星三角降压启动的PLC控制
星三角降压启动的PLC控制PPT课件

6
定时器的动作原理:当定时器的线圈 得电,定时器开始延时,当当前值等于设 定值时,定时器的常开触点闭合,常闭触 点断开。如果要保持常开触点闭合,常闭 触点断开,定时器的线圈就不能失电。当 定时器的线圈失电时,定时器当前值清零, 定时器当前值与设定值相等的条件被打破, 则定时器的常开触点断开,常闭触点闭合。
19
控制要求分析 电动机启动时,应先接成星形,然后再送电,
使电动机在星形下启动;转换成三角形运行时, 应将电动机断电,待电动机重新接成角形后, 再给电动机送电,让电动机在角形下运行。
20
➢ 任务实施
实训设备
FX2N—64MR
一台。
电路控制板(由空气开关、交流接触器、热继电器、
熔断器组成) 一块。
程序讲解 对于正常运行为三角形接法的电动机,在启动
时,定子绕组先接成星形,当电动机转速上升到接 近额定转速时,将定子绕组接线方式由星形改接成 三角形,使电动机进入全压正常运行。一般功率在 4KW以上的三相异步电动机均为三角形接法,因此 均可采用 Y-△降压启动的方法来限制启动电流。
4
常数K可以作为定时器的设定值,也 可以用数据寄存器(D)的内容来作设 定值。例如外部数字开关输入的数据可 以存入数据寄存器,作为定时器的设定 值。
5
定时器T的结构
结构:线圈,符号:
或
常开触点,符号:
常闭触点,符号:
元件编号:按十进制编号。 K:表示十进制数。 50:表示PLC内部时钟脉冲的扫描次数,PLC内部有 三种时钟脉冲,分别是100MS、10MS、1MS。 定时范围为0.001-3276.7秒
动电流。但电动机星形起动力矩也只有全电压启动时力矩的1/3,故电动 机启动起来后,要马上切换到角形运行。中间的时间大概在4~6秒钟。
电动机星三角降压启动的PLC控制课件

2023
PART 05
问题与展望
REPORTING
目前存在的问题与解决方案
控制精度问题
目前电动机星三角降压启动的PLC控制精度不够高,可能导致电动机运行不稳定。解决方案:采用高精度传感器和优 化算法,提高控制精度。
响应速度问题
在某些情况下,PLC对电动机的控制响应速度不够快,影响电动机的运行性能。解决方案:采用高速PLC和优化控制 算法,提高响应速度。
总结词
安全性能要求高的场所应用
VS
详细描述
在电梯系统中,电动机的启动和停止需要 非常高的安全性能。通过PLC控制的星三 角降压启动方式,可以确保电梯在启动过 程中平稳、无冲击,同时也能够保证电梯 在紧急情况下的快速响应和安全停靠。
案例三
总结词
节能环保的应用
详细描述
在某空调系统中,电动机的启动和停止需要 考虑到节能和环保的要求。通过PLC控制的 星三角降压启动方式,可以有效地降低电动 机的启动电流,减少对电网的冲击,同时也 能够减少能源的浪费,符合节能环保的要求 。
随着电动机转速的升高,当达到一定转速时,通过控制系统断开星形接法的接触器 ,同时闭合三角形接法的接触器,使电动机正常运行。
在整个启动过程中,通过控制电路实现对电动机的自动控制,确保电动机的安全、 稳定运行。
星三角降压启动的优缺点
优点
星三角降压启动能够有效地降低电动机的启动电流和启动转矩,减小对电网的冲击,同时能够减小机械设备的振 动和磨损,延长设备的使用寿命。
2023
REPORTING
电动机星三角降压启 动的plc控制课件
2023
目录
• 电动机星三角降压启动原理 • PLC控制系统的基本知识 • 电动机星三角降压启动的PLC控制方案 • 实际应用案例分析 • 问题与展望
S7-200PLC实现星三角降压启动

S7-200P L C实现星三角降压启动(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--星三角降压启动的继电器电路图与控制图根据工艺要求进行PLC电路图设计。
PLC电路图设计如下:?根据星三角启动电路图画出流程框架图如下?PLC软元件地址分配如下:I区(输入区)启动按钮SB2停止按钮SB1电源断路器QFQ区主电路接触器 KM1星型启动接触器 KM2三角形接触器 KM3T区T37 10秒定时器根据电路图,流程图和分配好的软元件地址进行编程。
程序参考图如下:控制线路星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。
Y —△起动只能用于正常运行时为△形接法的电动机。
1.按钮、接触器控制 Y —△降压起动控制线路图( a )为按钮、接触器控制 Y —△降压起动控制线路。
线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。
2.时间继电器控制 Y —△降压起动控制线路图( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。
(1)线路设计思想Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。
这一线路的设计思想仍是按时间原则控制起动过程。
所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了起动电流对电网的影响。
西门子S7-200星三角降压启动的PLC控制

Y/△降压启动PLC的控制
2.梯形图设计语言
梯形图(LAD, LadderLogic Programming Language)是PLC使用得最多的图形编程语言,被称 为PLC的第一编程语言。 梯形图语言沿袭了继电器控制电路的形式,梯形图是 在常用的继电器与接触器逻辑控制基础上简化了符号 演变而来的,具有形象、直观、实用等特点。 在PLC程序图中,母线类似于继电器与接触器控制电 源线,输出线圈类似于负载,输入触点类似于按钮。 梯形图由若干阶级构成,自上而下排列,每个阶级起 于左母线,经过触点与线圈
2.1梯形图设计语言-触点
Y/△降压启动PLC的控制
2.2梯形图设计语言-线圈
2.3梯形图编程规则
Y/△降压启动PLC的控制
二、西门子S7-200的PLC实现电动机△/Y降压启动 1.控制要求及分析 降压启动的电路图如下:
控制要求 按电动机的起动按钮,电动机M先作星形启动,5秒后,控
制回路自动切换到三角形连接,电动机M作角形运行。
Y/△降压启动PLC的控制
目录
• Y/△降压启动
1
• PLC的定时器指令
2
• 梯形图程序设计
3
4 • PLC电动机Y/△降压启动的实现
Y/△降压启动PLC的控制
引言:三相异步电动机作全压起动时,其启动电流很大,达到电动机额定电流的 (3~7)倍。如果电动机的功率大,其启动电流会相当大,对电网会造成很大的冲击。为 了降低电动机的启动电流,最常用的办法就是电动机星形启动,因为电机星形运行时其电 流只是角形运行时电流的1/3 ,故电动机星形启动可降低启动电流。但电动机星形起动力 矩也只有全电压启动时力矩的1/3,故电动机启动起来后,要马上切换到角形运行。
电动机星三角降压启动的PLC控制

(3) 在本例中,如时序图所示,当前值 最初为0,每一次输入端I0.0闭合,当前 值开始累计,输入端I0.0断开,当前值则 保持不变。在输入端闭合时间累计到10 秒时,定时器位T3闭合,输出线圈Q0.0 接通。当I0.1闭合时,由复位指令复位 T3的位及当前值。
21 13电力专业
体的定时时间T由预置值PT和分辨率的乘积决
定。
定时器的分辨率有3个:1ms、10ms和 100ms,定时器定时时间T的计算: T=PT×S,
5 13电力专业
(3)定时器的编号: 定时器的编号用T和常数编号(最大为
255)表示,如T0、T1、T255等。
不同的编号对应着一定的分辨率
6 13电力专业
PT=1000
19 13电力专业
(1) PLC上电后的第一个扫描周期,定时器位 为断开(OFF)状态,当前值保持掉电之前的值。 输入端每次接通时,当前值从上次的保持值继续 计时,在当前值达到预置值时定时器位闭合(ON) ,当前值仍会连续计数到32767。
(2) TONR的定时器位一旦闭合,只能用复位 指令R进行复位操作,同时清除当前值。
使能输入再次接通时,当前值从上 次的保持值继续计数,当累计当前值达 到预设值时,定时器位ON,当前值连续 计数到32767。
注意:TONR定时器只能用复位指令
进行复位操作。
指令格式:TONR Txxx,PT
例:TONR T20,63
17 13电力专业
18 13电力专业
记忆接通延时定时器应用举例:
15 13电力专业
(2)有记忆接通延时定时器TONR
TONR,有记忆接通延时定时器指令。 用于对许多间隔的累计定时。上电周期 或首次扫描,定时器位OFF,当前值保持。
PLC 控制星三角降压起动控制线路的安装与调试

02 PLC控制星三角降压起动控制线路的安装与调试
(4)定时器常见用法 1)通电延时接通控制。
机电设备电气安装与调试
02 PLC控制星三角降压起动控制线路的安装与调试 【提纲挈领】
任务准备 任务实施
认识 FX2N 系列 PLC 定时器元件 T 分析 PLC 控制星三角降压起动控制 I/O 线路 准备工具 准备仪表
领取器材 安装线路 检测线路 编写程序 通电调试
02 PLC控制星三角降压起动控制线路的安装与调试
(3)定时器的分类 FX2N 系列 PLC 的定时器从功能上分为通用定时器和积算定时器两大类,且为十进制 编码 。 1)通用定时器(T0~T245):是普通的定时器,也是 PLC 中常用的定时器,它不 具有断电保持的功能。表 4-2-1 为通用定时器的分类,图 4-2-1 为通用定时器应用 举例。
02 PLC控制星三角降压起动控制线路的安装与调试
PLC控制三相交流异步电动机星三角降压起动控制I/O线路原理请扫二维码观看视频:
项目四任务二视频1: PLC控制三相交流异 步电动机星三角降压 起动控制I/O线路原理
在设计PLC控制的电动机星三角降压起动时,还需要考虑硬件的响应速度,务 必要对接触器KMY及KM△进行互锁,不进行互锁会因为PLC扫描周期短,而接触 器响应时间慢,极易发生KMY与KM△主电路短路的现象。
02 PLC控制星三角降压起动控制线路的安装与调试
3)断电延时断开控制。 图 4-2-5 所示为断电延时断开控制程序;
PLC触摸屏控制电动机星三角降压启动

(1)电动机的运行状态可以用文字表示,也可用指示灯表示,根据控制要求,
在此选择指示灯表示。首先在里单击
指示灯 选择文件包“
”,会
出现如图左所示的指示灯的“库图像一览表”,选择所需要的指示灯,单击指示灯
图标,然后在制作画面内单击,就可得到指示灯画面,如图右所示。
课题五 PLC综合应用技术
任务3 PLC/触摸屏控制电动机Y-△降压启动
课题五 PLC综合应用技术
值选项中不选择,而是直接选择“T0”,设置完的对话框如下图左所示。最
后单击“确定”会得到如下图右所示的画面。
课题五 PLC综合应用技术
任务3 PLC/触摸屏控制电动机Y-△降压启动
课题五 PLC综合应用技术
任务3 PLC/触摸屏控制电动机Y-△降压启动
(3)将画面中的梯形图进行适当的拉伸,然后进行文字输入,命名 为“启动过程监视”,这样就可得到制作完毕的启动过程条形图监视画 面。
课题五 PLC综合应用技术
任务3 PLC/触摸屏控制电动机Y-△降压启动
(3)在“切换画面种类(C)”选项中选择“基本”种类,在“切换 到”的选项中选择。由于切换开关选择的是透明,因此在“显示方式” 的“图形(A)选项中应选择,至此切换开关制作完毕,单击确定。然后 再将切换开关图形拉至全屏,即会出现如下图所示的画面。
(2)将光标变成 ,然后双击面板仪表图标,会弹出面板仪表对 话框,首先进行软元件的设置,如下图。
和
课题五 PLC综合应用技术
任务3 PLC/触摸屏控制电动机Y-△降压启动
(3)在“扩展功能”选项中选择范围设置,弹出面板仪表的对话框,然后进行
“刻度范围”的选择;首先对“刻度”选项进行选择,将 和 选项中的 “3”改为“6”;然后单击“选项”,进行上限值和下线值的选择,操作方法同前。 面板仪表制作完毕的画面如下图所示。
PLC编程星三角降压启动控制

• 目标: • 掌握PLC控制系统设计的一般工作流程, • 掌握PLC编程元件的功能、地址编号和编程
应用以及基本指令的编程应用。
电动机Y/△降压起动电气原理图
自己设计程序
• 1、写出控制逻辑关系; • 2、选定输入/输出设备; • 3、分配I/O地址; • 4、画出I/O接线图; • 5、编PLC程序。
1)通用辅助继电器 FP0中的通用内部辅助继电器共1008个,地址 范围R0~R62F。可以单个使用,形式如R0、 R3B等,也可以由16个组成一个单元使用,形式 如WR0、WR15等。
2)特殊辅助继电器 特殊辅助继电器也叫专用内部继电器,每一个 都有专门的用途,这类继电器只能单独使用,且 只能使用触点,不能使用线圈,地址范围 R9000~R903F。
(a)振荡电路梯形图
当X0接通时,输出Y0 以1S周期闪烁变化 (如果Y0是蜂鸣器, 则停0.5S,响0.5S, 交替进行),波形如 图5-33(b)所示。 改变T0、T1的设定 值,就可以调整脉冲 宽度。
(2)FP0系列PLC的辅助继电器R
定时器线圈的驱动信号为长信号,若X0的外部设备 是按钮,该如何处理?
定时器的工作原理为:定时器为减1计数。 当程序进入运行状态后,输入触点接通瞬间定时器开始 工作,先将设定值寄存器SV的内容装入过程值寄存器EV 中,然后开始计数。每来一个时钟脉冲,过程值减1,直 至EV中内容减为0时,该定时器各对应触点动作,即常开 触点闭合、常闭触点断开。 而当输入触点断开时,定时器复位,对应触点恢复原来 状态,且EV清零,但SV不变。若在定时器未达到设定时 间时断开其输入触点,则定时器停止计时,其过程值寄存 器被清零,且定时器对应触点不动作,直至输入触点再接 通,重新开始定时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据长度 ,有D表
示32位,无D表示 16位。
助记符:功能指令的 助记符是该条指令的 英文缩写。
脉冲/连续执行指令标志。 有P表示脉冲执行,无P
表示连续执行。
图3-30 加法指令指令格式及参数形式
➢ 知识拓展 2.数据类软元件
功能指令在数据处理和运算过程中,均要用到数 据寄存器、位组合元件、变址寄存器、文件寄存 器等,对这些功能指令的操作数,只有很好的了 解和掌握它,才能在编程使用过程中,灵活的应 用它。 数据寄存器(D)
例如:
K1X0就表示由X3~X0 4个输入继电器的组合。 K1X3表示由X6X5X4X3 4个输入继电器的组合。 K2Y0就表示由Y7~Y0 8个输出继电器的组合。 K3M0就表示由M11~M0 12个辅助继电器的组合。 K4S0就表示由S15~S0 16个状态元件的组合。 被组合的位元件的首元件编号可以任选,但为避免混 乱,一般以0为编号做结尾的元件号。
图3-29 功能指令的梯形图表达形式
➢ 知识拓展
功能指令的含义
使用功能指令需要注意功能框中各参数所指的含义。现以加法指令作出说明。
图3-30所示为加法指令(ADD)的指令格式和相关参数。
功能号(FNC)。 每条功能指令都有 一固定的功能代号。
操作数:操作数即为 功能指令所涉及的参 数(或称数据),分 为源操作数,目标操 作数及其它操作数。
通用定时器没有保持功能,在输入电路断开或 停电时复位,当前值清零。
图3-24 通用定时器
2)积算(累计)定时器(T246~T255) T246~T249为1ms积算定时器,定时范围为0.001~ 32.767s。 (4个) T250~T255为100ms积算定时器,定时范围为0.1~ 3276.7s。(6个) 如图3-25,当X1的常开触点接通时, T250的当前值计数 器对100ms时钟脉冲进行累加计数。X1的常开触点再次接通 或复电时继续计时,累计时间( t1+t2)为34.5s时,T250定 时器的常开触点接通,常闭触点断开。
➢ 知识拓展
1.功能指令
功能指令的表现形式
功能指令和基本指令不同。功能指令类似一个子程序, 直接由助记符(功能代号)表达本条指令要做什么。FX系列 PLC在梯形图中使用功能框表示功能指令。图3-29是功能指 令的梯形图示例。图中X0是执行该条指令的条件,其后的方 框为功能框,分别含有功能指令的名称和参数,参数可以是 相关数据、地址或其他数据。这种表达方式直观明了。当 X0=ON时,数据寄存器D0的内容加上十进制数123,然后再 把结果送到数据寄存器D2中。
常数K可以作为定时器的设定值,也 可以用数据寄存器(D)的内容来作设 定值。例如外部数字开关输入的数据可 以存入数据寄存器,作为定时器的设定 值。
定时器T的结构
结构:线圈,符号:
或
常开触点,符号:
常闭触点,符号:
元件编号:按十进制编号。 K:表示十进制数。 50:表示PLC内部时钟脉冲的扫描次数,PLC内部有 三种时钟脉冲,分别是100MS、10MS、1MS。 定时范围为0.001-3276.7秒
延时时间等于对应的时钟脉冲乘以扫描次数。 T0 K50 -----50*0.1=5S
定时器的动作原理:当定时器的线圈 得电,定时器开始延时,当当前值等于设 定值时,定时器的常开触点闭合,常闭触 点断开。如果要保持常开触点闭合,常闭 触点断开,定时器的线圈就不能失电。当 定时器的线圈失电时,定时器当前值清零, 定时器当前值与设定值相等的条件被打破, 则定时器的常开触点断开,常闭触点闭合。
延时程序1
➢ 任务实施 用PLC实现对三相异步电动机Y-△降压启动、运行的控制
控制要求 按电动机的起动按钮,电动机M先作星形启动,
6秒后,控制回路自动切换到三角形连接, 电动机M作角形运行。
讲解要达到的目的 1)熟悉三相异步电动机Y-△降压启动的原 理。
2)学会定时器的简单应用。 3)掌握外部接线图的设计方法,学会实际 接线。
图3-24中XO的常开触点接通时,T200的当前值 计数器从零开始,对10ms时钟脉冲进行累加计数。 当前值等于设定值123时,定时器的常开触点接通, 常闭触点断开,即T200的输出触点在其线圈被驱动 1.23s后动作。
XO的常开触点断开后,定时器被复位。它的常 开触点断开,常闭触点接通,当前值恢复为零。
项目3 PLC对电动机负载的控制
任务3 PLC如何实现对电动机 Y/△降压启动运行的控制
➢ 任务引入
三相异步电动机作全压起动时,其启动电流很大,达到电动机 额定电流的(3~7)倍。如果电动机的功率大,其启动电
流会相当大,对电网会造成很大的冲击。为了降低电动机的启动电流,最
常用的办法就是电动机星形启动,因为电机星形运行时其电流 只是角形运行时电流的1/3 ,故电动机星形启动可降低启
t1 t2
X1的常开触点断开或停电时,T250 停止计时,当前值保持不变。只有当X2的 常开触点接通时通过复位指令对T250复位, 才能使其当前值清零。
➢ 相关知识
图3-25 积算定时器Fra bibliotek➢ 相关知识 2.定时器的简单应用
脉冲发生器
方波发生器
分频电路
延时程序
当启动输入信号X0后, M0线圈得电,通过自身的常 开触点形成自锁,然后定时器 T0的线圈得电,开始延时, 10S后,定时器T0的当前值与 设定值相等,定时器T0的常 开触点闭合,输出继电器Y0 得电。
0.5KW 4极三相异步电动机
一台。
设计步骤 1)I/O信号分配 输入/输出信号分配如表3-3所示。
表3-3 输入输出信号分配表
元件 按钮SB1
输 入(I) 功能
电机启动信号
信号地址 X0
元件 KM1
输 出(O) 功能
控制电机电源
按钮SB2 电机停止信号
X1
KM2 控制电机角形运行
信号地址 Y0 Y1
在进行32位操作时,只要指定低位的编号即可,例如D0。而高位则为继其之后 相邻的元件D1,自动生成。低位地址号可以是奇数或偶数,由于考虑到外围设备 的监视功能,建议低位的编号采用偶数编号。例如:用D0表示(D1,D0)、D4 表示(D5,D4)32位数据寄存器的编号。
图3-32 32位数据寄存器
➢ 知识拓展
MOV指令为连续执行指令,MOV(P)指令为 脉冲执行指令。
对于32位数据的传送,需要用(D)MOV指令, 否则用MOV指令会出错。如图3-33(b)为一个32 位数据传送指令。当X2=ON,则(D1、D0)的值传 给(D11、D10),当X3=ON,则(C235的当前值) 传给(D21、D20),C235是32位计数器。
动电流。但电动机星形起动力矩也只有全电压启动时力矩的1/3,故电动 机启动起来后,要马上切换到角形运行。中间的时间大概在4~6秒钟。
➢ 任务分析
要完成该任务,必须具备以下知识: 1.掌握定时器T的结构和工作原理。 2.能画出定时器的波形。 3.熟悉电动机Y/△降压启动运行的工作原理。
➢ 相关知识
1.定时器(T)(字、bit)
可编程控制器中的定时器相当于继电器系统中的时间 继电器。它提供无限多对常开、常闭延时触点,FX2n
提供了256点 它有一个设定值寄存器(一个字长)、一个当前值寄
存器(一个字长)和一个用来储存其输出触点状态的映像 寄存器(占二进制的一位)。这3个存储单元使用同一个 元件号。FX系列可编程控制器的定时器分为通用定时器 和积算(累计)定时器。
读出计数器C0的当前值送到D20中;(b)图所示是将K200传送到D12中, K200即表示T20的设定值。
(a) 读出计数器当前值
(b) 定时器设定值的间接传送
图3-37 传送指令功能应用
4.使用传送指令控制三相异步电动机的Y-△降压启动
在本节“任务实施”中对三相异步电动机的Y△降压启动使用逻辑指令进行过编程,现在我 们使用功能指令进行编程,同样能达到相同目 的。PLC控制的梯形图如图3-35所示。
数据寄存器是用于存储数值数据的,其值可
通过应用指令、数据存取单元及编程装置进行读出 或写入。这些寄存器都是16位(最高位为符号位), 可处理的数值范围为-32768~ +32767,如下图3-31 所示。
图3-31 16位数据寄存器
➢ 知识拓展
两个相邻的数据寄存器可组成32位数据存储器(最高位为符号位),可处理的 数字范围为—2147483648~+2147483647,如下图3-32所示。
连续/脉冲执 行
指令说明 传送指令MOV(Move)的功能指令编号为
FNC12,16位运算占5个程厅步,32位运算占9个程 序步。
传送指令是将源数据传送到指定目标。图3-33 (a)中的X1为ON时,常数100自动转换为二进制 数,并被传送到 D10,当X1断开时,指令不执行, D10中的数据保持不变。
程序讲解 对于正常运行为三角形接法的电动机,在启动
时,定子绕组先接成星形,当电动机转速上升到接 近额定转速时,将定子绕组接线方式由星形改接成 三角形,使电动机进入全压正常运行。一般功率在 4KW以上的三相异步电动机均为三角形接法,因此 均可采用 Y-△降压启动的方法来限制启动电流。
程序运行中,KM2、KM3不允许同时带电运行。 为保证安全、可靠,梯形图设计时,使用程序互锁, 限制Y2、Y1的线圈不能同时得电。接线图中, KM2、KM3的线圈回路中,加上电气互锁。双重互 锁,保证KM2、KM3的线圈不能同时带电,避免短 路事故的发生。
控制要求分析 电动机启动时,应先接成星形,然后再送电,
使电动机在星形下启动;转换成三角形运行时, 应将电动机断电,待电动机重新接成角形后, 再给电动机送电,让电动机在角形下运行。
➢ 任务实施
实训设备