分析:sin 602-︒=-根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:sin 602-︒=-1,⎛⎛⨯= ⎝⎭⎝⎭Q的倒数是. 故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键. 3.B . 【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B . 考点:中位数;加权平均数. 4.D 【解析】 【分析】根据绝对值的性质解答. 【详解】解:当a≤0时,|a|=-a , ∴|a|=-a 时,a 为负数或零, 故选D. 【点睛】本题考查的是绝对值的性质,①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.5.C 【解析】【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质结合S △ADE =S 四边形BCED,可得出2AD AB =,结合BD=AB ﹣AD 即可求出BD AD 的值. 【详解】∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C , ∴△ADE ∽△ABC ,∴2ADE ABC S AD AB S ⎛⎫= ⎪⎝⎭V V , ∵S △ADE =S 四边形BCED ,S △ABC =S △ADE +S 四边形BCED ,∴2AD AB =,∴1BD AB AD AD AD -===, 故选C .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.6.C 【解析】 【分析】根据点在数轴上的位置,可得a ,b 的关系,根据有理数的运算,可得答案. 【详解】解:由数轴,得b <-1,0<a <1. A 、a+b <0,故A 错误; B 、a-b >0,故B 错误; C 、ab<0,故C 符合题意; D 、a 2<1<b 2,故D 错误; 故选C . 【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b <-1,0<a <1是解题关键,又利用了有理数的运算. 7.C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A ,∴∠B=77°,故选C .考点:旋转的性质. 8.B 【解析】 试题分析:∵,即,∴原式=====﹣12+18=1.故选B .考点:整式的混合运算—化简求值;整体思想;条件求值. 9.B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00007m ,这个数据用科学记数法表示7×10﹣1. 故选:B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 10.D 【解析】解:(1)当0≤t≤2a 时,∵222PD AD AP =+,AP=x ,∴22y x a =+;(2)当2a <t≤3a 时,CP=2a+a ﹣x=3a ﹣x ,∵222PD CD CP =+,∴22(3)(2)y a x a =-+=22613x ax a -+;(3)当3a <t≤5a 时,PD=2a+a+2a ﹣x=5a ﹣x ,∵2PD =y ,∴2(5)y a x =-=2(5)x a -;综上,可得22225)2(02)613(23)((35)x a x a x a y x ax a a x a a x a -⎧+≤≤⎪=-+<≤⎨⎪<≤⎩n ,∴能大致反映y 与x 的函数关系的图象是选项D 中的图象.故选D.11.C【解析】【分析】【详解】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C12.A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集.2(1– x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】利用平方差公式进行计算即可.【详解】原式=()2﹣1=2﹣1=1,故答案为:1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.。
安徽省亳州市2019-2020学年中考四诊数学试题含解析

安徽省亳州市2019-2020学年中考四诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.52.下列图形中,是正方体表面展开图的是()A.B.C. D.3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.5.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有()A.1种B.2种C.3种D.6种6.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.147.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3)B.(-3,3)C.(2,3)D.(-4,6)8.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。
问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金10 两;2 头牛、5 只羊,值金8 两。
问:每头牛、每只羊各值金多少两?” 设每头牛值金x 两,每只羊值金y 两,则列方程组错误的是()A.5210258x yx y+=⎧⎨+=⎩B.52107718x yx y+=⎧⎨+=⎩C.7718258x yx y+=⎧⎨+=⎩D.5282510x yx y+=⎧⎨+=⎩9.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y210.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=411.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则»AB的长等于()A.πB.2πC.3πD.4π12.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是()A.∠EGD=58°B.GF=GH C.∠FHG=61°D.FG=FH二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.14.已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的侧面展开图的圆心角°.15.解不等式组11 21xx x-+-⎧⎨≥-⎩f①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.16.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为_____.17.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.18.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数2(0) y xx=<的图象于B点,交函数6(0)y xx=>的图象于C,过C作y轴和平行线交BO的延长线于D.(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?20.(6分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.21.(6分)解方程(1)x1﹣1x﹣1=0(1)(x+1)1=4(x﹣1)1.22.(8分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m ,在随机抽取1张,将卡片的数字即为n .(1)请用列表或树状图的方式把(m ,n )所有的结果表示出来. (2)求选出的(m ,n )在二、四象限的概率.23.(8分)如图,在△ABC 中,BD 平分∠ABC ,AE ⊥BD 于点O ,交BC 于点E ,AD ∥BC ,连接CD . (1)求证:AO =EO ;(2)若AE 是△ABC 的中线,则四边形AECD 是什么特殊四边形?证明你的结论.24.(10分)已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF . i )求证:△CAE ∽△CBF ; ii )若BE=1,AE=2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB EFk BC FC==时,若BE =1,AE=2,CE=3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB=∠GEF=45°时,设BE=m ,AE=n ,CE=p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)25.(10分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB 的长为4米,点D ,B ,C 在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,2 1.414≈3 1.732≈6 2.449≈)26.(12分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.27.(12分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 25 3835 45 51 48 57 49 47 53 58 49(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:范围25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人数(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:平均数中位数满分率46.8 47.5 45%得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:平均数中位数满分率45.3 49 51.2%请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.2.C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.3.D【解析】【分析】根据两直线平行,内错角相等计算即可.【详解】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.4.B【解析】【分析】根据圆锥的侧面展开图的特点作答.【详解】A选项:是长方体展开图.B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形.5.C【解析】试题分析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选C.考点:正方体相对两个面上的文字.6.B【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.7.A【解析】【分析】设反比例函数y=kx(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【详解】设反比例函数y=kx(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-6x的图象上.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8.D【解析】【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组5282510x yx y+=⎧⎨+=⎩错误,故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.9.D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;故选D.考点:反比例函数的性质.10.B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 11.B 【解析】 【分析】根据圆周角得出∠AOB =60°,进而利用弧长公式解答即可. 【详解】解:∵∠ACB =30°, ∴∠AOB =60°, ∴»AB 的长=606180π⨯=2π, 故选B . 【点睛】此题考查弧长的计算,关键是根据圆周角得出∠AOB =60°. 12.D 【解析】 【分析】根据平行线的性质以及角平分线的定义,即可得到正确的结论. 【详解】解:AB CD EFB 58∠︒Q P ,=,EGD 58=∠∴︒,故A 选项正确;FH BFG ∠Q 平分, BFH GFH ∠∠∴=, 又AB CD Q P BFH GHF ∠∠∴=, GFH GHF ∠∠∴=, GF GH =,∴故B 选项正确; BFE 58FH ∠︒Q =,平分BFG ∠,()118058612BFH ︒︒︒∴∠=-=, AB CD Q PBFH GHF 61∠∠∴︒==,故C 选项正确;FGH FHG ∠∠≠Q ,FG FH ∴≠,故D 选项错误;故选D . 【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.y =2(x+3)2+1 【解析】 【分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式. 【详解】抛物线y =2x 2平移,使顶点移到点P (﹣3,1)的位置,所得新抛物线的表达式为y =2(x+3)2+1. 故答案为:y =2(x+3)2+1 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 14.1 【解析】试题分析:根据圆锥的侧面积公式S=πrl 得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.解:∵侧面积为15πcm 2,∴圆锥侧面积公式为:S=πrl=π×3×l=15π, 解得:l=5, ∴扇形面积为15π=,解得:n=1,∴侧面展开图的圆心角是1度. 故答案为1. 考点:圆锥的计算. 15.详见解析. 【解析】 【分析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可. 【详解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣1≤x<1,故答案为:x<1、x≥﹣1、﹣1≤x<1.【点睛】本题考查了解一元一次不等式组的概念.16.1.【解析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=﹣,再由△ADO的面积为1求出k的值即可得出结论.解:如图所示,过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1.17.1.【解析】【分析】先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论.【详解】设多边形的边数为n.因为正多边形内角和为,正多边形外角和为根据题意得:解得:n=8.∴这个正多边形的每个外角则这个正多边形的每个内角是故答案为:1.【点睛】考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键. 18.1【解析】试题分析:根据题意可得圆心角的度数为:180π,则S=221802360360n rπππ⨯==1.考点:扇形的面积计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)线段AB与线段CA的长度之比为13;(2)线段AB与线段CA的长度之比为13;(3)1.【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)∵A(0,2),BC∥x轴,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴线段AB与线段CA的长度之比为13;(2)∵B是函数y=﹣2x(x<0)的一点,C是函数y=6x(x>0)的一点,∴B(﹣2a,a),C(6a,a),∴AB=2a,CA=6a,∴线段AB与线段CA的长度之比为13;(3)∵ABAC=13,∴ABBC=14,又∵OA=a,CD∥y轴,∴14 OA ABCD BC==,∴CD=4a,∴四边形AODC的面积为=12(a+4a)×6a=1.20.见解析【解析】【分析】根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一. 【详解】如图为画出的菱形:【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.21.(1)x13,x1=13(1)x1=3,x1=13.【解析】【分析】(1)配方法解;(1)因式分解法解.【详解】(1)x1﹣1x﹣1=2,x1﹣1x+1=1+1,(x﹣1)1=3,x﹣1=3±,x=13±,x1=13+,x1=1﹣3,(1)(x+1)1=4(x﹣1)1.(x+1)1﹣4(x﹣1)1=2.(x+1)1﹣[1(x﹣1)]1=2.(x+1)1﹣(1x﹣1)1=2.(x+1﹣1x+1)(x+1+1x﹣1)=2.(﹣x+3)(3x﹣1)=2.x1=3,x1=13.【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.22.(1)详见解析;(2)P=23.【解析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.试题解析:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2,4),(-1,2),(-1,﹣3),(1,4),(﹣3,2),(﹣3,-1),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3).(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3),∴所选出的m,n在第二、三四象限的概率为:P=812=23点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P()mAn=.(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.23.(1)详见解析;(2)平行四边形.【解析】【分析】(1)由“三线合一”定理即可得到结论;(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.【详解】证明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四边形,证明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四边形AECD是平行四边形.【点睛】考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.24.(1)i)证明见试题解析;ii6;(2)104;(3)222(22)p n m-=+.【解析】 【分析】(1)i )由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF ,又由于AC CEBC CF==故△CAE ∽△CBF ;ii )由AEBF=,再由△CAE ∽△CBF ,得到∠CAE=∠CBF ,进一步可得到∠EBF=1°,从而有222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,由AB EFk BC FC==,得到::1:BC AB AC k =::1:CF EF EC k =,故AC AEBC BF==BF =2222222211()k k CE EF BE BF k k++=⨯=+,代入解方程即可;(3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(2AB BC AC =+,222::1:1:(2EF FC EC =,故22222222(2(2)(2(2p EF BE BF m m n ==++=++=+,从而有222(2p n m -=+. 【详解】解:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵AC CEBC CF==,∴△CAE ∽△CBF ;ii )∵AEBF=,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,∵AB EFk BC FC==,∴::1:BC AB AC k =::1:CF EF EC k =,∴AC AEBC BF==BF =2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得k =; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(2AB BC AC =+,222::1:1:(2EF FC EC =,∴22222222(2(2)(2(2p EF BE BF m m n ==++=++=+,∴222(22)p n m -=+.【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质. 25.改善后滑板会加长1.1米. 【解析】 【分析】在Rt △ABC 中,根据AB=4米,∠ABC=45°,求出AC 的长度,然后在Rt △ADC 中,解直角三角形求AD 的长度,用AD-AB 即可求出滑板加长的长度. 【详解】解:在Rt △ABC 中,AC=AB•sin45°=4×22=22 在Rt △ADC 中,AD=2AC=2, AD-AB=24≈1.1.答:改善后滑板会加长1.1米. 【点睛】本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.26.m 的值是12.1. 【解析】 【分析】根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m 的值 【详解】 由题意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%) 解得,m 1=0(舍去),m 2=12.1,即m的值是12.1.【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值.27.(1)补充表格见解析;(2)①61;②见解析.【解析】【分析】(1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可.【详解】(1)补充表格如下:≈61,(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×20故答案为:61;②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.【点睛】本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.。
【附5套中考模拟试卷】安徽省亳州市2019-2020学年中考数学四月模拟试卷含解析

安徽省亳州市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①13EAEC=,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个B.2个C.3个D.4个2.下面计算中,正确的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a2•a5=a73.下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.4.下列四个实数中,比5小的是( )A.30-1B.27C.37-1D.17+15.如图是反比例函数kyx=(k为常数,k≠0)的图象,则一次函数y kx k=-的图象大致是()A.B.C.D.6.已知反比例函数y=8k-的图象位于第一、第三象限,则k的取值范围是()7.如图,在圆O 中,直径AB 平分弦CD 于点E ,且CD=43,连接AC ,OD,若∠A 与∠DOB 互余,则EB 的长是( )A .23B .4C .3D .28.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( ) A .205万B .420510⨯C .62.0510⨯D .72.0510⨯9.下列运算正确的是( ) A .(﹣2a )3=﹣6a 3 B .﹣3a 2•4a 3=﹣12a 5 C .﹣3a (2﹣a )=6a ﹣3a 2D .2a 3﹣a 2=2a10.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .11.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( ) A .9710-⨯B .10710-⨯C .11710-⨯D .12710-⨯12.如图,小明将一张长为20cm ,宽为15cm 的长方形纸(AE >DE )剪去了一角,量得AB =3cm ,CD =4cm ,则剪去的直角三角形的斜边长为( )A .5cmB .12cmC .16cmD .20cm二、填空题:(本大题共6个小题,每小题4分,共24分.) 1114.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A′的位置,若OB =5,tan ∠BOC =12,则点A′的坐标为_____.15.如果23a b =,那么22242a b a ab--的结果是______.16.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.17.如图,点A (m ,2),B (5,n )在函数ky x=(k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′.图中阴影部分的面积为8,则k 的值为 .18.当x=_____时,分式22x x -- 值为零.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数. (1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.果,以下是根据抽查结果绘制的统计图的一部分. 组别 正确数字x 人数 A 0≤x <8 10 B 8≤x <16 15 C 16≤x <24 25 D 24≤x <32 m E32≤x <40n根据以上信息解决下列问题:(1)在统计表中,m= ,n= ,并补全条形统计图. (2)扇形统计图中“C 组”所对应的圆心角的度数是 .(3)有三位评委老师,每位老师在E 组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E 组学生王云参加鄂州市“汉字听写”比赛的概率.21.(6分)如图,一次函数y =-x +5的图象与反比例函数y =kx(k≠0)在第一象限的图象交于A(1,n)和B 两点.求反比例函数的解析式;在第一象限内,当一次函数y =-x +5的值大于反比例函数y =kx(k≠0)的值时,写出自变量x 的取值范围.22.(8分)(1)计算:|﹣3|162sin30°+(﹣12)﹣2(2)化简:22222()x x y x y+--÷.23.(8分)如图所示,一艘轮船位于灯塔P 的北偏东60︒方向与灯塔Р的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.求此时轮船所在的B 处与灯塔Р的距离.(结果保留根号)24.(10分)(1)(a ﹣b )2﹣a (a ﹣2b )+(2a+b )(2a ﹣b )(2)(m ﹣1﹣81m +)2269m m m m-++. 25.(10分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB 的长为4米,点D ,B ,C 在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:2 1.414≈,3 1.732≈,6 2.449≈)26.(12分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。
【附5套中考模拟试卷】安徽省亳州市2019-2020学年中考第四次模拟数学试题含解析

安徽省亳州市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 2.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .83.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah .例如:三点坐标分别为A (1,2),B (﹣3,1),C (2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D (1,2)、E (﹣2,1)、F (0,t )三点的“矩面积”为18,则t 的值为( )A .﹣3或7B .﹣4或6C .﹣4或7D .﹣3或64.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°5.如图,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB ,下列各式正确的是( )A .AB DC =u u u r u u u r B .DE DC =u u u v u u u v C .AB ED =u u u v u u u v D .AD BE =u u u v u u u v6.如果y =2x -2x -,那么y x 的算术平方根是( )A .2B .3C .9D .±37.若2m ﹣n =6,则代数式m-12n+1的值为( ) A .1 B .2 C .3 D .48.如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D .9.如图,直角三角形ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为( )A .2π3B .3C .3D .2π﹣31022783-的结果是( ) A 3B .43C 53D .3 11.若分式12x -有意义...,则x 的取值范围是( ) A .2x =;B .2x ≠;C .2x >;D .2x <. 12.3--的倒数是( )A .13- B .-3 C .3 D .13二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,A 、B 是反比例函数y =(k>0)图象上的点,A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =1.则k =_______.14.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.15.因式分解:4ax2﹣4ay2=_____.16.王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_____米.17.⊙M的圆心在一次函数y=12x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.18.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.20.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.21.(6分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.22.(8分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD的边长.23.(8分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.(I)如图①,若∠F=50°,求∠BGF的大小;(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.24.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.25.(10分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.26.(12分)画出二次函数y=(x﹣1)2的图象.x≠的全体实数,如表是y与x的几组对应值.27.(12分)已知y是x的函数,自变量x的取值范围是0小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;x=时所对应的点,并写出m=.(3)在画出的函数图象上标出2(4)结合函数的图象,写出该函数的一条性质:.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y 随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化2.B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=127在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)27)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键3.C【解析】【分析】由题可知“水平底”a 的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 >2或t <1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t >2或t <1.当t >2时,t-1=6,解得t=7;当t <1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.4.B【解析】试题分析:∵AB ∥CD ,∴∠D=∠1=34°,∵DE ⊥CE ,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B .考点:平行线的性质.5.D【解析】∵AD//BC ,DE//AB ,∴四边形ABED 是平行四边形,∴AB DE =u u u v u u u v ,AD BE =u u u v u u u v,∴选项A 、C 错误,选项D 正确,选项B 错误,故选D.6.B【解析】解:由题意得:x ﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x =9,9的算术平方根是1.故选B . 7.D【解析】【分析】先对m-12n+1变形得到12(2m ﹣n )+1,再将2m ﹣n =6整体代入进行计算,即可得到答案. 【详解】 m 12-n+1 =12(2m ﹣n )+1 当2m ﹣n =6时,原式=12×6+1=3+1=4,故选:D . 【点睛】 本题考查代数式,解题的关键是掌握整体代入法.8.B【解析】【详解】由题意可知,当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时, ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式,可知选项B 正确.【点睛】考点:1.动点问题的函数图象;2.三角形的面积.9.D【解析】 分析:观察图形可知,阴影部分的面积= S 半圆ACD +S 半圆BCD -S △ABC ,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴2242-3.∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC=2211113223 222ππ⨯+⨯-⨯⨯=323 22ππ+-223π=-.故选:D.点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC是解答本题的关键.10.C【解析】【分析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.【详解】原式32·633433=533.故选C.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算. 11.B【解析】【分析】分式的分母不为零,即x-2≠1.【详解】∵分式12x-有意义...,∴x-2≠1,∴2x ≠.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.A【解析】【分析】 先求出33--=-,再求倒数.【详解】 因为33--=- 所以3--的倒数是13-故选A【点睛】考核知识点:绝对值,相反数,倒数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】解:分别过点A 、B 作x 轴的垂线,垂足分别为D 、E .则AD ∥BE ,AD=2BE=k a, ∴B 、E 分别是AC 、DC 的中点.∴△ADC ∽△BEC ,∵BE :AD=1:2,∴EC :CD=1:2,∴EC=DE=a ,∴OC=3a ,又∵A (a ,k a ),B (2a ,2k a), ∴S △AOC=12AD×CO=12×3a×k a =32k =1, 解得:k=2.14.90°或30°.【解析】【分析】。
安徽省亳州市2019-2020学年中考第四次质量检测数学试题含解析

安徽省亳州市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若一次函数y =(2m ﹣3)x ﹣1+m 的图象不经过第三象限,则m 的取值范图是( ) A .1<m <32B .1≤m <32C .1<m≤32D .1≤m≤322.如果2(2)2a a -=-,那么( ) A .2x <B .2x ≤C .2x >D .2x ≥3.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( )A .B .C .D .4.如图是抛物线y=ax 2+bx+c (a≠0)的图象的一部分,抛物线的顶点坐标是A (1,4),与x 轴的一个交点是B (3,0),下列结论:①abc >0;②2a+b=0;③方程ax 2+bx+c=4有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣2.0);⑤x (ax+b )≤a+b ,其中正确结论的个数是( )A .4个B .3个C .2个D .1个5.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/m 1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数、众数分别为( ) A .1.65、1.70 B .1.65、1.75C .1.70、1.75D .1.70、1.706.在代数式3mm- 中,m 的取值范围是( ) A .m≤3B .m≠0C .m≥3D .m≤3且m≠07.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17° 8.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .9.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为( )A .1:3B .1:4C .1:5D .1:610.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A .21313B .31313C .23D .13 11.当ab >0时,y =ax 2与y =ax+b 的图象大致是( )A .B .C .D .12.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v二、填空题:(本大题共6个小题,每小题4分,共24分.)13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若()P 1,1-,()Q 2,3,则P ,Q 的“实际距离”为5,即PS SQ 5+=或PT TQ 5.+=环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B 两个小区的坐标分别为()A 3,1,()B 5,3-,若点()M 6,m 表示单车停放点,且满足M 到A ,B 的“实际距离”相等,则m =______.14.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.15.函数y =1x -中,自变量x 的取值范围是________.16.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=1.若(x+1)※(x ﹣2)=6,则x 的值为_____.17.如图,⊙O 的直径AB=8,C 为»AB 的中点,P 为⊙O 上一动点,连接AP 、CP ,过C 作CD ⊥CP 交AP 于点D ,点P 从B 运动到C 时,则点D 运动的路径长为_____.18.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 1,S △BQC =15cm 1,则图中阴影部分的面积为_____cm 1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD 中,BD 是对角线,∠ADB=90°,E 、F 分别为边AB 、CD 的中点. (1)求证:四边形DEBF 是菱形;(2)若BE=4,∠DEB=120°,点M 为BF 的中点,当点P 在BD 边上运动时,则PF+PM 的最小值为 ,并在图上标出此时点P 的位置.20.(6分)一道选择题有,,,A B C D 四个选项.(1)若正确答案是A ,从中任意选出一项,求选中的恰好是正确答案A 的概率; (2)若正确答案是,A B ,从中任意选择两项,求选中的恰好是正确答案,A B 的概率. 21.(6分)(1)如图①已知四边形ABCD 中,AB a =,BC=b ,90B D ∠=∠=︒,求: ①对角线BD 长度的最大值;②四边形ABCD 的最大面积;(用含a ,b 的代数式表示)(2)如图②,四边形ABCD 是某市规划用地的示意图,经测量得到如下数据:20cm AB =,30cm BC =,120B ∠=︒,195A C ∠+∠=︒,请你利用所学知识探索它的最大面积(结果保留根号)22.(8分)如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,且DH 是⊙O 的切线,连接DE 交AB 于点F . (1)求证:DC=DE ; (2)若AE=1,23EF FD =,求⊙O 的半径.23.(8分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案? 24.(10分)下面是一位同学的一道作图题:已知线段a 、b 、c (如图),求作线段x ,使::a b c x =他的作法如下:(1)以点O 为端点画射线OM ,ON . (2)在OM 上依次截取OA a =,AB b =. (3)在ON 上截取OC c =.(4)联结AC ,过点B 作//BD AC ,交ON 于点D . 所以:线段________就是所求的线段x . ①试将结论补完整②这位同学作图的依据是________③如果4OA =,5AB =,AC π=u u u r u r ,试用向量πu r 表示向量DB uuu r.25.(10分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆. 如图所示,已知:⊙I 是△ABC 的BC 边上的旁切圆,E 、F 分别是切点,AD ⊥IC 于点D . (1)试探究:D 、E 、F 三点是否同在一条直线上?证明你的结论. (2)设AB=AC=5,BC=6,如果△DIE 和△AEF 的面积之比等于m ,DEn EF=,试作出分别以m n ,n m 为两根且二次项系数为6的一个一元二次方程.26.(12分)已知:如图,□ABCD 中,BD 是对角线,AE ⊥BD 于E ,CF ⊥BD 于F. 求证:BE=DF.27.(12分)解不等式组:10241x x x +>⎧⎨+≥-⎩,并把解集在数轴上表示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省亳州市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列图形中,是正方体表面展开图的是( )A .B .C .D .2.下列计算,正确的是( ) A .222()-=- B .(2)(2)2-⨯-= C .3223-=D .8210+=3.在1、﹣1、3、﹣2这四个数中,最大的数是( ) A .1B .﹣1C .3D .﹣24.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点 5.下面调查中,适合采用全面调查的是( ) A .对南宁市市民进行“南宁地铁1号线线路” B .对你安宁市食品安全合格情况的调查 C .对南宁市电视台《新闻在线》收视率的调查 D .对你所在的班级同学的身高情况的调查6.已知下列命题:①对顶角相等;②若a >b >0,则1a <1b;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x 2﹣2x 与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( ) A .15B .25C .35D .457.若 |x | =-x ,则x 一定是( ) A .非正数B .正数C .非负数D .负数8.下列计算正确的是( ) A .B .C .D .9.如图,在Rt △ABC 中,∠B=90°,∠A=30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以A .312B .36C .33D .3210.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线平行B .对角线相等且互相垂直的四边形是正方形C .平分弦的直径垂直于弦,并且平分弦所对的弧D .若三角形的三边a ,b ,c 满足a 2+b 2+c 2=ac +bc +ab ,则该三角形是正三角形11.如图,在ABC ∆中,90ACB ∠=o ,6AC =,8BC =,点,P Q 分别在,AB BC 上,AQ CP ⊥于D ,45CQ BP =则ACP ∆的面积为( )A .232B .252C .272D .29212.方程x (x -2)+x -2=0的两个根为( ) A .10x =,22x = B .10x =,22x =- C .11x =- ,22x =D .11x =-, 22x =-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AB =AC ,D 、E 、F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ;②四边形ADEF 为菱形;③:1:4ADF ABC S S ∆∆=.其中正确的结论是____________.(填写所有正确结论的序号)15.PA 、PB 分别切⊙O 于点A 、B ,∠PAB=60°,点C 在⊙O 上,则∠ACB 的度数为_____. 16.若一个多边形的每一个外角都等于 40°,则这个多边形的内角和是_____. 17.方程21xx =-的解是__________. 18.如果x +y =5,那么代数式221y x x y x y ⎛⎫+÷ ⎪--⎝⎭的值是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,平面直角坐标系中,直线AB :13y x b =-+交y 轴于点A(0,1),交x 轴于点B .直线x=1交AB 于点D ,交x 轴于点E ,P 是直线x=1上一动点,且在点D 的上方,设P(1,n).求直线AB 的解析式和点B 的坐标;求△ABP 的面积(用含n 的代数式表示);当S △ABP =2时,以PB 为边在第一象限作等腰直角三角形BPC ,求出点C 的坐标.20.(6分) 已知AC ,EC 分别是四边形ABCD 和EFCG 的对角线,直线AE 与直线BF 交于点H (1)观察猜想如图1,当四边形ABCD 和EFCG 均为正方形时,线段AE 和BF 的数量关系是 ;∠AHB = . (2)探究证明如图2,当四边形ABCD 和FFCG 均为矩形,且∠ACB =∠ECF =30°时,(1)中的结论是否仍然成立,并说明理由. (3)拓展延伸在(2)的条件下,若BC =9,FC =6,将矩形EFCG 绕点C 旋转,在整个旋转过程中,当A 、E 、F 三点共线时,请直接写出点B 到直线AE 的距离.21.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售 精加工后销售 每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工? (2)如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?22.(8分)在平面直角坐标系xOy 中,一次函数y kx b =+的图象与y 轴交于点()B 0,1,与反比例函数my x=的图象交于点()A 3,2-. ()1求反比例函数的表达式和一次函数表达式;()2若点C 是y 轴上一点,且BC BA =,直接写出点C 的坐标.23.(8分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0my m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?24.(10分)如图,平面直角坐标系中,直线y 2x 2=+与x 轴,y 轴分别交于A ,B 两点,与反比例函数ky (x 0)x=>的图象交于点()M a,4. ()1求反比例函数k y (x 0)x=>的表达式;()2若点C 在反比例函数k y (x 0)x=>的图象上,点D 在x 轴上,当四边形ABCD 是平行四边形时,求点D 的坐标.25.(10分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)求扇形统计图中C 所对圆心角的度数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.26.(12分)如图,在平面直角坐标系xOy 中,一次函数y =x 与反比例函数()0ky k x=≠的图象相交于点()3,Aa .(2)直线x =b (0b >)分别与一次函数y =x 、反比例函数ky x=的图象相交于点M 、N ,当MN =2时,画出示意图并直接写出b 的值.27.(12分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】利用正方体及其表面展开图的特点解题. 【详解】解:A 、B 、D 经过折叠后,下边没有面,所以不可以围成正方体,C 能折成正方体. 故选C . 【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形. 2.B 【解析】 【分析】根据二次根式的加减法则,以及二次根式的性质逐项判断即可. 【详解】=2,∴选项A 不正确;,∴选项B 正确;∵,∴选项C 不正确;,∴选项D 不正确.【点睛】本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变. 3.C 【解析】 【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可. 【详解】解:根据有理数比较大小的方法,可得 -2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1. 故选C . 【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 4.A 。
【解析】∵对于点A (x 1,y 1),B (x 2,y 2),()()1212A B x x y y ⊕=+++, ∴如果设C (x 3,y 3),D (x 4,y 4),E (x 5,y 5),F (x 6,y 6), 那么()()()()34344545C D x x y y D E x x y y ⊕=+++⊕=+++,,()()()()56564646E F x x y y F D x x y y ⊕=+++⊕=+++,。
又∵C D D E E F F D ⊕=⊕=⊕=⊕,∴()()()()()()()()3434454556564646x x y y x x y y x x y y x x y y +++=+++=+++=+++。
∴33445566x y x y x y x y +=+=+=+。