人教版数学八年级下册《数据的波动程度》word教案
八年级数学下册 20.2 数据的波动程度教案 (新版)新人教版

20.2数据的波动程度一、教学目标1.了解方差的意义;能够利用方差解决实际问题;2.通过对实际问题情境的探究,形成方差的概念,感知其代表数据的意义;3.以积极情感态度投入到探究问题的过程中去,学会从不同的角度看问题和处理问题。
二、课时安排1课时三、教学重点理解方差意义。
四、教学难点准确的利用方差解决实际选择问题。
五、教学过程(一)新课导入【过渡】本章的第一节内容呢,我们主要学习了数据的集中趋势,包括用平均数、中位数以及众数去代表一组数据的趋势,相信大家都已经掌握了如何正确选择。
现在,我有一个新的问题想要问一下大家。
甲乙两名同学只能从中挑选一个参加竞赛。
老师特意把两名同学本学期五次测验的成绩列表如下:【过渡】根据我们学习过的知识,你能做出判断吗?(学生回答)【过渡】我们计算两位同学的成绩平均数均为90,但是最后,老师选择了甲同学参赛,你们知道为什么吗?今天我们就来探究一下。
(二)讲授新课【过渡】在新课进行之前,我们先通过几个简单的问题,来检测一下大家预习的成果吧。
【预习反馈】1、一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和42、在一次射击测试中,甲、乙、丙、丁四人的平均环数相同,方差分别是8.9,4.5,7.2,6.5.则这4人中成绩最稳定的是()A.甲B.乙C.丙D.丁3、有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B.C.2 D.【过渡】这几个题呢,既包括了方差的计算,也包括了方差的意义,大家都能回答正确,说明大家都有认真预习,现在我们就更进一步的区理解方差吧。
1.方差【过渡】要想解决刚刚我们的导入中如何选择的问题,我们先来看一下课本上的问题。
大家动手计算一下平均数。
【过渡】跟刚刚一样,我们计算出了两种玉米种子的平均产量,发现这两个平均数是相近的,这就说明两种玉米的差量相差不大,也可以估计出这个地区种植这两种玉米,平均产量不会相差太大。
2017春人教版数学八下20.2《数据的波动程度》word教案

P154例1
分析应注意的问题:题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
1.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
(2)哪种农作物的苗长得比较整齐?
2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?
测试次数
1
2
3
4
5
段巍
13
14
13
12
13
金志强
10
13
16
14
12
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐
2.段巍的成绩比金志强的成绩要稳定。
第五步;课后练习:
1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数相同,但S S ,所以确定去参加比赛。
3.甲、乙两台机床生产同种零件,10天出的次品分别是()
第三步:解例分析:
例1填空题;
(1)一组数据: , ,0, ,1的平均数是0,则 =.方差 .
(2)如果样本方差 ,
那么这个样本的平均数为.样本容量为.
(3)已知 的平均数 10,方差 3,则 的平均数为,方差为.
例2选择题:
(1)样本方差的作用是()
人教版数学八年级下册20.2数据的波动程度(教案)

-难点理解方差公式中的平方项对数据差异的放大作用,以及标准差作为方差的平方根在数据解读中的意义。
-理解方差和标准差在描述数据集中趋势外的离散程度的差异和互补性。
-对于计算过程中的数据处理的细节,如平均数的计算、平方项的累加等。
-例如,学生可能会对方差计算中出现的平方项感到困惑,需要通过具体例子解释其作用,如为什么需要平方来强调数据点与平均值的偏差。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了方差和标准差的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对数据的波动程度的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
其次,在实践活动环节,学生们在分组讨论和实验操作过程中表现出很高的积极性,但我也注意到有些小组在讨论时偏离了主题。针对这个问题,我将在下次课中加强引导,确保学生们能够围绕主题展开讨论,提高课堂效率。
此外,在学生小组讨论环节,我发现有些学生发言不够积极,可能是由于对讨论主题不够熟悉。为了提高学生的参与度,我计划在下次课中提前给出一些讨论话题,让学生们有更多时间准备,从而更加自信地参与到讨论中来。
人教版数学八年级下册20.2数据的波动程度(教案)
一、教学内容
人教版数学八年级下册第20章第2节“数据的波动程度”主要包括以下内容:
1.方差的定义与计算公式;
2.标准差的概念及其与方差的关系;
3.利用方差和标准差描述数据波动程度;
4.案例分析:实际数据中方差和标准差的计算与应用;
5.习题:针对方差和标准差的计算与应用进行巩固练习。
人教版初中数学八年级下册教学设计:《数据的波动》

人教版初中数学八年级下册教学设计:《数据的波动》一. 教材分析《数据的波动》是人教版初中数学八年级下册第20章的内容,主要包括方差、标准差和极差的概念及其计算方法。
本节内容是在学生掌握了平均数、中位数和众数的基础上进行的,是进一步研究数据波动性的一种重要方法。
通过本节的学习,使学生了解数据的波动性,能计算方差、标准差和极差,并会运用这些统计量来描述数据的波动程度,为后续的统计学知识打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了平均数、中位数和众数等基本统计量,对数据的集中趋势有一定的了解。
但对方差、标准差和极差等概念及计算方法可能较为陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对数据的波动性及其意义认识不足,需要通过生活中的实例来引导学生感受数据的波动性,增强他们的学习兴趣和实际应用能力。
三. 教学目标1.知识与技能目标:理解方差、标准差和极差的概念,掌握它们的计算方法,能运用这些统计量来描述数据的波动程度。
2.过程与方法目标:通过实例分析,培养学生的观察、分析和解决问题的能力。
3.情感态度与价值观目标:增强学生对数据的波动性的认识,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:方差、标准差和极差的概念及其计算方法。
2.难点:方差、标准差和极差的计算方法及其在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过生活中的实例引入概念,让学生在实际问题中感受数据的波动性;通过案例分析和小组讨论,引导学生掌握方差、标准差和极差的计算方法,培养学生的观察、分析和解决问题的能力。
六. 教学准备1.准备相关的实例和练习题,以便进行课堂讲解和练习。
2.准备课件,以便进行课堂教学。
七. 教学过程1.导入(5分钟)通过生活中的实例,如学习成绩、气温变化等,引导学生感受数据的波动性,激发学生的学习兴趣。
2.呈现(10分钟)介绍方差、标准差和极差的概念,并用课件展示它们的计算方法。
人教版数学八年级下册20.2《数据的波动程度》教案4

人教版数学八年级下册20.2《数据的波动程度》教案4一. 教材分析《数据的波动程度》是人教版数学八年级下册第20.2节的内容,主要介绍了方差、标准差的概念及其计算方法,目的是让学生理解数据的波动程度,并掌握用方差、标准差来衡量数据的稳定性。
本节内容是在学生已经掌握了数据的收集、整理、描述的基础上进行的,为后续学习概率和统计奠定了基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于数据的收集、整理和描述有一定的了解。
但是,对于方差、标准差的概念及其计算方法可能较为陌生,需要通过实例来引导学生理解和掌握。
此外,学生可能对于抽象的概念理解存在困难,需要教师通过具体的数据和实例来帮助学生理解。
三. 教学目标1.了解方差、标准差的概念,理解它们的意义。
2.学会计算方差、标准差。
3.能够运用方差、标准差来衡量数据的波动程度,判断数据的稳定性。
四. 教学重难点1.重点:方差、标准差的概念及其计算方法。
2.难点:对于方差、标准差的理解和运用。
五. 教学方法采用讲授法、案例教学法、小组合作法等多种教学方法,引导学生通过观察、思考、讨论、操作等活动,理解和掌握方差、标准差的概念及其计算方法,提高学生的数学思维能力和实践能力。
六. 教学准备1.准备相关的数据资料。
2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾数据的收集、整理、描述的过程,为新课的学习做好铺垫。
2.呈现(15分钟)展示一组数据,引导学生观察数据的波动情况。
然后,介绍方差、标准差的概念,并通过计算实例让学生感受方差、标准差在衡量数据波动程度方面的作用。
3.操练(15分钟)让学生分组进行练习,计算给定数据的方差、标准差。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)通过填空、选择题等形式,让学生巩固方差、标准差的概念和计算方法。
5.拓展(10分钟)引导学生思考:如何运用方差、标准差来判断数据的稳定性?举例说明。
人教版数学八下20.2《数据的波动》word教案

人教版数学八下20.2《数据的波动》w o r d教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN20.2.2 方差教学过程(3)方差主要应用在平均数相等或接近时(4)方差大波动大,方差小波动小,一般选波动小的方差的简便公式:推导:以3个数为例(二)标准差: 方差的算术平方根,即④并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量. 注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。
所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
第三步:解例分析:例1 填空题;(1)一组数据:2-,1-,0,x ,1的平均数是0,则x = .方差=2S. (2)如果样本方差[]242322212)2()2()2()2(41-+-+-+-=x x x x S ,那么这个样本的平均数为 .样本容量为 .(3)已知321,,x x x 的平均数=x 10,方差=2S 3,则3212,2,2x x x 的平均数为 ,方差为 .例2 选择题:(1)样本方差的作用是( )A 、估计总体的平均水平B 、表示样本的平均水平C 、表示总体的波动大小D 、表示样本的波动大小,从而估计总体的波动大小(2)一个样本的方差是0,若中位数是a ,那么它的平均数是( )A 、等于aB 、不等于 aC 、大于 aD 、小于a(3)已知样本数据101,98,102,100,99,则这个样本的标准差是( )A 、0B 、1C 、2D 、2。
人教版八年级数学下册数据的分析《数据的波动程度(第3课时)》示范教学设计

数据的波动程度(第3课时)教学目标1.让学生理解用样本的方差来估计总体的方差.2.会在实际应用中利用方差进行决策,知道利用方差进行决策的条件.3.了解常见的误用方差进行决策的情况.教学重点用样本的方差来估计总体的方差.教学难点在实际应用中合理地利用方差进行决策.教学过程知识回顾【问题】如何利用方差的意义说明实际问题?【师生活动】直接找学生回答.【答案】在解决实际问题时,方差的作用是反映数据的波动大小.运用方差解决实际问题的一般步骤是:先计算样本数据的平均数,当多组数据的平均数相等或相近时,再用方差来比较它们的稳定程度.【设计意图】通过这个问题,检验学生对利用方差的意义说明实际问题的掌握情况.新知探究一、探究学习【问题】某快餐公司的香辣鸡腿很受消费者欢迎.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.(1)快餐公司可以通过哪些方面来比较鸡腿的质量?(2)鸡腿的数量较多,无法一一进行测量比较,你能帮助快餐公司想出解决办法吗?(3)快餐公司检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如下表所示.根据表中数据,你认为快餐公司应该选购哪家加工厂的鸡腿?【师生活动】第(1)问:教师引导学生思考利用什么数据做决策,然后找学生回答. 第(2)问:小组讨论,然后找学生代表回答.第(3)问:学生计算,小组讨论,然后找学生代表回答. 最后教师整理这个问题的答案.【答案】解:(1)鸡腿质量的平均水平、鸡腿质量的稳定性. (2)采取抽样调查,利用样本来估计总体.(3)检查人员从甲、乙两家农副产品加工厂各随机抽取的15个鸡腿分别组成一个样本,样本数据的平均数分别是747472737515x ++++=≈甲, 757371757515x ++++=≈乙.样本数据的方差分别是22222(7475)(7475)(7275)(7375)=315s -+-++-+-≈甲, 22222(7575)(7375)(7175)(7575)=815s -+-++-+-≈乙.由x x ≈甲乙可知,两家加工厂的鸡腿质量大致相等;由22s s 甲乙<可知,甲加工厂的鸡腿质量更稳定,大小更均匀.因此,快餐公司应该选购甲加工厂生产的鸡腿.【新知】用样本的方差来估计总体的方差类似于用样本的平均数估计总体的平均数,考察总体的方差的时候,如果考察的总体包含很多个体,或者考察本身带有破坏性,实际中常常会用样本的方差来估计总体的方差.【设计意图】通过这个问题,让学生理解实际应用中用样本的方差来估计总体的方差,并会根据结果进行选择.二、典例精讲【例1】甲、乙两名同学本学年11次数学测验成绩(整数,单位:分)的统计图如下图所示.(1)分别求出他们成绩的平均分与方差;(2)请你从中挑选一人参加“学用杯”全国数学知识应用竞赛,并说明你挑选的理由. 【答案】解:(1)410099989693919089=9611x ⨯+++++++=甲,299298972969594292=9611x ⨯+⨯++⨯+++⨯=乙.2222(9896)(10096)(9396)=17.811s -+-++-≈甲,2222(9896)(9996)(9796)= 5.811s -+-++-≈乙.(2)甲、乙两人的平均分相同,从超过96分的次数来看,应选甲同学参加比赛,因为甲超过平均分的次数比乙多,比乙更容易获得高分;从成绩的稳定性来看,应选择乙同学参加比赛,因为乙的方差比甲的小,说明乙的成绩比较稳定.【归纳】用方差进行决策以不同的角度为出发点进行选择,得到的结论可能不同.具体选择应结合实际要求进行判断.【设计意图】检验学生对利用方差进行决策的掌握情况.【例2】某农场种植的甲、乙两种水稻,在连续6年中各年的平均产量(单位:t )如下:(1)完成下表:(2)为了提高水稻产量,你认为应推广_______种水稻. 【答案】解:(1)填表如下;(2)乙.【归纳】易错警示:22s s 甲乙<,说明甲种水稻的产量更稳定,所以易误认为应推广甲种水稻,而题目中乙种水稻的平均产量明显高于甲种水稻,所以应推广乙种水稻.要牢记:只有平均数相等或接近时,才有比较方差的意义.【设计意图】检验学生对利用方差进行决策的条件的掌握情况.【例3】某班拟派一名跳远运动员参加学校运动会,对甲、乙两名跳远运动员进行了 8次选拔比赛,他们的成绩(单位:m )如下:甲:3.68 3.65 3.68 3.69 3.72 3.71 3.68 3.63 乙:3.60 3.73 3.72 3.61 3.62 3.71 3.70 3.75由以上数据可得=x x 甲乙,22s s 甲乙<,且经预测,跳远3.70 m 可获得冠军,为了获得冠军的机会较大,你认为应派谁去?【答案】解:因为经预测,跳远3.70 m 可获得冠军,8次选拔赛中,甲有2次超过3.70 m ,而乙有5次达到或超过3.70 m ,所以为了获得冠军的机会较大,应派乙去.【归纳】易错警示:在平均数相等的前提下,方差小只能说明数据比较稳定,并不一定说明该运动员成绩“好”.竞赛选手的选拔要看很多方面,比如潜力、天赋、成绩的发展趋势等.【设计意图】进一步检验学生对利用方差进行决策的条件的掌握情况.课堂小结板书设计一、用样本的方差来估计总体的方差二、利用方差进行决策三、易错警示课后任务完成教材第127页练习.。
人教版数学八年级下册20.2《数据的波动程度》说课稿3

人教版数学八年级下册20.2《数据的波动程度》说课稿3一. 教材分析人教版数学八年级下册20.2《数据的波动程度》是本册的一个重要内容,它主要介绍了方差和标准差的概念,以及它们在描述数据波动程度方面的应用。
通过本节内容的学习,使学生能理解方差和标准差的概念,掌握它们的计算方法,并能够运用它们来判断数据的波动程度,从而提高学生分析问题和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了平均数、中位数、众数等描述数据集中趋势的统计量,对于数据的整理和分析已经有了一定的基础。
但是,学生对于数据的波动程度的认识还比较模糊,对于方差和标准差的概念以及计算方法还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握方差和标准差的概念和计算方法。
三. 说教学目标1.知识与技能目标:让学生理解方差和标准差的概念,掌握它们的计算方法,能够运用它们来判断数据的波动程度。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生的探究能力和合作意识。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的数学思维能力。
四. 说教学重难点1.教学重点:方差和标准差的概念,它们的计算方法,以及如何运用它们来判断数据的波动程度。
2.教学难点:方差和标准差的计算方法,以及如何根据它们来判断数据的波动程度。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流的教学方法,让学生在探究中发现问题、解决问题。
2.教学手段:利用多媒体课件,直观地展示数据的波动情况,帮助学生理解和掌握方差和标准差的概念和计算方法。
六. 说教学过程1.导入新课:通过展示一组数据的波动情况,引导学生思考如何描述这种波动程度,从而引出方差和标准差的概念。
2.自主学习:让学生自主阅读教材,理解方差和标准差的概念,掌握它们的计算方法。
3.合作交流:学生分组讨论,交流对方差和标准差的理解和计算方法,互相学习,共同进步。
4.教师讲解:教师针对学生的讨论情况,进行讲解,解答学生的疑问,重点讲解方差和标准差的计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据的波动程度
第一步:情景创设
乒乓球的标准直径为40mm ,质检部门从A 、B 两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。
结果如下(单位:mm ):
A 厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B 厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你认为哪厂生产的乒乓球的直径与标准的误差更小呢? (1) 请你算一算它们的平均数和极差。
(2) 是否由此就断定两厂生产的乒乓球直径同样标
准?
今天我们一起来探索这个问题。
探索活动
通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。
让我们一起来做下列的数学活动 算一算
把所有差相加,把所有差取绝对值相加,把这些差的平方相加。
想一想
你认为哪种方法更能明显反映数据的波动情况? 第二步:讲授新知: (一)方差
定义:设有n 个数据n x x x ,,
, 21,各数据与它们的平均数的差的平方分别是2
2
21)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用
])()()[(1
222212x x x x x x n
x n -++-+-= 来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance ),记作2
s 。
意义:用来衡量一批数据的波动大小
在样本容量相同的情况下,方差越大,说明数据的
波动越大, 越不稳定
归纳:(1)研究离散程度可用2
S
(2)方差应用更广泛衡量一组数据的波动大
小
(3)方差主要应用在平均数相等或接近时
(4)方差大波动大,方差小波动小,一般选
通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。
研究离散程度可用2
S
方差应用更广泛衡量一组数据的波动大小
波动小的
方差的简便公式:
推导:以3个数为例
(二)标准差:
方差的算术平方根,即
④
并把它叫做这组数据的标准差.它也是一个用来衡量一
组数据的波动大小的重要的量.
注意:波动大小指的是与平均数之间差异,那么用每个
数据与平均值的差完全平方后便可以反映出每个数据的
波动大小,整体的波动大小可以通过对每个数据的波动
大小求平均值得到。
所以方差公式是能够反映一组数据
的波动大小的一个统计量,教师也可以根据学生程度和
课堂时间决定是否介绍平均差等可以反映数据波动大小
的其他统计量。
第三步:解例分析:
例1 填空题;
(1)一组数据:2
-,1
-,0,x,1的平均数是0,
则x= .方差=
2
S .
(2)如果样本方差
方差主要应用在平均数
相等或接近时
方差大波动大,方差小波
动小,一般选波动小的
方差公式是能够反映一
组数据的波动大小的一
个统计量,教师也可以根
据学生程度和课堂时间
决定是否介绍平均差等
可以反映数据波动大小
的其他统计量。
[]
2
42322212)2()2()2()2(4
1
-+-+-+-=x x x x S ,
那么这个样本的平均数为 .样本容量为 . (3)已知321,,x x x 的平均数=x 10,方差=2
S 3,则
3212,2,2x x x 的平均数为 ,方差
为 . 例2 选择题: (1)样本方差的作用是( ) A 、估计总体的平均水平 B 、表示样本的平均水平 C 、表示总体的波动大小 D 、表示样本的波动大小,从而估计总体的波动大小 (2)一个样本的方差是0,若中位数是a ,那么它的平均数是( ) A 、等于a B 、不等于 a C 、大于 a D 、小于a (3)已知样本数据101,98,102,100,99,则这个样本的标准差是( ) A 、0 B 、1 C 、2 D 、2 (4)如果给定数组中每一个数都减去同一非零常数,则数据的( ) A 、平均数改变,方差不变 B 、平均数改变,方差改变 C 、平均数不变,方差不变 A 、平均数不变,方差改变 例3 为了考察甲、乙两种农作物的长势,分别从中抽取了10株苗,测得苗高如下:(单位:mm ) 甲:9,10,11,12,7,13,10,8,12,8 乙:8,13,12,11,10,12,7,7,9,11 请你经过计算后回答如下问题: (1)哪种农作物的10株苗长的比较高? (2)哪种农作物的10株苗长的比较整齐? 例1 分析应注意的问题:题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考
学会运用公式计算
考虑稳定性和整齐程度
可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
1.在求方差之前先要求哪个统计量,为什么?学生也可
以得出先求平均数,因为公式中需要平均值,这个问
题可以使学生明确利用方差计算步骤。
2.方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
第四步:随堂练习:
1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
2. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?
测试次数 1 2 3 4
段巍13 14 13 12
金志强10 13 16 14
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐
2.段巍的成绩比金志强的成绩要稳定。
复习巩固方差,反映数据波动大小的规律。
板书设计
作业布置
教学反思。