2019-2020学年度北师大版必修三教学案:第一章§4 数据的数字特征 Word版含答案

合集下载

高中数学必修三:1.4数据的数字特征(2)+教案

高中数学必修三:1.4数据的数字特征(2)+教案

1.4 数据的数字特征【教材版本】北师大版【教材分析】本节课的教学内容是高中数学《数学3》第一章§4数据的数字特征,教学课时为1课时.数据的信息除用统计图、统计表整理和分析之外,还可以用一些统计量来描述,也就是将多个数值转化为一个数值,使这个数值能够反映这组数据的某些重要的特征,这个数值就被称为数据的数字特征.在初中阶段,学生已经学习了反映数据集中程度的数字特征:平均数、中位数、众数;也学习了反映数据离散程度的数字特征:极差、方差,并简单提及标准差.本节课首先在学生已有的认知基础上,让学生在实际问题中复习上述统计量的概念,明确其计算方法.其次着重通过实例让学生理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力.使学生理解不同数字特征所表达的意义,能够根据问题需要选择适当的数字特征来表达数据的信息.从而体会数学语言应用的多样性、简洁性,体会数学语言在实际生活中的应用.上节课学生从“形”上反映数据信息,本节课从“量”上反映数据信息的数字特征,锻炼了学生有意识地从“形”与“量”两个方面挖掘数据信息的能力,而且为后续学习用样本的基本数字特征来刻画反映总体的数字特征、从样本数据推断总体信息打下坚实的基础.【学情分析】对于学生而言,平均数、中位数、众数以及极差、方差等概念早已植根于学生已有的认知结构.学生在初中八年级上下学期陆续学习了上述的概念,不仅可以用笔计算一些给定数据的上述统计量,而且学生对于借助计算机、计算器等工具计算平均数、方差等一些统计量有了一定的学习和了解.但是学生在数字特征的掌握上还存在着一些问题:一方面在这些数字特征的意义掌握上还存在着一些问题.在上述数字特征的把握上精力分配上容易流于计算,不能真正地理解和明确不同数字特征所反映的数据的信息.另一方面,对于标准差的学习有待进一步深化.此节课的学习将在教师问题情境的精心选择上,通过实际题目的的计算和问题回答通过激发学生自主探究,积极思考,交流合作,配合教师的适时总结,不断完善学生对于不同数字特征概念以及意义的认识和理解,进而培养和锻炼能在具体的数据面前选用合适的数字特征来刻画数据的信息能力.提高学生合理应用数学语言表达统计相关问题,揭示其内部关系的能力.【教学目标】1.知识与技能(1)明确平均数、中位数、众数,极差、方差的概念和计算方法.掌握标准差的概念和计算方法.学会合理应用相关符号语言表示数据信息和特征,体会数字特征就是一种数学语言.(2)能够理解不同数字特征所表达的意义,能够根据问题需要选择适当的数字特征来表达数据的信息.能够准确合理地应用数学语言表示统计的数字特征.2.过程与方法教师通过选择具有代表性的例子,引导学生回顾和思考已学的数字特征的知识,在解决具体问题的基础上,引导学生通过合作交流探究给定的问题,自我总结各个数字特征的计算方法和所表达的数据的意义.搭配学生积极地思考,辅助教师的及时指导归纳,可以使学生主动地整理、完善和优化自身的关于数字特征的认知结构.体会对数学语言的合理应用,为后续的学习打下坚实的基础.3.情感、态度与价值观在教学过程中让学生经历从数据中提取信息,进行估计,做出推断的全过程.体会用数字特征来描述纷繁的数据的统计学意义.培养学生用数据说话的理性精神,选用合理数学语言准确地挖掘和解释数据信息的能力.教学过程中,通过学生主动思考和回答问题的方式,培养自我总结能力,合作交流的意识和能力,以及准确使用数学语言的能力.【重点难点】本节课的教学重点是数、中位数、众数、极差、方差、标准差的计算、意义和作用.本节课的教学难点是运用数据的数字特征表达数据的信息,能够通过问题的实际需要,选择合适的数字特征表达数据的信息进而解决问题.【教学过程】1.导入新课上两节课我们学习了用统计图表来整理和分析数据,今天我们将利用给定的数据计算一些“量”(统计量)来挖掘数据的信息,它们可以反映数据的集中程度或者离散状况.因为这些量能够反映数据的特点,我们把它们也叫做数据的数字特征.除过大家比较熟悉的那五种之外,我们今天还会学习到刻画数据离散程度较好的另一个数字特征—“标准差”.我们这节课的主要目标不光是要会计算这些“量”,更重要的是能够理解不同数字特征所表达的意义,能够根据问题需要选择适当的数字特征来表达数据的信息(出示课题)2.提出问题,温故求新2.1问题引入教师展现课件题目,以分析和评价考试成绩来激发学生的认知需要,然后在此基础上回忆复习数据的数字特征的概念、计算方法和意义.学生以小组讨论的形式思考交流.每次考完试后各科老师都要对班里学生的成绩进行分析,从中分析学生学习的情况,并与同级的其他班级作比较,进而为后续的教学提供指导.面对貌似杂乱的数据,我们运用所学的数字特征的知识能够让这些数据告诉我们什么有用的信息呢?回忆总结数据数字特征的计算方法和表达的意义,学生发言,教师总结.2.2 复习旧知平均数:一组数据的和与这组数据的个数的商称为这组数据的平均数.数据12,n x x x ⋅⋅⋅的平均数为121()n x nx x x =++⋅⋅⋅+ .平均数对数据有“取齐”的作用,代表该组数据的平均水平.中位数:一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数.一组数据的中位数是唯一的,反映了数据的集中趋势.众数:一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了数据的集中趋势.极差:一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.方差:方差是样本数据到平均数的平均距离,一般用s 2表示,通常用公式2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-来计算.反映了数据的离散程度.方差越大,数据的离散程度越大.方差越小数据的离散程度越小.标准差:标准差等于方差的正的平方根,即s =据围绕平均数的波动程度的大小.3. 深化认知例1 某公司员工的月工资情况如表所示:(1)分别计算该公司员工月工资的平均数、中位数、和众数.(2)假设个别人的工资从8 000元提升到20 000元,从5000元提升到10 000元,那么新的平均数、中位数、众数又是多少?(3)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?解:(1)经计算可以得出:该公司员工月工资的平均数为1373元,中位数为800元,众数为700元.(2)经计算可以得出:该公司员工月工资的平均数为1740元,中位数为800元,众数为700元.(3)公司经理为了显示本公司员工的收入高,采用平均数;而税务官希望取中位数,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数,因为每月拿700元的员工最多.说明:问题(3)的回答不仅要能选对数字特征,还要引导学生反思为什么?知其然更要知其所以然.小组讨论后,由小组代表给出解释.最后由教师总结.对于学生来说,计算数值、以及数字的选取都不会有太大的障碍,主要问题在于学生的回答是否完整、准确,这是学生常犯的错误,故在这里老师要给出完整答案,作出示范.点评:平均数是将所有的数据都考虑进去得到的度量,它是反映数据平均水平最常用的统计量;对于非对称的数据集,中位数更实际地描述了数据的中心,中位数不受少数几个极端数据(即排序靠前或靠后的数据)的影响,在存在一些错误数据时,应该利用抗极端性很强的中位数来表示数据的中心值;众数通常用来表示分类变量的中心值.例2在上一节中,从甲、乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示,如图(1)甲乙两组数据的中位数、众数、极差分别是多少?(2)你能从图中分别比较甲乙两组数据平均数和方差的大小吗?说明:引导学生思考如何通过统计图表来获取数据数字特征;以及进一步引导学生反思统计图表和数据数字特征在整理和分析数据信息过程中的不同作用,并且能够根据具体问题有意识地运用这两种工具,即相应的数学语言去刻画和分析数据的信息.例3 甲、乙两台机床同时生产直径是40mm 的零件.为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示(1)你能选择适当的数分别表示这两组数据的离散程度吗?(2)分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差解:(1)参见课本27页.(2)经计算可以得出:==40mm x x 甲乙(),.=0161mm s 甲(),.=0077mm s 乙(). 说明:1.充分调动学生的能动性,发挥想象力,体会比较不同的表示方法.以不同方式表示数据的离散程度,选择方法和计算的过程就是应用数学语言来表示相应特征,这是对数学语言的总结和升华.2.体会刻画数据离散程度的三个原则:(1)应充分利用所得到的数据,以便提供更确切的信息;(2)仅用一个数值来刻画数据的离散程度;(3)对于不同的数据集,当离散程度大时,该数值亦大.3.标准差等于方差的正的平方根,即s 平均数的波动程度的大小.方差的单位是原始测量数据单位的平方,对数据中的极值较为敏感,标准差的单位与原始测量数据单位相同,可以减弱极值的影响.标准差更好的体现了数学语言在实际生活方面的联系,体现了数学语言的多个特征.4 巩固练习1、下面是一家快餐店的所有工作人员(共7人)一周的工资表:(1)计算所有人员一周的平均工资.(2)计算出的平均工资能反映所有工作人员这个周收入的一般水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员的收入水平吗?解:(1)所有人员一周的平均工资:750元.(2)计算出的平均工资不能反映所有工作人员这个周收入的一般水平.(3)去掉总经理的工资后,剩余人员的平均工资是375元,这能代表一般工作人员的收入水平.2、为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:哪种小麦长得比较整齐?解:因为s 甲=1.90,s 乙=3,97,所以甲种小麦长得比较整齐.5.课堂小结这节课首先带着问题复习了数据的数字特征的计算方法、意义和作用,然后通过不同的数字特征的对比,深化了对于数据数字特征的认识和理解.此节课最主要的目的就是在具体问题情境中理解不同数字特征的作用,能就具体问题选择不同的数字特征提取数据信息.体会数学语言在统计方面的应用.⎧⎨⎩集中趋势:平均数、中位数、众数数据的数字特征离散程度:极差、方差、标准差6.作业: 课本:P31 习题1—4,1、2题.【板书设计】精美句子1、善思则能“从无字句处读书”。

北师大版数学高一1.4数据的数字特征 学案必修3

北师大版数学高一1.4数据的数字特征 学案必修3

五 课 后 巩 固 练 习为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是 .(2)这20名工人中一天生产该产品数量的中位数 .(3)这20名工人中一天生产该产品数量的平均数 .数据的数字特征自主学习1.众数—一组数中出现次数最多的数;在频率分布直方图中,我们取最高的那个小长方形横坐标的中点。

[)[)[)55,65,65,75,75,85[)45,55[)85,95[)55,75中位数——当一组数有奇数个时等于中间的数,当有偶数个时等于中间两数的平均数;在频率分布直方图中,是使图形左右两边面积相等的线所在的横坐标。

平均数——将所有数相加再除以这组数的个数;在频率分布直方图中,等于每个小长方形的面积乘以其底边中点的横坐标的和。

2. 答:(1)从频率分布直方图得到的众数和中位数与从数据中得到的不一样,因为频率分布直方图损失了一部分样本信息,所以不如原始数据准确。

(2)众数和中位数不受极端值的影响,平均数反应样本总体的信息,容易受极端值的影响。

3.例1.我们知道,77x x ==乙甲, 。

两个人射击的平均成绩是一样的。

那么,是否两个人就没有水平差距呢?直观上看,还是有差异的。

很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据。

例2解:90068908608509509608909006920910850900920900=+++++==+++++=乙甲x x ()()()()()()[]573106340090092090091090085090090090092090090061222222==-+-+-+-+-+-=甲s ()()()()()()[]14106840090089090086090085090095090096090089061222222==-+-+-+-+-+-=乙s乙甲乙甲,s s <=x x所以甲水稻的产量比较稳定。

2019-2020学年高中数学第一章统计1.5.2估计总体的数字特征教案北师大版必修3.doc

2019-2020学年高中数学第一章统计1.5.2估计总体的数字特征教案北师大版必修3.doc

2019-2020学年高中数学第一章统计1.5.2估计总体的数字特征教案北师大版必修3教学分析教科书通过现实生活的例子,引导学生认识到:只描述平均位置的特征是不够的,还需要描述样本数据离散程度的特征.通过对如何描述数据离散程度的探索,使学生体验创造性思维的过程.三维目标1.正确理解样本数据标准差的意义和作用,学会计算数据的标准差;能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法;会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识与现实世界的联系.重点难点教学重点:根据实际问题从样本数据中提取基本的数字特征并作出合理解释,估计总体的基本数字特征;体会样本数字特征具有随机性.教学难点:用样本平均数和标准差估计总体的平均数与标准差;能应用相关知识解决简单的实际问题.课时安排1课时教学过程导入新课思路1.平均数为我们提供了样本数据的重要信息,但是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176 cm,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生中抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.所以我们学习从另外的角度来考察样本数据的统计量——标准差.(教师板书课题)思路2.在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下:甲运动员:7,8,6,8,6,5,8,10,7,4;乙运动员:9,5,7,8,7,6,8,6,7,7.我们知道x甲=7,x乙=7,两个人射击的平均成绩是一样的,那么,是否两个人就没有水平差距呢?图1从图1直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此这节课我们从另外的角度来考察这两组数据,引入课题:标准差.推进新课新知探究提出问题(1)如何通过频率分布直方图估计数字特征(中位数、众数、平均数)?(2)有甲、乙两种钢筋,现从中各抽取一个标本(如下表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.甲110 120 130 125 120 125 135 125 135 125 乙115 100 125 130 115 125 125 145 125 145 哪种钢筋的质量较好?(3)某种子公司为了在当地推行两种新水稻品种,对甲、乙两种水稻进行了连续7年的种植对比实验,年亩产量分别如下:(千克)甲:600, 880, 880, 620, 960, 570, 900(平均773);乙:800, 860, 850, 750, 750, 800, 700(平均787).请你用所学统计学的知识,说明选择哪种品种推广更好?(4)全面建设小康社会是我们党和政府的工作重心,某市按当地物价水平计算,人均年收入达到1.5万元的家庭即达到小康生活水平.民政局对该市100户家庭进行调查统计,它们的人均收入达到了1.6万元,民政局即宣布该市民生活水平已达到小康水平,你认为这样的结论是否符合实际?(5)如何考查样本数据的离散程度的大小呢?把数据在坐标系中刻画出来,是否能直观地判断数据的离散程度?讨论结果:(1)利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字(最高矩形的中点).估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. (2)图2由图2可以看出,乙样本的最小值100低于甲样本的最小值110,乙样本的最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差(range).由上图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.(3)选择的依据应该是,产量高且稳产的品种,所以选择乙更为合理.(4)不符合实际.样本太小,没有代表性.若样本里有个别高收入者与多数低收入者差别太大.在统计学里,对统计数据的分析,需要结合实际,侧重于考察总体的相关数据特征.比如,市民平均收入问题,都是考察数据的离散程度.(5)把问题(3)中的数据在坐标系中刻画出来.我们可以很直观地知道,乙组数据比甲组数据更集中在平均数的附近,即乙的离散程度小, 如何用数字去刻画这种离散程度呢? 考察样本数据的离散程度的大小,最常用的统计量是方差和标准差.标准差:考察样本数据的离散程度的大小,最常用的统计量是标准差标准差是样本数据到平均数的一种平均距离,一般用s 表示.所谓“平均距离”,其含义可作如下理解:假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i x -|(i=1,2,…,n).于是,样本数据x 1,x 2,…,x n 到x 的“平均距离”是 s=nx x x x x x n ||||||21-++-+- . 由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差: s=])()()[(122221x x x x x x nn -++-+- . 意义:标准差用来表示稳定性,标准差越大,数据的离散程度就越大,也就越不稳定;标准差越小,数据的离散程度就越小,也就越稳定.从标准差的定义可以看出,标准差s≥0,当s=0时,意味着所有的样本数据都等于样本平均数.标准差还可以用于对样本数据的另外一种解释.例如,在关于居民月均用水量的例子中,平均数x =1.973,标准差s=0.868,所以x +s=2.841,x +2s=3.709;x -s=1.105,x -2s=0.237.这100个数据中,在区间[x -2s,x +2s ]=[0.237,3.709]外的只有4个,也就是说,[x -2s,x +2s ]几乎包含了所有样本数据.从数学的角度考虑,人们有时用标准差的平方s 2——方差来代替标准差,作为测量样本数据离散程度的工具,其中s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 显然,在刻画样本数据的离散程度上,方差与标准差是一样的.但在解决实际问题时,一般多采用标准差.需要指出的是,现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.两者都是描述一组数据围绕平均数波动的大小,实际应用中比较广泛的是标准差. 应用示例思路1例1 画出下列四组样本数据的条形图,说明它们的异同点.(1)5,5,5,5,5,5,5,5,5;(2)4,4,4,5,5,5,6,6,6;(3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8.分析:先画出数据的条形图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:四组样本数据的条形图如图3:图3四组数据的平均数都是5.0,标准差分别是:0.00,0.82,1.49,2.83.它们有相同的平均数,但它们有不同的标准差,说明数据的离散程度是不一样的.例2 甲、乙两人同时生产内径为25.40 mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.46 25.32 25.45 25.39 25.3625.34 25.42 25.45 25.38 25.4225.39 25.43 25.39 25.40 25.4425.40 25.42 25.35 25.41 25.39乙25.40 25.43 25.44 25.48 25.4825.47 25.49 25.49 25.36 25.3425.33 25.43 25.43 25.32 25.4725.31 25.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:每一个工人生产的所有零件的内径尺寸组成一个总体.由于零件的生产标准已经给出(内径25.40 mm),生产质量可以从总体的平均数与标准差两个角度来衡量.总体的平均数与内径标准尺寸25.40 mm 的差异大时质量低,差异小时质量高;当总体的平均数与标准尺寸很接近时,总体的标准差小的时候质量高,标准差大的时候质量低.这样,比较两人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数与标准差的大小即可.但是,这两个总体的平均数与标准差都是不知道的,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本的平均数、标准差,以此作为两个总体之间差异的估计值.解:用计算器计算可得甲x ≈25.401,乙x ≈25.406;s 甲≈0.037,s 乙≈0.068.从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40 mm),但是差异很小;从样本标准差看,由于s 甲<s 乙,因此甲生产的零件内径比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.点评:从上述例子我们可以看到,对一名工人生产的零件内径(总体)的质量判断,与所抽取的零件内径(样本数据)直接相关.显然,我们可以从这名工人生产的零件中获取许多样本.这样,尽管总体是同一个,但由于样本不同,相应的样本频率分布与平均数、标准差等都会发生改变,这就会影响到我们对总体情况的估计.如果样本的代表性差,那么对总体所作出的估计就会产生偏差;样本没有代表性时,对总体作出错误估计的可能性就非常大.这也正是我们在前面讲随机抽样时反复强调样本代表性的理由.在实际操作中,为了减少错误的发生,条件许可时,通常采取适当增加样本容量的方法.当然,关键还是要改进抽样方法,提高样本的代表性. 变式训练某地区全体九年级的3 000名学生参加了一次科学测试,为了估计学生的成绩,从不同学校的不同程度的学生中抽取了100名学生的成绩如下:100分12人,90分30人,80分18人,70分24人,60分12人,50分4人.请根据以上数据估计该地区3 000名学生的平均分、合格率(60或60分以上均属合格). 解:运用计算器计算得:100450126024701880309012100⨯+⨯+⨯+⨯+⨯+⨯=79.40, (12+30+18+24+12)÷100=96%,所以样本的平均分是79.40分,合格率是96%,由此来估计总体3 000名学生的平均分是79.40分,合格率是96%.思路2例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm 2),试根据这组数据估计哪一种水稻品种的产量比较稳定.品种 第1年 第2年 第3年 第4年 第5年 甲 9.8 9.9 10.1 10 10.2 乙 9.4 10.3 10.8 9.7 9.8 解:甲品种的样本平均数为10,样本方差为[(9.8-10)2 +(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02.乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.24.因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.例 2 为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.天数 151—180 181—210 211—240 241—270 271—300 301—330 331—360 361—390灯泡数 1 11 18 20 25 16 7 2 分析:用每一区间内的组中值作为相应日光灯的使用寿命,再求平均寿命.解:各组中值分别为165,195,225,255,285,315,345,375,由此算得平均数约为165×1%+195×11%天).这些组中值的方差为1001×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2 128.60(天2). 故所求的标准差约为60.2128≈46(天).答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天.知能训练(1)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为___________.(2)若给定一组数据x 1,x 2,…,x n ,方差为s 2,则ax 1,ax 2,…,ax n 的方差为___________.(3)在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲 27 38 30 37 35 31 乙 33 29 38 34 28 36 试判断选谁参加某项重大比赛更合适?答案:(1)9.5,0.016 (2)a 2s 2 (3)甲x =33,乙x =33,s 甲2=347>s 乙2=337,乙的成绩比甲稳定,应选乙参加比赛更合适. 拓展提升某养鱼专业户在一个养鱼池放入一批鱼苗,一年以后准备出售,为了在出售以前估计卖掉鱼后有多少收入,这个专业户已经了解到市场的销售价是每千克15元,请问,这个专业户还应该了解什么?怎样去了解?请你为他设计一个方案.解:这个专业户应了解鱼的总重量,可以先捕出一些鱼(设有x 条),作上标记后放回鱼塘,过一段时间再捕出一些鱼(设有a 条),观察其中带有标记的鱼的条数,作为一个样本来估计总体,则鱼塘中鱼的总条数鱼的条数鱼塘中所有带有标记的条鱼中带有标记的条数)(x a a . 这样就可以求得总条数,同时把第二次捕出的鱼的平均重量求出来,就可以估计鱼塘中的平均重量,进而估计全部鱼的重量,最后估计出收入.课堂小结1.用样本的数字特征估计总体的数字特征分两类:用样本平均数估计总体平均数,平均数对数据有“取齐”的作用,代表一组数据的平均水平.用样本标准差估计总体标准差.样本容量越大,估计就越精确,标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.2.用样本估计总体的两个手段(用样本的频率分布估计总体的分布;用样本的数字特征估计总体的数字特征),需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本容量越大,估计的结果也就越精确.作业习题1—5 3.设计感想统计学科,最大的特点就是与现实生活的密切联系,也是新教材的亮点.仅仅想借助“死记硬背一些概念及公式,简单模仿课本例题”来学习,是绝对不行的.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差,其原因在于样本的随机性.这种偏差是不可避免的.虽然我们从样本数据得到的分布、均值和标准差并不是总体的真正分布、均值和标准差,而只是总体的一个估计,但这种估计是合理的,特别是当样本的容量很大时,它们确实反映了总体的信息.教师建议:亲身经历“提出问题,收集数据,分析数据,并作出合理决策”过程,在此过程中不仅可以加深对概念等知识的深刻理解,更重要的是发展了思维,培养了分析及解决问题能力,同时在情感、意志等领域也得到了协调发展,这才是学校学习的科学而全面的目标,习题设置有层次,尽量源于教材,又高于教材,这也是高考命题原则.。

高中数学必修三北师大版 数据的数字特征教案

高中数学必修三北师大版  数据的数字特征教案

1.4数据的数字特征(设计者阜阳三中侯斌斌)【教学背景分析】本节课是高中数学必修3,第一章第4节。

在初中,学生已经学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。

在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。

【教学目标】1、知识与技能能结合具体情境理解不同数字特征的意义和作用,并能根据问题的需要选择适当的数字特征表达数据的信息,培养学生解决问题的能力。

2、过程与方法在分析和解决具体实际问题的过程中学会用恰当的统计量表示数据的方法,并能结合统计量对所给数据的分布情况作出合理的解释。

3、情感态度与价值观通过对现实生活和其他学中统计问题的分析和解决,体会用数学知识解决现实生活及各学问题的方法,认识数学的重要性。

【教学重、难点】教学重点:平均数、中位数、众数、极差、方差、标准差的计算、意义和作用。

教学难点:根据问题的需要选择适当的数字特征表达数据的信息。

【教学过程】教学环节一:创设情境引入新课教学内容提出问题:甲、乙两种玉米苗各抽10株,分别测得它们的株高如下(单位:cm)问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?教师点出课题:数据的数字特征师生互动:引导学生讨论、质疑、并提出问题设计意图:通过实例引起学生对平均数的实际意义产生质疑从而引出课题,引导学生从多角度观察数据的数字特征。

教学环节二:巩固复习 提出问题1、 什么叫平均数?有什么意义?2、 什么叫中位数?有什么意义?3、 什么叫众数?有什么意义?4、 什么叫极差?有什么意义?5、什么叫方差?有什么意义?讨论结果: 1、一组数据的和与这组数据的个数的商称为这组数据的平均数。

数据12,,,n x x x 的平均数为12nx x x x n+++= 。

平均数代表该组数据的平均水平。

2、一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数。

2018-2019学年高一数学北师大版必修三教学案:第一章§4 数据的数字特征

2018-2019学年高一数学北师大版必修三教学案:第一章§4 数据的数字特征

[核心必知]1.众数、中位数、平均数 (1)众数的定义:一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.(2)中位数的定义及求法:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)平均数: ①平均数的定义:如果有n 个数x 1、x 2、…、x n ,那么x =x 1+x 2+…+x nn,叫作这n 个数的平均数.②平均数的分类:总体平均数:总体中所有个体的平均数叫总体平均数. 样本平均数:样本中所有个体的平均数叫样本平均数. 2.标准差、方差 (1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =1nx 1-x2+x 2-x2+…+x n -x2].(2)方差的求法:标准差的平方s 2叫作方差.s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].其中,x n 是样本数据,n 是样本容量,x 是样本均值. (3)方差的简化计算公式:s 2=1n[(x 21+x 22+…+x 2n )-n x 2]=1n(x21+x22+…+x2n)-x2.3.极差一组数据的最大值与最小值的差称为这组数据的极差.4.数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.[问题思考]1.一组数据的众数一定存在吗?若存在,众数是唯一的吗?提示:不一定.若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数;不是,可以是一个,也可以是多个.2.如何确定一组数据的中位数?提示:(1)当数据个数为奇数时,中位数是按从小到大顺序排列的中间位置的那个数.(2)当数据个数为偶数时,中位数为排列在最中间的两个数的平均值.讲一讲1.据报道,某公司的33名职工的月工资(单位:元)如下:(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[尝试解答] (1)平均数是x=1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)新的平均数是x′=1500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.1.众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.2.众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋势.练一练1.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额.解:(1)平均数为115(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平.销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额.讲一讲2.甲、乙两机床同时加工直径为100 cm的零件,为了检验质量,各从中抽取6件进行测量,分别记录数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. [尝试解答] (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100,s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均数相同,又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性就越差;方差越小,数据越集中,质量越稳定.练一练2.对划艇运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲:27 38 30 37 35 31 乙:33 29 38 34 28 36根据以上数据,试估计两人最大速度的平均数和标准差,并判断他们谁更优秀. 解:x 甲=16×(27+38+30+37+35+31)=1986=33,s 2甲=16×[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]=946, s 甲=946≈3.96, x 乙=16×(33+29+38+34+28+36)=1986=33, s 2乙=16×[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=766,s 乙=766≈3.56. 由上知,甲、乙两人最大速度的平均数均为33 m/s ,甲的标准差为3.96 m/s ,乙的标准差为3.56 m/s ,说明甲、乙两人的最大速度的平均值相同,但乙的成绩比甲的成绩更稳定,故乙比甲更优秀.讲一讲3.在一次科技知识竞赛中,两组学生的成绩如下表:已经算得两个组的平均分都是80分.请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由.[尝试解答] (1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)x 甲=12+5+10+13+14+6(50×2+60×5+70×10+80×13+90×14+100×6)=150×4 000=80(分), x 乙=14+4+16+2+12+12(50×4+60×4+70×16+80×2+90×12+100×12)=150×4 000=80(分).s 2甲=12+5+10+13+14+6[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s 2乙=14+4+16+2+12+12[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s 2甲<s 2乙,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,∴乙组成绩集中在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.要正确处理此类问题,首先要抓住问题中的关键词语,全方位地进行必要的计算、分析,而不能习惯性地仅从样本方差的大小去决定哪一组的成绩好,像这样的实际问题还得从实际的角度去分析,如本讲的“满分人数”;其次要在恰当地评估后,组织好正确的语言作出结论.练一练3.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图所示:(1)请填写下表:(2)从下列三个不同角度对这次测试结果进行分析:①从平均数和中位数相结合看,谁的成绩好些?②从平均数和命中9环及9环以上的次数相结合看,谁的成绩好些?③从折线图中两人射击命中环数的走势看,谁更有潜力?解:(1)由图可知,甲打靶的成绩为:2,4,6,8,7,7,8,9,9,10;乙打靶的成绩为:9,5,7,8,7,6,8,6,7,7.甲的平均数是7,中位数是7.5,命中9环及9环以上的次数是3;乙的平均数是7,中位数是7,命中9环及9环以上的次数是1.(2)由(1)知,甲、乙的平均数相同.①甲、乙的平均数相同,甲的中位数比乙的中位数大,所以甲成绩较好.②甲、乙的平均数相同,甲命中9环及9环以上的次数比乙多,所以甲成绩较好.③从折线图中看,在后半部分,甲呈上升趋势,而乙呈下降趋势,故甲更有潜力.【解题高手】【多解题】一个球队所有队员的身高如下(单位:cm):178, 179, 181, 182, 176, 183, 176, 180, 183, 175, 181, 185, 180, 184,问这个球队的队员平均身高是多少?(精确到1 cm) [解] 法一:利用平均数的公式计算.x -=114×(178+179+181+…+180+184)=114×2 523≈180.法二:建立新数据,再利用平均数简化公式计算. 取a =180,将上面各数据同时减去180,得到一组数据: -2,-1,1,2,-4,3,-4,0,3,-5,1,5,0,4. x -′=114×(-2-1+1+2-4+3-4+0+3-5+1+5+0+4)=114×3=314≈0.2,∴x -=x -′+a =0.2+180≈180. 法三:利用加权平均数公式计算. x -=114×(185×1+184×1+183×2+182×1+181×2+180×2+179×1+178×1+176×2+175×1)=114×2 523≈180.法四:建立新数据(方法同法二),再利用加权平均数公式计算. x -′=114×[5×1+4×1+3×2+2×1+1×2+0×2+(-1)×1+(-2)×1+(-4)×2+(-5)×1]=114×3≈0.2. ∴x -=x -′+a =0.2+180≈180.1.已知一组数据为20,30,40,50,50,60,70,80,其中平均数,中位数和众数大小关系是( )A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .众数=中位数=平均数解析:选D 可得出这组数据的平均数、中位数和众数均为50.2.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( )A.65 B.65C. 2 D .2 解析:选D ∵样本的平均数为1,即15×(a +0+1+2+3)=1,∴a =-1,∴样本方差s 2=15×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.3.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92 解析:选A 将这组数据从小到大排列,得87,89,90,91,92,93,94,96. 故平均数x =87+89+90+91+92+93+94+968=91.5,中位数为91+922=91.5.4.(湖南高考)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解析:该运动员五场比赛中的得分为8,9,10,13,15,平均得分x =8+9+10+13+155=11,方差s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.答案:6.85.甲、乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下:则两人射击成绩的稳定程度是________. 解析:∵x -甲=8,x -乙=8,s 2甲=1.2,s 2乙=1.6,∴s 2甲<s 2乙.∴甲稳定性强. 答案:甲比乙稳定6.某农科所为寻找高产稳定的油菜品种,选了三个不同的油菜品种进行试验,每一品种在五块试验田试种.每块试验田的面积为0.7公顷,产量情况如下表:解:x 1=21.0 kg ,x 2=21.0 kg ,x 3=20.48 kg ;s 21=0.572,s 22=2.572,s 23=3.5976,∴x 1=x 2>x 3,s 21<s 22<s 23. ∴第一个品种既高产又稳定.一、选择题1.在某项体育比赛中,七位裁判为一选手打出的分数为:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .92,2B .92,2.8C .93,2D .93,2.8解析:选B 去掉最高分95和最低分89后,剩余数据的平均数为x =90+90+93+94+935=92,方差为s 2=15×[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=15×(4+4+1+4+1)=2.8.2.已知一组数据为-3,5,7,x,11,且这组数据的众数为5,那么数据的中位数是( ) A .7 B .5 C .6 D .11解析:选B 这组数据的众数为5,则5出现的次数最多,∴x =5,那么这组数据按从小到大排列为-3,5,5,7,11,则中位数为5.3.如图所示,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x A 和x B ,样本标准差分别为s A 和s B ,则( )A.x A >x B ,s A >s BB.x A <x B ,s A >s BC.x A >x B ,s A <s BD.x A <x B ,s A <s B 解析:选B A 中的数据都不大于B 中的数据,所以x A <x B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m 0,平均数为x ,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x解析:选D 易知中位数的值m e =5+62=5.5,众数m 0=5,平均数x =130×(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)≈6,所以m 0<m e <x .5.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .57.2 3.6B .57.2 56.4C .62.8 63.6D .62.8 3.6 解析:选D 设该组数据为x 1,x 2,…,x n ,则1n(x 1+x 2+…+x n )=2.8,1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6,所以,所得新数据的平均数为1n [(x 1+60)+(x 2+60)+…+(x n +60)]=1n(x 1+x 2+…+x n )+60=2.8+60=62.8.所得新数据的方差为1n[(x 1+60-62.8)2+(x 2+60-62.8)2+…+(x n +60-62.8)2]=1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6. 二、填空题6.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x =________.解析:由中位数的定义知x +172=16,∴x =15.答案:157.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表所示:则以上两组数据的方差中较小的一个为s 2=________. 解析:计算可得两组数据的平均数均为7, 甲班的方差s 2甲=-2+02+02+-2+025=25; 乙班的方差s 2乙=-2+02+-2+02+-25=65. 则两组数据的方差中较小的一个为s 2甲=25.答案:258.(湖北高考)某学员在一次射击测试中射靶10次,命中环数如下:7, 8,7,9,5,4,9,10,7,4则(1)平均命中环数为________;(2)命中环数的标准差为________.解析:(1)由公式知,平均数为110(7+8+7+9+5+4+9+10+7+4)=7;(2)由公式知,s 2=110(0+1+0+4+4+9+4+9+0+9)=4⇒s =2.答案:(1)7 (2)2 三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50户居民每天丢弃旧塑料袋的平均数、众数和中位数;(2)求这50户居民每天丢弃旧塑料袋的标准差.解:(1)平均数x=150×(2×6+3×16+4×15+5×13)=18550=3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97,所以标准差s≈0.985.10.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)请你对下面的一段话给予简要分析:甲了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.解:(1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得名次来判断学习成绩的好坏,小刚得了85分,说明他对这阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。

2020-2021学年数学北师大版必修3学案:1.4数据的数字特征含解析

2020-2021学年数学北师大版必修3学案:1.4数据的数字特征含解析

2020-2021学年数学北师大版必修3学案:1.4数据的数字特征含解析§4 数据的数字特征知识点一众数、中位数、平均数[填一填]1.众数(1)定义:一组数据中出现次数最多的数称为这组数据的众数. (2)特征:一组数据的众数可能多个,也可能没有,它反映了该组数据的频率分布.2.中位数(1)定义:一组数据按从小到大(或从大到小)的顺序排成一列,处于中间位置的数称为这组数据的中位数.(2)特征:一组数据中的中位数是唯一的,反映了该组数据的集中趋势.3.平均数(1)定义:一组数据的和与这组数据的个数的商叫作这组数据的平均数,数据x 1,x 2,…,x n 的平均数为x =x 1+x 2+…+x n n. (2)特征:平均数对数据有“取齐”的作用,代表该组数据的平均水平.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的平均水平,但平均数受数据中的每一个数据的影响较大,使平均数在估计总体时可靠性降低.[答一答]1.一组数据的平均数是否一定能说明现实中的平均水平?提示:在用平均数估计总体时,样本中的每一个数据都会影响到平均数的大小,因此在实际操作中,一定要注意异常数据对平均数的影响,以便作出正确估计.比如:某地区的年平均家庭年收入是10万元,给人的印象是这个地区的家庭年收入普遍较高.但是,如果这个平均数是从200户贫困家庭和20户极富有的家庭年收入计算出来的,那么,它就既不能代表贫困家庭的年收入,也不能代表极富有家庭的年收入.知识点二标准差、方差、极差[填一填]4.标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s 表示,通常用以下公式来计算s 可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.5.方差(1)定义:标准差的平方,即s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)特征:与标准差的作用相同,描述一组数据围绕平均数波动的(3)取值范围:s2≥0.6.极差(1)定义:一组数据的最大值和最小值的差称为这组数据的极差.(2)特征:表示该组数据之间的差异情况.[答一答]2.怎样正确理解标准差与方差.提示:①标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.②标准差、方差的取值范围:[0,+∞).标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性.③因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.1.三种数字特征应注意以下四点(1)众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.(3)中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋(4)实际问题中求得的平均数、众数和中位数应带上单位.2.关于方差、标准差应注意以下几点(1)样本标准差反映了各样本数据聚集于样本平均值周围的程度,标准差越小,表明各个样本数据在样本平均数周围越集中;反之,表明各样本数据在样本平均数的两边越分散.(2)若样本数据都相等,则s=0.(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数字特征,而样本数据的离散程度,就由标准差来衡量.(4)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差和标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般采用标准差.类型一平均数、中位数、众数【例1】据报道,某销售公司有33名职工,他们所在部门及相应每人所创年利润如下表所示(单位:万元):部门 A B C D E F G人数11215320 每人所创年利润 5.55 3.53 2.52 1.5(2)假设部门A所创年利润从5.5万元提高到30万元,部门B所创年利润由5万元提高到20万元,那么新的平均数、中位数、众数、极差又是多少?(3)你认为哪个统计量更能反映这个公司职工每人所创年利润的平均水平?【思路探究】(1)(2)根据表中数据及平均数、中位数、众数、极差的定义求解.(3)分析各统计量与公司职工每人所创年利润的关系→看其是否偏离一般情况【解】(1)x=5.5+5+3.5×2+3+2.5×5+2×3+1.5×2033≈2.1(万元),中位数为1.5万元,众数为1.5万元,极差为4万元.(2)x=30+20+3.5×2+3+2.5×5+2×3+1.5×2033≈3.3(万元),中位数为1.5万元,众数为1.5万元,极差为28.5万元.(3)中位数或众数均能反映该公司职工每人所创年利润的平均水平.这是因为公司中少数人每人所创年利润与大多数人每人所创年利润差别较大,这样导致平均数与中位数或众数偏差较大,所以平均数不能反映这个公司职工每人所创年利润的平均水平.规律方法中位数、众数、平均数的选择标准平均数、中位数、众数均反映了样本数据的“集中趋势”,但各有侧重,在实际生活中应结合实际情况,灵活应用.(1)平均数与每一个样本数据都有关,任何一个样本数据的改变都可能会引起平均数的改变.(2)众数考查各数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,众数往往更能反映数据的集中趋势.(3)中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响.中位数可能在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述数据的集中趋势.因此,若平均数受数据中的极端值影响较大时,估计的可靠性就较低,这时可用众数、中位数来表示这组数据的集中趋势.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:销售量(件) 1 800 510 250 210 150 120 人数113532(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额.解:(1)平均数为115(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平.销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额.类型二方差和标准差【例2】甲、乙两机床同时加工直径为100cm 的零件,为检验质量,从中抽取6件测量数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定.【思路探究】着眼点——直接利用x 及s 2的公式求解(1)—先比较x 的大小,再分析s 2的大小【解】(1)x -甲=16(99+100+98+100+100+103)=100,x -乙=16(99+100+102+99+100+100)=100,s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x -甲=x -乙,比较它们的方差.∵s 2甲>s 2乙,故乙机床加工零件的质量更稳定.规律方法(1)在实际问题中,仅靠平均数不能完全反映问题,还要研究其偏离平均值的离散程度(即方差或标准差),方差大说明取值分散性大,方差小说明取值分散性小或者取值集中、稳定.(2)关于统计的有关性质及规律:①若x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数是m x +a ;②数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…,x n +a 的方差相等;③若x 1,x 2,…,x n 的方差为s 2,那么ax 1,ax 2,…,ax n 的方差为a 2s 2.甲、乙两人参加某体育项目训练,近期的五次测试成绩如图所示.(1)分别求出两人成绩的平均数与方差;(2)根据上图和(1)中结果,对两人的训练成绩作出评价.解:(1)由题图可得甲、乙两人五次测试的成绩分别为甲:10,13,12,14,16;乙:13,14,12,12,14. x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13, s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.类型三综合应用题【例3】对划艇运动员甲、乙二人在相同的条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下:甲:27,38,30,37,35,31;乙:33,29,38,34,28,36.根据以上数据,试判断他们谁更优秀.【思路探究】分别计算两组数据的平均值与方差,然后加以比较并作出判断.【解】 x -甲=16×(27+38+30+37+35+31)=33,s 2甲=16×[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2 +(31-33)2]=16×94≈15.7,x -乙=16×(33+29+38+34+28+36)=1986=33,s 2乙=16×[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=16×76≈12.7.∴x -甲=x -乙,s 2甲>s 2乙.这说明甲、乙二人的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀.规律方法判断甲、乙两运动员成绩的优劣,通常用平均数和方差作为标准来比较,当平均数相同时,还应考查他们的成绩波动情况(方差),以达到判断上的合理性和全面性.为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换,已知某校使用的100只日光灯在必须换掉前的使用天数如下表:(1)试估计这种日光灯的平均使用寿命; (2)若定期更换,可选择多长时间统一更换合适?解:(1)各组中值分别是165.5,195.5,225.5,255.5,285.5,315.5, 345.5,375.5,由此可算得平均数约为165.5×1%+195.5×11%+225.5×18%+255.5×20%+285.5×25%+315.5×16%+345.5×7%+375.5×2%=268.4≈268(天).(2)将各组中值对(1)问中的平均数求方差:1100×[1×(165.5-268.4)2+11×(195.5-268.4)2+18×(225.5-268.4)2+20×(255.5-268.4)2+25×(285.5-268.4)2+16×(315.5-268.4)2+7×(345.5-268.4)2+2×(375.5-268.4)2]=2 128.59.故标准差为2 128.59≈46(天).答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天,故可在222到314天左右统一更换较合适.类型四综合应用【例4】已知一组数据x i (i =1,2,…,n ),另一组数据y i ,满足y i =ax i +b (a 、b ∈R ),若x i (i =1,2,…,n )的平均数为x ,方差为s 21,标准差为s 1,则y i (i =1,2,…,n )的平均数y i 、方差s 22、标准差s 2分别为多少?【思路探究】该题主要考查学生对公式的理解与应用,熟记公式是关键.【解】由公式可得:x =1n (x 1+x 2+…+x n )s 21=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] s 1=s 21.又y i =ax i +b (i =1,2,…,n ),∴y =1n (y 1+y 2+…+y n )=1n [(ax 1+b )+(ax 2+b )+…+(ax n +b )] =1n [a (x 1+x 2+…+x n )+nb ]=a ·1n (x 1+x 2+…+x n )+b =a ·x +b ,∴s 22=1n [(y 1-y )2+(y 2-y )2+…+(y n -y )2]=1n {[(ax 1+b )-(a x +b )]2+[(ax 2+b )-(a x +b )]2+…+[(ax n +b )-(a x +b )]2}=1n [a 2(x 1-x )2+a 2(x 2-x )2+…+a 2(x n -x )2] =a 2·1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=a 2·s 21. ∴s 2=s 22=a 2·s 21=a ·s 1. 规律方法结合本题可总结出如下结论:若x 1,x 2,…,x n 的平均数是x ,方差是s 2,则①ax 1,ax 2,…,ax n 的平均数、方差为a x ,a 2s 2.②ax 1+b ,ax 2+b ,…,ax n +b 的平均数、方差为a x +b ,a 2s 2.若样本x 1+1,x 2+1,x 3+1,…,x n +1的平均数为10,方差为2,则对于样本x 1+2,x 2+2,…,x n +2,下列结论正确的是( C )A .平均数为10,方差为2B .平均数为11,方差为3C .平均数为11,方差为2D .平均数为12,方差为4解析:将一组数据中的每一个数增加同一常数时,方差不变,平均数再加上该常数.——规范解答——巧用分类讨论思想求数字特征【例5】(12分)某班4个小组的人数为10,10,x,8,已知该组数据的中位数与平均数相等,求这组数据的中位数.【思路点拨】x 的大小未知,可根据x 的取值不同分别求中位数.【满分样板】该组数据的平均数为14(x +28),中位数一定是其中两个数的平均数,由于x 不知是多少,所以要分几种情况讨论.(1)当x ≤8时,原数据按从小到大的顺序排列为x,8,10,10,其中位数为12×(10+8)=9.若14(x +28)=9,则x =8,此时中位数为9.4分(2)当8<="">2(x +10),则x =8.而8不在8<="">8分(3)当x>10时,原数据按从小到大的顺序排列为8,10,10,x ,其中位数为12×(10+10)=10.若14(x +28)=10,则x =12,此时中位数为10.综上所述,这组数据的中位数为9或10.12分【方法总结】当在数据中含有未知数x ,求该组数据的中位数时,由于x 的取值不同,所以数据由小到大(或由大到小)排列的顺序不同,由于条件的变化,问题的结果有多种情况,不能用同一标准或同一种方法解决,故需分情况讨论.讨论时要做到全面合理,不重不漏.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为10.解析:设5个班级中参加的人数分别为x1,x2,x3,x4,x5,则由题意知x1+x2+x3+x4+x55=7,(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2=20,五个整数的平方和为20,则必为0+1+1+9+9=20,由|x-7|=3可得x=10或x=4.由|x-7|=1可得x=8或x =6,由上可知参加的人数分别为4,6,7,8,10,故最大值为10.一、选择题1.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是(A)A.91.5和91.5 B.91.5和92C.91和91.5 D.92和92解析:x=90+18(-1-3+3+1+6+4+0+2)=91.5.中位数=91+922=91.5.2.甲、乙两台机床同时生产一种零件,现要检验它们的运行情况,统计10天中两台机床每天出的次品数分别为甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.则出次品数较少的为( B )A .甲B .乙C .相同D .不能比较解析:x 甲=1.5,x 乙=1.2. 二、填空题3.某高校有甲、乙两个数学建模兴趣班,其中甲班有40人,乙班有50人,现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是85分.解析:由题意:该校数学建模兴趣班的平均成绩40×90+50×8190=85分.4.某老师从星期一到星期五收到的信件数分别是10,6,8,5,6,则该组数据的方差s 2=3.2.解析:x =10+6+8+5+65=7,∴s 2=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=165=3.2.三、解答题5.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:解:x 甲=15×(60+80+70+90+70)=74;x乙=15×(80+60+70+80+75)=73;s2甲=15×(142+62+42+162+42)=104;s2乙=15×(72+132+32+72+22)=56.∵x甲>x乙,s2甲>s2乙,∴甲的平均成绩较好,乙的各门功课发展较平衡.。

【精品推荐】2019-2020学年高中数学北师大版必修3 第一章 4 数据的数字特征 课件(33张)

【精品推荐】2019-2020学年高中数学北师大版必修3 第一章 4 数据的数字特征 课件(33张)

训练题
1. [2019·山西太原高一联考]某人为了检测自己的解题速度,记录了5
次解题所花的时间(单位:分)分别为x,y,55,60,50.已知这组 数据的平均数为55,方差为 52 ,则|x-y|=( )
5
A.4 B.3 C.2 D.1
C 解析:因为这组数据的平均数为55,方差为 52 ,
5
所以x+y=110,(x-55)2+(y-55)2=2.设x=55+t,y=55-t, 因为( x-55)2+(y-55) 2=2,所以2t 2=2, 即t2=1.则|x-y|=2|t|=2.
2. [2019·河南信阳高级中学高一模拟]某班20位女同学平均分为甲、
乙两组,她们的劳动技术课考试成绩如下(单位:分): 甲组 60,90,85,75,65,70,80,90,95,80; 乙组 85,95,75,70,85,80,85,65,90,85. (1)试分别计算两组数据的极差、方差和标准差; (2)哪一组的成绩较稳定?
参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为
me,众数为mo,平均值为 x ,则 ( )
A.me=mo= x
B.me=mo< x C.me<mo<x
D.mo<me< x
(2)如图所示,样本A和B分别取自两个不同的总体,它们的样本平 均数分别为 xA 和 xB ,样本标准差分别为sA和sB,则 ( )
(3)∵ x甲 = x乙 ,s甲 > s乙 ,∴ 甲、乙两人的平均成绩相等,乙的成绩比
甲的成绩稳定一些,∴ 从成绩的稳定性考虑,可以选择乙参赛.(答
案不唯一,合理即可)
◆极差、方差、标准差的选择标准 (1)极差反映了一组数据变化的最大幅度,求解简单易行,但对极 端值非常敏感,因此很少使用. (2)方差、标准差反映了一组数据围绕平均数波动的大小,为了与 样本数据的单位保持相同,通常采用标准差. 注意:方差、标准差的计算量较大,计算时要注意数据的特点,选择 适当的计算方法,使得运算简便. 【点拨】 在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差 描述了数据相对平均数的离散程度.在平均数相同的情况下,方差越 大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据 越集中、越稳定.

高中数学必修3北师大版 数据的数字特征 学案(Word版含答案)

高中数学必修3北师大版 数据的数字特征 学案(Word版含答案)

§4数据的数字特征知识梳理1.数据的信息除了通过用各种统计图表来加工整理和表达之外,还可以通过一些统计量来表达.常用的统计量有平均数、中位数、众数、极差、方差、标准差等,它们都反映一组数据的集中趋势和离散程度.2.平均数是刻画一组数据集中趋势最常用的统计量.极差只是利用了数据中最大和最小的两个值,对极值过于敏感;方差的单位是原始数据的单位的平方,其算术平方根,即标准差与原始数据的单位相同,所以我们在实际统计中常用标准差来刻画数据的离散程度.知识导学样本的基本数字特征主要包括:众数、中位数、平均数、标准差.其中这些概念在初中已学过,因此学习本节前可先回顾表达样本中数字特征的有关概念,复习表达样本数据分布的频率分布直方图和频率分布表的结构特征.由于样本的数字特征定量地反映了数据的集中趋势与离散程度,所以学习时首先要明确各种基本数字特征量(如平均数、标准差等)的概念、含义及它们各自的特点;其次注意与样本的频率分布表和直方图结合起来理解用样本的基本数字特征如何估计总体的数字特征;尽可能地使用计算器、计算机来处理数据,以便更好地体会统计思想.计算数据x1,x2,…,x n的标准差的算法步骤如下:1.算出数据的平均数x;2.算出每个数据与平均数x的差x i-x;3.算出(2)中x i-x的平方;4.算出(3)中n个平方数的平均数,即为方差;5.算出(4)中平均数的算术平方根,即为标准差.学习中建议大家始终结合具体实例理解基本数字特征的概念和含义及用法.疑难突破1.方差、极差和标准差在表示数据的特征时分别具有什么特点?怎样根据这些数据的值理解数据的特征?剖析:刻画数据离散程度的统计量有极差、方差和标准差.方差、极差和标准差是从不同角度描述一组数据的离散趋势的.它们各自的特点及应用如下:虽然极差没有充分利用数据,不能提供更确切的信息,但由于只涉及两个数据,计算非常简便,所以极差在实际现场检查时经常利用,但极差没有考虑各中间值.方差虽然充分利用了所得到的数据,提供了更确切的信息.在统计中,方差能够较好地区别出不同组数据的分散情况或程度,但方差的单位是原始观测数据的单位的平方.而标准差能够和方差一样区分数据的分散情况,且其单位与原始观测数据的单位相同.2.刻画数据离散程度的方式是多种多样的,那么要比较准确地刻画数据的离散程度,应该注意哪些主要问题?剖析:刻画数据离散程度的度量,其理想形式应满足以下三条原则:首先,应充分利用所得到的数据,以便提供更确切的信息;其次,仅用一个数值来刻画数据的离散程度;另外,对于不同的数据集,当离散程度大时,该数值亦大.极差不满足上面的第一条原则.方差虽然满足上面的三条原则,但它的单位是原始观测数据的单位的平方,而刻画离散程度的一种理想度量应当具有与原数据相同的单位,解决这一局限性的方法是取方差的正的平方根,即标准差,因此我们通常用标准差来刻画数据的离散程度.典题精讲例1 从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下: 甲:7,8,6,8,6,5,9,10,7,4. 乙:9,5,7,8,7,6,8,6,7,7.(1)计算甲、乙两人射击命中环数的平均数和标准差; (2)比较两人的成绩,然后决定选择哪一个人参赛. 思路分析:数据x 1,x 2,…,x n 的平均数x =.21nx x x n+⋯++标准差s=.)()()(2222nx x x x x x n i -+⋯+-+-根据计算得平均数和标准差,分析甲、乙两人成绩的集中和离散程度,从而选择一人参赛. 解:(1)计算得x 甲=7,x 乙=7,s 甲=1.73,s 乙=1.10.(2)由(1)可知,甲、乙两人的平均成绩相等,但s 乙<s 甲,这表明乙的成绩比甲的成绩稳定一些,从成绩的稳定性考虑,可以选择乙参赛.黑色陷阱:对于常用的平均数、方差、标准差的公式要能够熟练记忆,不能将公式记错,造成计算上的失误,使得统计的结果失去真实的意义.另外应用求得的标准差的结论始终要特别注意标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.变式训练 对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:甲 60 80 70 90 70 乙8060708075问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡? 思路分析:根据一组数据x 1,x 2,…,x n 的平均数nx x x x n+⋯++=21和标准差s=.)()()(22221nx x x x x x n -+⋯+-+-计算得平均数和标准差的值,再分析甲、乙两人的学习情况. 解:x 甲=51(60+80+70+90+70)=74, x 乙=51(80+60+70+80+75)=73, s 甲2=51(142+62+42+162+42)=104,s 乙2=51(72+132+32+72+22)=56.∵x 甲>x 乙,s 甲2>s 乙2.∴甲的平均成绩较好,乙的各门功课发展较平衡. 例2 某企业员工的月工资资料如下(单位:元): 800 800 800 800 800 1 0001 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 200 1 200 1 2001 200 1 200 1 200 1 200 1 200 1 2001 200 1 200 1 200 1 200 1 200 1 2001 200 1 200 1 200 1 200 1 200 1 5001 500 1 500 1 500 1 500 1 500 1 5002 000 2 000 2 000 2 000 2 000 2 5002 500 2 500(1)计算该公司员工月工资的平均数、中位数和众数.(2)假如你去这家企业应聘职位,你会如何看待员工的收入情况?思路分析:平均数、中位数和众数都是用来描述数据集中趋势的统计量,它们又有各自的特点.平均数是将所有的数据都考虑进去得到的度量,它是反映数据集中趋势最常用的量;中位数可靠性较差,当一组数据中个别数据变动较大时,常用中位数表示数据的集中趋势;而众数求法较简便,也经常被用到.解:(1)经计算,公司员工的月工资的平均数为x=50500 2800800+⋯++=1 320(元),中位数为1 200,众数为1 200.(2)应该考虑用月工资的平均数1 320元作为月工资的代表,因为,一般来讲,月平均工资水平可以用来与同类企业的工资待遇作比较.绿色通道:大多情况下人们会把眼光仅停留在工资表中的最大与最小值处,把最高工资作为一个单位工资的评价,这是一种错误的评价方式.变式训练某学校高一(1)(2)班各有49名学生.两班在一次数学测验中的成绩统计如下:班级平均分众数中位数标准差(1)班79708719.8(2)班797079 5.2(1)请你对下面的一段话给予简要分析:(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均分79分,得70分的人最多,我得了85分,在班里算是上游了!”(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出教学建议.解:(1)由中位数可知,85分排在第25位之后,从位次上讲,不能说85分是上游;但也不能以位次来判断学习的好坏,小刚得了85分,说明他对这段的学习内容掌握得较好,从掌握学习的内容上讲,也可以说属于上游.(2)(1)班的成绩的中位数是87分,说明高于87分的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难学生的帮助.(2)班的中位数和平均数都是79分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的也很少,建议采取措施提高优秀率.例3画出下列四组数据的直方图,并说明它们的异同点.(1)5,5,5,5,5,5,5,5,5;(2)4,4,4,5,5,5,6,6,6;(3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8.思路分析:比较四组数据的异同可从它们的平均数、标准差这些基本特征入手,分析它们的集中趋势或离散程度.解:四组数据的直方图如图1-4-1.图1-4-1四组数据的平均数都是5.0,标准差分别是0.00,0.82,1.49,2.83.虽然它们有相同的平均数,但是它们的标准差不同,说明数据的分散程度是不一样的.绿色通道:直方图可以将我们所要求得的平均数、众数、中位数、标准差等数据一一用图形直观显示出来,帮助我们获取有用的信息,特别是在进行两组数据间的比较中,应用非常方便. 变式训练甲、乙两人数学成绩的茎叶图如图1-4-2:图1-4-2(1)求出这两名同学数学成绩的平均数和标准差;(2)比较这两名同学的成绩,谈谈你的看法.思路分析:首先由茎叶图读出数据,计算平均数,注意用简便方法,然后求出标准差,最后依据结果比较.解:(1)x甲=87,s甲=12.7;x乙=95,s乙=9.7.(2)由于x甲<x乙,s甲>s乙可知,甲的学习状况不如乙的学习状况.问题探究问题平均数真的很平均吗?导思:平均数又称均值,它是刻画一组数据平均状况的量.那么平均值真能如实反映一组数据的平均水平吗?可结合一个具体的实际问题来研究.探究:我们不妨通过一个具体的例子来探究这个问题.以下是某企业员工工资情况调查表:某企业员工及工资构成人员经理管理人员高级技工工人学徒周工资 2 200250220200100人数165101合计 2 200 1 500 1 100 2 000100(1)计算这个问题中工资的平均数;(2)在这个问题中,工资的平均数能客观地反映该企业的工资水平吗?为什么?本问题应着眼于平均数的特点及适应对象.一组数据的总和除以数据的个数所得的商就是平均数.由表格数据可知,平均数为(2 200+1 500+1 100+2 000+100)÷23=300.虽然平均数为300元/周,但由表格中所列出的数据可以看出,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂的工资水平.该问题说明平均数受数据中的极端值的影响较大,妨碍了对总体估计的可靠性.因此不能说平均值就一定能反映一组数据的平均水平.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——教学资料参考参考范本——2019-2020学年度北师大版必修三教学案:第一章§4数据的数字特征 Word版含答案______年______月______日____________________部门[核心必知]1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.(2)中位数的定义及求法:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)平均数:①平均数的定义:如果有n个数x1、x2、…、xn,那么=,叫作这n个数的平均数.②平均数的分类:总体平均数:总体中所有个体的平均数叫总体平均数.样本平均数:样本中所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=.(2)方差的求法:标准差的平方s2叫作方差.s2=[(x1-)2+(x2-)2+…+(xn-)2].其中,xn是样本数据,n是样本容量,是样本均值.(3)方差的简化计算公式:s2=[(x+x+…+x)-n2]=(x+x+…+x)-2.3.极差一组数据的最大值与最小值的差称为这组数据的极差.4.数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.[问题思考]1.一组数据的众数一定存在吗?若存在,众数是唯一的吗?提示:不一定.若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数;不是,可以是一个,也可以是多个.2.如何确定一组数据的中位数?提示:(1)当数据个数为奇数时,中位数是按从小到大顺序排列的中间位置的那个数.(2)当数据个数为偶数时,中位数为排列在最中间的两个数的平均值.讲一讲1.据报道,某公司的33名职工的月工资(单位:元)如下:职务董事长副董事长董事总经理经理管理员职员人数11215320工资 5 500 5 000 3 500 3 000 2 500 2 000 1 500(1)求该公司职工月工资的平均数、中位数、众数.(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[尝试解答] (1)平均数是=1 500+≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)新的平均数是′=1500+≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.1.众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.2.众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋势.练一练1.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:销售量(件) 1 800510250210150120人数11353 2(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额.解:(1)平均数为(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平.销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额.讲一讲2.甲、乙两机床同时加工直径为100 cm的零件,为了检验质量,各从中抽取6件进行测量,分别记录数据为:甲:99 100 98 100 100 103乙:99 100 102 99 100 100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.[尝试解答] (1)甲=(99+100+98+100+100+103)=100,x乙=(99+100+102+99+100+100)=100,s=[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=,s=[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均数相同,又s>s,所以乙机床加工零件的质量更稳定.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性就越差;方差越小,数据越集中,质量越稳定.练一练2.对划艇运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲:27 38 30 37 35 31乙:33 29 38 34 28 36根据以上数据,试估计两人最大速度的平均数和标准差,并判断他们谁更优秀.解:甲=×(27+38+30+37+35+31)==33,s=×[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]=,s甲=≈3.96,x乙=×(33+29+38+34+28+36)==33,s=×[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=,s乙=≈3.56.由上知,甲、乙两人最大速度的平均数均为33 m/s,甲的标准差为3.96 m/s,乙的标准差为3.56 m/s,说明甲、乙两人的最大速度的平均值相同,但乙的成绩比甲的成绩更稳定,故乙比甲更优秀.讲一讲3.在一次科技知识竞赛中,两组学生的成绩如下表:分数5060708090100人数甲组25101314 6 乙组441621212已经算得两个组的平均分都是80分.请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由.[尝试解答] (1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)甲=(50×2+60×5+70×10+80×13+90×14+100×6)=×4 000=80(分),x乙=(50×4+60×4+70×16+80×2+90×12+100×12)=×4 000=80(分).s=[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s=[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s<s,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,∴乙组成绩集中在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.要正确处理此类问题,首先要抓住问题中的关键词语,全方位地进行必要的计算、分析,而不能习惯性地仅从样本方差的大小去决定哪一组的成绩好,像这样的实际问题还得从实际的角度去分析,如本讲的“满分人数”;其次要在恰当地评估后,组织好正确的语言作出结论.练一练3.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图所示:(1)请填写下表:平均数中位数命中9环以上的次数(含9环)甲7乙(2)从下列三个不同角度对这次测试结果进行分析:①从平均数和中位数相结合看,谁的成绩好些?②从平均数和命中9环及9环以上的次数相结合看,谁的成绩好些?③从折线图中两人射击命中环数的走势看,谁更有潜力?解:(1)由图可知,甲打靶的成绩为:2,4,6,8,7,7,8,9,9,10;乙打靶的成绩为:9,5,7,8,7,6,8,6,7,7.甲的平均数是7,中位数是7.5,命中9环及9环以上的次数是3;乙的平均数是7,中位数是7,命中9环及9环以上的次数是1.(2)由(1)知,甲、乙的平均数相同.①甲、乙的平均数相同,甲的中位数比乙的中位数大,所以甲成绩较好.②甲、乙的平均数相同,甲命中9环及9环以上的次数比乙多,所以甲成绩较好.③从折线图中看,在后半部分,甲呈上升趋势,而乙呈下降趋势,故甲更有潜力.【解题高手】【多解题】一个球队所有队员的身高如下(单位:cm):178, 179, 181, 182,176, 183, 176, 180, 183, 175, 181, 185, 180, 184,问这个球队的队员平均身高是多少?(精确到1 cm)[解] 法一:利用平均数的公式计算.-=×(178+179+181+…+180+184)=×2 523≈180.x法二:建立新数据,再利用平均数简化公式计算.取a=180,将上面各数据同时减去180,得到一组数据:-2,-1,1,2,-4,3,-4,0,3,-5,1,5,0,4.-′=×(-2-1+1+2-4+3-4+0+3-5+1+5+0+4)=×3 x=≈0.2,∴=′+a=0.2+180≈180.法三:利用加权平均数公式计算.-=×(185×1+184×1+183×2+182×1+181×2+180×2+x179×1+178×1+176×2+175×1)=×2 523≈180.法四:建立新数据(方法同法二),再利用加权平均数公式计算.-′=×[5×1+4×1+3×2+2×1+1×2+0×2+(-1)×1+(-x2)×1+(-4)×2+(-5)×1]=×3≈0.2.∴=′+a=0.2+180≈180.1.已知一组数据为20,30,40,50,50,60,70,80,其中平均数,中位数和众数大小关系是( )A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.众数=中位数=平均数解析:选D 可得出这组数据的平均数、中位数和众数均为50.2.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( )A. B. C. D.2解析:选D ∵样本的平均数为1,即×(a+0+1+2+3)=1,∴a =-1,∴样本方差s2=×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.3.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )89 79 3 1 6 4 0 2A.91.5和91.5 B.91.5和92 C.91和91.5 D.92和92解析:选A 将这组数据从小到大排列,得87,89,90,91,92,93,94,96.故平均数==91.5,中位数为=91.5.4.(湖南高考)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为x1,x2,…,xn的平均数)解析:该运动员五场比赛中的得分为8,9,10,13,15,平均得分==11,方差s2=[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.答案:6.85.甲、乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下:甲68998乙107779则两人射击成绩的稳定程度是________.解析:∵甲=8,乙=8,s=1.2,s=1.6,∴s<s.∴甲稳定性强.答案:甲比乙稳定6.某农科所为寻找高产稳定的油菜品种,选了三个不同的油菜品种进行试验,每一品种在五块试验田试种.每块试验田的面积为0.7公顷,产量情况如下表:品种各试验田产量(kg)1 2 3 4 5121.520.422.021.219.9221.323.618.921.419.8317.823.321.419.120.8试评定哪一品种既高产又稳定.解:1=21.0 kg,2=21.0 kg,3=20.48 kg;s=0.572,s=2.572,s=3.5976,∴1=2>3,s<s<s.∴第一个品种既高产又稳定.一、选择题1.在某项体育比赛中,七位裁判为一选手打出的分数为:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.92,2 B.92,2.8 C.93,2 D.93,2.8解析:选B 去掉最高分95和最低分89后,剩余数据的平均数为==92,方差为s2=×[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=×(4+4+1+4+1)=2.8.2.已知一组数据为-3,5,7,x,11,且这组数据的众数为5,那么数据的中位数是( )A.7 B.5 C.6 D.11解析:选B 这组数据的众数为5,则5出现的次数最多,∴x=5,那么这组数据按从小到大排列为-3,5,5,7,11,则中位数为5.3.如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为A和B,样本标准差分别为sA和sB,则( )A.A>B,sA>sBB.A<B,sA>sBC.A>B,sA<sBD.A<B,sA<sB解析:选B A中的数据都不大于B中的数据,所以A<B,但A中的数据比B中的数据波动幅度大,所以sA>sB.4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为me,众数为m0,平均数为,则( )A.me=m0= B.me=m0< C.me<m0< D.m0<me<x解析:选 D 易知中位数的值me==5.5,众数m0=5,平均数=×(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)≈6,所以m0<me<.5.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.57.2 3.6 B.57.2 56.4 C.62.8 63.6 D.62.8 3.6解析:选D 设该组数据为x1,x2,…,xn,则(x1+x2+…+xn)=2.8,1[(x1-2.8)2+(x2-2.8)2+…+(xn-2.8)2]=3.6,n所以,所得新数据的平均数为[(x1+60)+(x2+60)+…+(xn+60)]=(x1+x2+…+xn)+60=2.8+60=62.8.所得新数据的方差为[(x1+60-62.8)2+(x2+60-62.8)2+…+(xn+60-62.8)2]=[(x1-2.8)2+(x2-2.8)2+…+(xn-2.8)2]=3.6.二、填空题6.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=________.解析:由中位数的定义知=16,∴x=15.答案:157.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表所示:学生1号2号3号4号5号甲班67787乙班67679则以上两组数据的方差中较小的一个为s2=________.解析:计算可得两组数据的平均数均为7,甲班的方差s==;乙班的方差s==.则两组数据的方差中较小的一个为s=.答案:258.(湖北高考)某学员在一次射击测试中射靶10次,命中环数如下:7, 8,7,9,5,4,9,10,7,4则(1)平均命中环数为________;(2)命中环数的标准差为________.解析:(1)由公式知,平均数为(7+8+7+9+5+4+9+10+7+4)=7;(2)由公式知,s2=(0+1+0+4+4+9+4+9+0+9)=4⇒s=2.答案:(1)7 (2)2三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:每户丢弃旧塑料袋个数234 5户数6161513(1)求这50户居民每天丢弃旧塑料袋的平均数、众数和中位数;(2)求这50户居民每天丢弃旧塑料袋的标准差.解:(1)平均数=×(2×6+3×16+4×15+5×13)==3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s2=×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=×48.5=0.97,所以标准差s≈0.985.10.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:班级平均分众数中位数标准差甲班79708719.8乙班797079 5.2(1)请你对下面的一段话给予简要分析:甲了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.解:(1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得名次来判断学习成绩的好坏,小刚得了85分,说明他对这阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。

相关文档
最新文档