苏教版数学高一-数学苏教版必修一模块综合检测B
苏教版必修1高一数学《对数函数》习题及答案

高中学生学科素质训练—对数与对数函数一、选择题: 1.3log 9log 28的值是 ( )A .32 B .1 C .23 D .22.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是( )A .z <x <yB .x <y <zC .y <z <xD .z <y <x 3.已知x =2+1,则lo g 4(x 3-x -6)等于( )A.23 B.45 C.0D.214.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .ba ba +++12B .ba ba +++12C .ba ba +-+12D .ba ba +-+125.已知2 lg(x -2y )=lg x +lg y ,则y x 的值为( )A .1B .4C .1或4D .4 或 6.函数y =)12(log 21-x 的定义域为( )A .(21,+∞) B .[1,+∞)C .(21,1] D .(-∞,1)7.已知函数y =log 21 (ax 2+2x +1)的值域为R ,则实数a 的取值范围是 ( )A .a > 1B .0≤a < 1C .0<a <1D .0≤a ≤18.已知f (e x)=x ,则f (5)等于 ( )A .e 5B .5eC .ln5D .log 5e9.若1()log (01),(2)1,()a f x x a a f f x -=>≠<且且则的图像是 ( )A B C D10.若22log ()y x ax a =---在区间(,1-∞上是增函数,则a 的取值范围是( )A .[2-B .)22⎡-⎣C .(22⎤-⎦D .()22-11.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或12.函数),1(,11ln+∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xx B .),0(,11+∞∈-+=x e e y xx C .)0,(,11-∞∈+-=x e e y xx D .)0,(,11-∞∈-+=x e e y xx 二、填空题:13.计算:log 2.56.25+lg1001+ln e +3log 122+= . 14.函数y =log 4(x -1)2(x <1=的反函数为___ _______. 15.已知m >1,试比较(lg m )0.9与(lg m )0.8的大小 . 16.函数y =(log 41x )2-log 41x 2+5 在 2≤x ≤4时的值域为_____ _ .三、解答题:17.已知y =log a (2-ax )在区间{0,1}上是x 的减函数,求a 的取值范围.18.已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范围.19.已知f(x)=x2+(lg a+2)x+lg b,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?20.设0<x<1,a>0且a≠1,试比较|log a(1-x)|与|log a(1+x)|的大小.21.已知函数f(x)=log a(a-a x)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.22.在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.参考答案一、选择题: ADBCB CDCBA AB 二、填空题:13.213,14.y =1-2x (x ∈R ), 15. (lg m )0.9≤(lg m )0.8,16.8425≤≤y 三、解答题:17.解析:先求函数定义域:由2-ax >0,得ax <2又a 是对数的底数,∴a >0且a ≠1,∴x <a2 由递减区间[0,1]应在定义域内可得a2>1,∴a <2 又2-ax 在x ∈[0,1]是减函数∴y =log a (2-ax )在区间[0,1]也是减函数,由复合函数单调性可知:a >1 ∴1<a <218、解:依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立.当a 2-1≠0时,其充要条件是:⎪⎩⎪⎨⎧<--+=∆>-0)1(4)1(01222a a a 解得a <-1或a >35 又a =-1,f (x )=0满足题意,a =1,不合题意. 所以a 的取值范围是:(-∞,-1]∪(35,+∞) 19、解析:由f (-1)=-2 ,得:f (-1)=1-(lg a +2)+lg b =-2,解之lg a -lg b =1,∴ba=10,a =10b . 又由x ∈R ,f (x )≥2x 恒成立.知:x 2+(lg a +2)x +lg b ≥2x ,即x 2+x lg a +lg b ≥0,对x ∈R 恒成立,由Δ=lg 2a -4lg b ≤0,整理得(1+lg b )2-4lg b ≤0 即(lg b -1)2≤0,只有lg b =1,不等式成立. 即b =10,∴a =100.∴f (x )=x 2+4x +1=(2+x )2-3 当x =-2时,f (x ) min =-3. 20.解法一:作差法|log a (1-x )|-|log a (1+x )|=|a x lg )1lg(- |-|a x lg )1lg(+|=|lg |1a (|lg(1-x )|-|lg(1+x )|) ∵0<x <1,∴0<1-x <1<1+x ∴上式=-|lg |1a [(lg(1-x )+lg(1+x )]=-|lg |1a ·lg(1-x 2)由0<x <1,得,lg(1-x 2)<0,∴-|lg |1a ·lg(1-x 2)>0, ∴|log a (1-x )|>|log a (1+x )| 解法二:作商法|)1(log ||)1(log |x x a a -+=|log (1-x )(1+x )|∵0<x <1,∴0<1-x <1+x ,∴|log (1-x )(1+x )|=-log (1-x )(1+x )=log (1-x )x+11 由0<x <1,∴1+x >1,0<1-x 2<1 ∴0<(1-x )(1+x )<1,∴x+11>1-x >0 ∴0<log (1-x )x+11<log (1-x )(1-x )=1 ∴|log a (1-x )|>|log a (1+x )| 解法三:平方后比较大小∵log a 2(1-x )-log a 2(1+x )=[log a (1-x )+log a (1+x )][log a (1-x )-log a (1+x )] =log a (1-x 2)·log ax x +-11=|lg |12a ·lg(1-x 2)·lg x x +-11 ∵0<x <1,∴0<1-x 2<1,0<xx +-11<1 ∴lg(1-x 2)<0,lgxx+-11<0 ∴log a 2(1-x )>log a 2(1+x ),即|log a (1-x )|>|log a (1+x )| 解法四:分类讨论去掉绝对值当a >1时,|log a (1-x )|-|log a (1+x )|=-log a (1-x )-log a (1+x )=-log a (1-x 2) ∵0<1-x <1<1+x ,∴0<1-x 2<1 ∴log a (1-x 2)<0,∴-log a (1-x 2)>0当0<a <1时,由0<x <1,则有log a (1-x )>0,log a (1+x )<0 ∴|log a (1-x )|-|log a (1+x )|=|log a (1-x )+log a (1+x )|=log a (1-x 2)>0 ∴当a >0且a ≠1时,总有|log a (1-x )|>|log a (1+x )| 21.解析:(1)定义域为(-∞,1),值域为(-∞,1)(2)设1>x 2>x 1∵a >1,∴12x x a a>,于是a -2x a <a -1x a则log a (a -a 2x a )<log a (a -1xa ) 即f (x 2)<f (x 1)∴f (x )在定义域(-∞,1)上是减函数(3)证明:令y =log a (a -a x )(x <1),则a -a x =a y ,x =log a (a -a y ) ∴f -1(x )=log a (a -a x )(x <1)故f (x )的反函数是其自身,得函数f (x )=log a (a -a x )(x <1=图象关于y =x 对称. 22.解析:根据已知条件,A 、B 、C 三点坐标分别为(a ,log 2a ),(a +1,log 2(a +1)),(a +2,log 2(a +2)),则△ABC 的面积S=)]2(log [log 2)]2(log )1([log 2)]1(log [log 222222++-++++++a a a a a a222)]2([)1)(2(log 21+++=a a a a a )2()1(log 2122++=a a a aa a a 212log 21222+++=)211(log 2122a a ++= 因为1≥a ,所以34log 21)311(log 2122max =+=S友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
高一数学 课时跟踪检测(全一册) 苏教版必修

高一数学课时跟踪检测(全一册)苏教版必修课时跟踪检测一棱柱棱锥和棱台课时跟踪检测二圆柱圆锥圆台和球课时跟踪检测三直观图画法课时跟踪检测四平面的基本性质课时跟踪检测五空间两条直线的位置关系课时跟踪检测六直线与平面平行课时跟踪检测七直线与平面垂直课时跟踪检测八两平面平行课时跟踪检测九两平面垂直课时跟踪检测十空间几何体的表面积课时跟踪检测十一空间几何体的体积课时跟踪检测十二直线的斜率课时跟踪检测十三直线的点斜式方程课时跟踪检测十四直线的两点式方程课时跟踪检测十五直线的一般式方程课时跟踪检测十六两条直线的平行课时跟踪检测十七两条直线的垂直课时跟踪检测十八两条直线的交点课时跟踪检测十九平面上两点之间的距离课时跟踪检测二十点到直线的距离课时跟踪检测二十一圆的标准方程课时跟踪检测二十二圆的一般方程课时跟踪检测二十三直线与圆的位置关系课时跟踪检测二十四圆与圆的位置关系课时跟踪检测二十五空间直角坐标系课时跟踪检测二十六空间两点间的距离课时跟踪检测(一)棱柱、棱锥和棱台层级一学业水平达标1.关于如图所示的4个几何体,说法正确的是( )A.只有②是棱柱B.只有②④是棱柱C.只有①②是棱柱D.只有①②④是棱柱解析:选D 解决这类问题,要紧扣棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.图①②④满足棱柱的定义,正确;图③不满足侧面都是平行四边形,不正确.2.下面结论是棱台具备的性质的是( )①两底面相似;②侧面都是梯形;③侧棱都相等;④侧棱延长后都交于一点.A.①③B.①②④C.②④D.②③④解析:选B 用棱台的定义可知选B.3.下面图形中,为棱锥的是( )A.①③ B.①③④C.①②④ D.①②解析:选 C 根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.4.下列图形中,不能折成三棱柱的是( )解析:选C C中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.5.一个棱锥的各条棱都相等,那么这个棱锥一定不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选D 若满足条件的棱锥是六棱锥,则它的六个侧面都是正三角形,侧面的顶角都是60°,其和为360°,则顶点在底面内,与棱锥的定义相矛盾.6.一个棱柱至少有________个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.答案:5 4 37.两个完全相同的长方体,长、宽、高分别为5 cm,4 cm,3 cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,表面积最大的长方体的表面积为________ cm2.解析:将两个长方体侧面积最小的两个面重合在一起,得到的长方体的表面积最大,此时,所得的新长方体的长、宽、高分别为10 cm,4 cm,3 cm,表面积的最大值为2×(10×4+3×4+3×10)=164.答案:1648.如图,三棱台ABCA′B′C′,沿A′BC截去三棱锥A′ABC,则剩余部分是________.解析:在图中截去三棱锥A′ABC后,剩余的是以BCC′B′为底面,A′为顶点的四棱锥.答案:四棱锥A′BCC′B′9.如图,观察并分别判断①中的三棱镜,②中的螺杆头部模型有多少对互相平行的平面,其中能作为棱柱底面的分别有几对.解:图①中有1对互相平行的平面,只有这1对可以作为棱柱的底面.图②中有4对互相平行的平面,只有1对可以作为棱柱的底面.10.在一个长方体的容器中,里面装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解:(1)不对;水面的形状是矩形,不可能是其他非矩形的平行四边形.(2)不对;此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱,或五棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.层级二 应试能力达标1.下列命题正确的是( )A .有两个面互相平行,其余各面都是四边形的几何体叫做棱柱B .棱柱中互相平行的两个面叫做棱柱的底面C .棱柱的侧面是平行四边形,底面不是平行四边形D .棱柱的侧棱都相等,侧面都是平行四边形解析:选D 根据棱柱的定义可知D 正确.2.下列说法正确的是( )A .有2个面平行,其余各面都是梯形的几何体是棱台B .多面体至少有3个面C .各侧面都是正方形的四棱柱一定是正方体D .九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D 选项A 错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B 错误;选项C 错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D 正确.3.用一平行于棱锥底面的平面截某棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是3 cm,则棱台的高是( )A .12 cmB .9 cmC .6 cmD .3 cm解析:选D 设原棱锥的高为h cm,依题意可得⎝ ⎛⎭⎪⎫3h 2=14,解得h =6,所以棱台的高为6-3=3(cm).4.五棱柱中,不同在任何侧面,且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A .20条B .15条C .12条D .10条解析:选D 由题意,知五棱柱的对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,所以五棱柱共有对角线2×5=10(条).故选D.5.在正方体上任意选择4个顶点,则可以组成的平面图形或几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,另一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:如图,在正方体ABCDA1B1C1D1上,若取A,B,C,D四个顶点,可得矩形;若取D,A,C,D1四个顶点,可得③中所述几何体;若取A,C,D1,B1四个顶点,可得④中所述几何体;若取D,D1,A,B四个顶点,可得⑤中所述几何体.故填①③④⑤.答案:①③④⑤6.如图,M是棱长为2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:137.根据下列关于空间几何体的描述,说出几何体的名称.(1)由6个平行四边形围成的几何体.(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形.(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底面,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.8.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2. 课时跟踪检测(二) 圆柱、圆锥、圆台和球层级一 学业水平达标1.有下列四个说法,其中正确的是( )A .圆柱的母线与轴垂直B .圆锥的母线长等于底面圆直径C .圆台的母线与轴平行D .球的直径必过球心解析:选D A :圆柱的母线与轴平行;B :圆锥的母线长与底面圆的直径不具有任何关系;C :圆台的母线延长线与轴相交.故D 正确.2.如图所示的图形中有( )A .圆柱、圆锥、圆台和球B .圆柱、球和圆锥C .球、圆柱和圆台D .棱柱、棱锥、圆锥和球解析:选B 根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.3.下列说法中正确的个数是( )①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A .0B .1C.2 D.3解析:选C ①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.4.如图所示的几何体是由下列哪个平面图形通过旋转得到的( )解析:选A 由题图知平面图应是一个直角三角形和一个直角梯形构成,故A正确.5.一个直角三角形绕斜边旋转360°形成的空间几何体是( )A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.将一个直角梯形绕其较短的底边所在的直线旋转一周得到一个几何体,则该几何体的结构特征是________________________________.答案:一个圆柱被挖去一个圆锥后所剩的几何体7.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这个截面把圆锥的母线分为两段的比是________.解析:∵截面面积与底面面积的比为1∶3,故小圆锥与大圆锥的相似比为1∶3,故小圆锥与大圆锥的母线长之比为1∶3,故小圆锥与所得圆台的母线长比为1∶(3-1).答案:1∶(3-1)8.将边长为4 cm和8 cm的矩形纸片卷成一个圆柱的侧面,则圆柱的轴截面的面积为________cm2.解析:当以4 cm为母线长时,设圆柱底面半径为r,则8=2πr,∴2r=8π.∴S轴截面=4×8π=32π(cm)2.当以8 cm为母线长时,设圆柱底面半径为R,则2πR=4,2R=4π.∴S轴截面=8×4π=32π(cm)2.综上,圆锥的轴截面面积为32πcm 2. 答案:32π9.将长为4宽为3的矩形ABCD 沿对角线AC 折起,折起后A ,B ,C ,D 在同一个球面上吗?若在求出这个球的直径.解:因为对角线AC 是直角三角形ABC 和直角三角形ADC 的公共斜边,所以AC 的中点O 到四个点的距离相等,即O 为该球的球心.所以AC 为球的一条直径,由勾股定理得AC =42+32=5.10.如图所示,直角梯形ABCD 中,AB ⊥BC ,绕着CD 所在直线l 旋转,试画出立体图并指出几何体的结构特征.解:如图①,过A ,B 分别作AO 1⊥CD ,BO 2⊥CD ,垂足分别为O 1,O 2,则Rt △CBO 2绕l 旋转一周所形成的曲面围成几何体是圆锥,直角梯形O 1ABO 2绕l 旋转一周所形成的曲面围成的几何体是圆台,Rt△ADO 1绕l 旋转一周所形成的曲面围成的几何体是圆锥.① ② 综上,所得几何体下面是一个圆锥,上面是一个圆台挖去了一个以圆台上底面为底面的圆锥.(如图②所示).层级二 应试能力达标1.下列结论正确的是( )A .用一个平面去截圆锥,得到一个圆锥和一个圆台B .经过球面上不同的两点只能作一个最大的圆C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D 须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A 错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.2.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是( )解析:选D 结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.3.一个正方体内接于一个球,过球心作一截面,如下图所示,则截面的可能图形是( )A.①②B.②④C.①②③D.②③④解析:选C 当截面平行于正方体的一个侧面时得③,当截面过正方体对角面时得②,当截面不平行于任何侧面也不过对角面时得①,但无论如何都不能得出④.4.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行平面间的距离为( )A.1 B.2C.1或7 D.2或6解析:选C 由截面的周长分别为6π和8π得两个截面半径分别为3和4,又球的半径为5,故圆心到两个截面的距离分别为4和3,故当两个截面在球心同一侧时,平行平面间的距离为4-3=1,当两个截面在球心两侧时,平行平面间的距离为4+3=7.5.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.解析:设底面半径为r,母线为l,则2πr=πl,∴l=2r.故两条母线的夹角为60°.答案:60°6.圆锥底面半径为1 cm,高为 2 cm,其中有一个内接正方体,则这个内接正方体的棱长为________ cm.解析:圆锥的轴截面SEF、正方体对角面ACC 1A1如图.设正方体的棱长为x cm,则AA1=x cm,A1C1=2x cm.作SO ⊥EF 于点O ,则SO = 2 cm,OE =1 cm.∵△EAA 1∽△ESO ,∴AA 1SO =EA 1EO ,即x 2=1-22x1.∴x =22,即该内接正方体的棱长为22 cm. 答案:227.一个圆锥的底面半径为2,高为6,在其中有一个高为x 的内接圆柱.(1)用x 表示圆柱的轴截面面积S ;(2)当x 为何值时,S 最大?解:(1)如图,设内接圆柱的底面圆半径为r , 由已知得6-x 6=r2,∴r =6-x3,∴S =2×6-x3×x =-23x 2+4x (0<x <6).(2)当x =-42×⎝ ⎛⎭⎪⎫-23=3时,S 最大.8.如图所示,已知圆柱的高为80 cm,底面半径为10 cm,轴截面上有P ,Q 两点,且PA =40 cm,B 1Q =30 cm,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?解:将圆柱侧面沿母线AA 1展开,得如图所示矩形.∴A 1B 1=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm),QS =A1B 1=10π(cm).∴PQ=PS2+QS2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.课时跟踪检测(三)直观图画法层级一学业水平达标1.根据斜二测画法的规则画直观图时,把Ox,Oy,Oz轴画成对应的O′x′,O′y′,O′z′,则∠x′O′y′与∠x′O′z′的度数分别为( ) A.90°,90°B.45°,90°C.135°,90° D.45°或135°,90°解析:选D 根据斜二测画法的规则,∠x′O′y′的度数应为45°或135°,∠x′O′z′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.2.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,如果按1∶500 的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为( ) A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.4 cm,0.5 cm,1 cm,0.8 cm解析:选C 直观图中长、宽、高应分别按原尺寸的1500,11 000,1500计算,最后单位转化为 cm.3.利用斜二测画法画边长为1 cm的正方形的直观图,可能是下面的( )解析:选C 正方形的直观图是平行四边形,且边长不相等,故选C项.4.如右图所示的水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC解析:选C 因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC>AD.5.水平放置的△ABC ,有一边在水平线上,用斜二测画法作出的直观图是正三角形A ′B ′C ′,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形解析:选C 将△A ′B ′C ′还原,由斜二测画法知,△ABC 为钝角三角形. 6.利用斜二测画法得到 ①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④矩形的直观图是矩形.以上结论,正确的是________(填序号).解析:斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.答案:①②7.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=3,B ′C ′∥x ′轴,则原平面图形的面积为________.解析:在直观图中,设B ′C ′与y ′轴的交点为D ′,则易得O ′D ′=32,所以原平面图形为一边长为6,高为62的平行四边形,所以其面积为6×62=36 2.答案:36 28.如图,一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是________.解析:由题意知平面图形为直角梯形ABCD ,其中,AD =AD ′=1,BC =B ′C ′=1+2,AB =2,即S 梯形ABCD =(1+1+2)2×2=2+ 2.答案:2+ 29.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm,CD =2 cm,∠DAB =30°,AD =3 cm,试画出它的直观图.解:(1)如图(a)所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy .如图(b)所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°.(2)在图(a)中,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm,A ′E ′=AE =3×32≈2.598 (cm);过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连结A ′D ′,B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图(c)所示,则四边形A ′B ′C ′D ′就是所求作的直观图.10.已知底面是正六边形,侧面都是全等的等腰三角形的六棱锥.请画出它的直观图. 解:作法:(1)画六棱锥P ABCDEF 的底面.①在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴交于点O .画相应的x ′轴和y ′轴、z ′轴,三轴交于点O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°.②以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN ,以N ′为中点画B ′C ′,使B ′C ′∥O ′x ′,B ′C ′=BC ;再以M ′为中点画E ′F ′,使E ′F ′∥O ′x ′,E ′F ′=EF .③连结A ′B ′,C ′D ′,D ′E ′,F ′A ′,得到正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′.(2)画六棱锥的顶点.在O ′z ′上截取点P ,使PO ′=PO .(3)成图,连结PA ′,PB ′,PC ′,PD ′,PE ′,PF ′,并擦去辅助线,改被遮挡部分为虚线,即得六棱锥P ABCDEF 的直观图六棱锥P A ′B ′C ′D ′E ′F ′.层级二 应试能力达标1.已知水平放置的△ABC 按斜二测画法得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( ) A .等边三角形 B .直角三角形C .三边中有两边相等的等腰三角形D .三边互不相等的三角形解析:选A 根据斜二测画法的原则,得BC =B ′C ′=2,OA =2A ′O ′=2×32=3,AO ⊥BC ,∴AB =AC =BC =2,∴△ABC 是等边三角形. 2.用斜二测画法画出的某平面图形的直观图如图所示,AB 边平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形A ′B ′C ′D ′的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意,可知∠BAD =45°,则原平面图形A ′B ′C ′D ′为直角梯形,上、下底边分别为B ′C ′,A ′D ′,且长度分别与BC ,AD 相等,高为A ′B ′,且长度为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.3.如图是利用斜二测画法画出的△ABO 的直观图,已知O ′B ′=4,A ′B ′∥y ′ 轴,且△ABO 的面积为16,过A ′作A ′C ′⊥x ′轴,则A ′C ′的长为( )A .2 2 B. 2 C .16 2D .1解析:选A 因为A ′B ′∥y ′轴,所以在△ABO 中,AB ⊥OB .又△ABO 的面积为16,所以12AB ·OB =16.所以AB =8,所以A ′B ′=4.如图,作A ′C ′⊥O ′B ′于点C ′,所以B ′C ′=A ′C ′,所以A ′C ′的长为4sin 45°=2 2.4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为 2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm解析:选D 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5 cm,在直观图中与z 轴平行的线段长度不变,仍为5 cm.5.有一个长为5,宽为4 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20,所以由公式S ′=24S ,得其直观图的面积为S ′=24S =5 2. 答案:5 26.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.解析:由直观图知,原平面图形为直角三角形,且AC =A ′C ′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.答案:2.57.在水平位置的平面M内有一边长为1的正方形A′B′C′D′.如图,其中对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.解:四边形ABCD的真实图形如图所示.∵A′C′为水平位置,∴四边形ABCD中,DA⊥AC.∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=2 2.8.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.解:如图,建立直角坐标系xOy,在x轴上取OA=O′A′=1 cm;在y轴上取OB=2O′B′=2 2 cm;在过点B的x轴的平行线上取BC=B′C′=1 cm.连结O,A,B,C各点,即得到了原图形.由作法可知,OABC为平行四边形,OC=OB2+BC2=8+1=3 cm,∴平行四边形OABC的周长为(3+1)×2=8 cm,面积为S=1×22=2 2 cm2.课时跟踪检测(四)平面的基本性质层级一学业水平达标1.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则( )A.l⊂αB.l⊄αC.l∩α=M D.l∩α=N解析:选A ∵M∈a,a⊂α,∴M∈α,同理,N∈α,又M∈l,N∈l,故l⊂α.2.下列命题中正确命题的个数是( )①三角形是平面图形;②梯形是平面图形;③四边相等的四边形是平面图形;④圆是平面图形.A.1个B.2个C.3个D.4个解析:选C 根据公理1可知①②④正确,③错误.故选C.3.已知直线m⊂平面α,P∉m,Q∈m,则( )A.P∉α,Q∈αB.P∈α,Q∉αC.P∉α,Q∉αD.Q∈α解析:选D 因为Q∈m,m⊂α,所以Q∈α.因为P∉m,所以有可能P∈α,也可能有P∉α.4.如果两个平面有一个公共点,那么这两个平面( )A.没有其他公共点B.仅有这一个公共点C.仅有两个公共点D.有无数个公共点解析:选D 根据公理2可知,两个平面若有一个公共点,则这两个平面有且只有一个经过该点的公共直线.故选D.5.若直线l上有两个点在平面α外,则( )A.直线l上至少有一个点在平面α内B.直线l上有无穷多个点在平面α内C.直线l上所有点都在平面α外D.直线l上至多有一个点在平面α内解析:选D 由已知得直线l⊄α,故直线l上至多有一个点在平面α内.6.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定平面的个数是________.解析:设四条直线为a,b,c,d,则这四条直线中每两条都确定一个平面,因此,a与b,a 与c,a与d,b与c,b与d,c与d都分别确定一个平面,共6个平面.答案:67.已知α,β是不同的平面,l,m,n是不同的直线,P为空间中一点.若α∩β=l,m⊂α,n⊂β,m∩n=P,则点P与直线l的位置关系用符号表示为________.解析:因为m⊂α,n⊂β,m∩n=P,所以P∈α且P∈β.又α∩β=l,所以点P在直线l上,所以P∈l.答案:P∈l8.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有________个.解析:用平面四边形和三棱锥的四个顶点判断,经过其中三个点的平面有1或4个.答案:1或49.如图,在正方体ABCDA1B1C1D1中,判断下列命题是否正确,并说明理由.(1)由点A,O,C可以确定一个平面;(2)由点A,C1,B1确定的平面为平面ADC1B1.解:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B1C1,所以点D∈平面AB1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.10.如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β,求证:AB,CD,l共点(相交于一点).证明:∵在梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴AB,CD必定相交于一点,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β.∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点.层级二应试能力达标1.能确定一个平面的条件是( )A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线解析:选D 不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确.2.下列推理错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合解析:选C 当l⊄α,A∈l时,也有可能A∈α,如l∩α=A,故C错.3.如图,已知平面α∩平面β=l,P∈β且P∉l,M∈α,N∈α,又MN∩l=R,M,N,P三点确定的平面记为γ,则β∩γ是( )A.直线MP B.直线NPC.直线PR D.直线MR解析:选C 因为MN⊂γ,R∈MN,所以R∈γ.又α∩β=l,MN∩l=R,所以R∈β.又P ∈β,P∈γ,所以P,R均为平面γ与β的公共点,所以β∩γ=PR.4.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则( )A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上解析:选B 由题意知GH⊂平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P ∈平面ABC.因为平面ABC∩平面ADC=AC,由公理2可知点P一定在直线AC上.5.三条直线两两相交,它们可以确定________个平面.解析:若三条直线两两相交,且不共点,则只能确定一个平面;若三条直线两两相交,且共点,则可以确定1个或3个平面.答案:1或36.三个平面两两相交,则将空间分成________个部分.解析:三个平面两两相交(1)若交于同一条直线,则将空间分成6个部分;(2)若交于三条交线①三条交线交于一点,则将空间分成8个部分;②若三条交线互相平行,则将空间分成7个部分;所以,三个这样的平面将空间分成6或7或8个部分.答案:6或7或87. 如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.解:延长AC,BD交于T, 连结ST,∵T∈AC,AC⊂平面SAC,。
新教材高中数学苏教版选择性必修一 学生版第2章 圆与方程 单元综合检测

第2章 圆与方程 单元综合检测(难点)一、单选题1.若直线l 经过圆22:40C x y x ++-=的圆心,且倾斜角为56π,则直线l 的方程为( )A 0y -+B .10x -=C 0y +=D .50x += 2.过点()2,1-的圆与两坐标轴都相切,则圆心到直线230x y ++=的距离为( )A B C D 3.已知从点()5,3-发出的一束光线,经x 轴反射后,反射光线恰好平分圆:()()22115x y -+-=的圆周,则反射光线所在的直线方程为( ) A .2310x y -+=B .2310x y --=C .3210x y -+=D .3210x y --=4.曲线2224x y x y +=+围成的图形的面积为( )A .8+10πB .16+10πC .5πD .5 5.直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为( )A .B .4C .D .6.已知直线:2l y x =+,过直线l 上的动点P 作圆221x y +=的两条切线,切点分别为A ,B ,则点()1,0Q 到直线AB 的距离最大值为( )A .32B .65CD 7.已知圆22:(1)(1)4C x y -+-=,P 为直线:220l x y 上的动点,过点P 作圆C 的切线PA ,切点为A ,当PAC △的面积最小时,PAC △的外接圆的方程为( )A .22115224x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭B .22119224x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭C .221524x y ⎛⎫+-= ⎪⎝⎭D .221524x y ⎛⎫-+= ⎪⎝⎭ 8.直线1ax by +=与圆221x y +=相交于不同的A ,B 两点(其中a ,b 是实数),且0(OA OB O⋅>是坐标原点),则点(),P a b 与点10,2⎛⎫ ⎪⎝⎭距离的取值范围为( )A .()1,+∞B .1,2⎛⎫+∞ ⎪⎝⎭C .12⎛ ⎝D .11,22⎛ ⎝ 二、多选题9.设圆的方程是()()2222x a y b a b -++=+,其中0a >,0b >,下列说法中正确的是( ) A .该圆的圆心为(),a bB .该圆过原点C .该圆与x 轴相交于两个不同点D .该圆的半径为22a b + 10.已知点(),A a b ,直线:0l ax by c ++=,圆22:1O x y +=,圆222:C x y c +=.下列命题中的真命题是( )A .若l 与圆C 相切,则A 在圆O 上B .若l 与圆O 相切,则A 在圆C 上 C .若l 与圆C 相离,则A 在圆O 外D .若l 与圆O 相交,则A 在圆C 外 11.设有一组圆()()()22:4R k C x k y k k -+-=∈,下列命题正确的是( )A .不论k 如何变化,圆心k C 始终在一条直线上B .存在圆kC 经过点(3,0)C .存在定直线始终与圆k C 相切D .若圆k C 上总存在两点到原点的距离为1,则k ⎛∈⋃ ⎝⎭⎝⎭12.已知圆C :()()22532x y -+-=,直线l :1y ax =+,则下列说法正确的是( ) A .当0a =时,直线l 与圆C 相离B .若直线l 是圆C 的一条对称轴,则25a =C .已知点N 为圆C 上的动点,若直线l 上存在点P ,使得45NPC ∠=︒,则a 的最大值为67D .已知(5,3M ,(),A s t ,N 为圆C 上不同于M 的一点,若90MAN ∠=︒,则t 的最三、填空题13.圆过点()1,2A -,()1,4B -,则周长最小的圆的方程为______. 14.若方程2224380x y kx y k +++++=表示一个圆,则实数k 的取值范围是______.15.已知圆223)1:((C x y -+=和两点()()(),0,,00A m B m m ->,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为__________.16.设m ∈R ,圆22:260M x y x y +--=,若动直线1:20l x my m +--=与圆M 交于点A 、C ,动直线2210:mx y l m --+=与圆M 交于点B 、D ,则AC BD +的最大值是________.四、解答题17.已知圆C 过点()6,0A ,()1,5B ,且圆心在直线:2780l x y -+=上. (1)求圆C 的标准方程;(2)将圆C 向上平移1个单位长度后得到圆1C ,求圆1C 的标准方程.18.已知圆C 的圆心为原点,且与直线34100x y +-=相切,直线l 过点()12M ,. (1)求圆C 的标准方程;(2)若直线l 与圆C 相切,求直线l 的方程.(3)若直线l 被圆C 所截得的弦长为l 的方程.19.已知圆221:2610C x y x y +---=和222:1012450C x y x y +--+=.(1)求证圆1C 和圆2C 相交;(2)求圆1C 和圆2C 的公共弦所在直线的方程和公共弦长;(3)求过点(9,1)P 且与圆2C 相切的直线方程. 20.已知圆C 经过坐标原点,且与直线20x y -+=相切,切点为()2,4P .(1)求圆C 的标准方程;(2)过圆C 内点3,1E 的最长弦和最短弦分别为AF 和BD 求四边形ABFD 的面积. 21.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740()l m x m y m m R +++--=∈.(1)证明:不论m 取什么实数,直线 l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时 l 的方程. 22.已知圆222:()0O x y r r +=>与圆22:220E x y x y +--=内切.(1)求圆O 的方程;(2)直线:1l y kx =+与圆O 交于,M N 两点,若7OM ON ⋅=-,求k 的值;(3)过点E 作倾斜角互补的两条直线分别与圆O 相交,所得的弦为AB 和CD ,若||||AB CD λ=,求实数λ的最大值.23.已知圆C 与圆222168(0)55⎛⎫⎛⎫-+-=> ⎪ ⎪⎝⎭⎝⎭x y r r 关于直线240x y +-=对称,且被直线10x y --=. (1)求圆C 的方程;(2)若A ,B 为圆C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为1k ,2k ,当123k k ⋅=时,求k 的取值范围.。
2022-2022年必修一检测第一单元章末过关检测数学带参考答案和解析(苏教版)

2022-2022年必修一检测第一单元章末过关检测数学带参考答案和解析(苏教版)解答题已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C ={x|x2+2x-8=0},求a取何值时,A∩B≠∅与A∩C=∅同时成立.【答案】-2.【解析】试题分析:先求集合B,C;再根据A∩B≠∅与A∩C=∅得3在A中,代入可得a=-2或a=5.最后逐一检验.试题解析:解:因为B={2,3},C={2,-4},由A∩B≠∅且A∩C=∅知,3是方程x2-ax+a2-19=0的解,所以a2-3a-10=0.解得a=-2或a=5.当a=-2时,A={3,-5},适合A∩B≠∅与A∩C=∅同时成立;当a=5时,A={2,3},A∩C={2}≠∅,故舍去.所求a的值为-2.选择题已知集合A={x|a-1≤x≤a+2},B={x|3 ⇒3≤a≤4.选B.解答题已知集合A=,B={x|2;(2).【解析】试题分析:(1)利用交集、补集的定义进行集合的混合运算即可;(2)利用题意结合空集的定义可得实数a的取值范围为a>1.试题解析:(1) ;(2)解答题已知A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求a的取值范围.【答案】a=1或a≤-1.【解析】试题分析:由子集概念得B有四种取法依次讨论对应a 的取值范围最后求并集试题解析:解:集合A={0,-4},由于B⊆A,则:(1)当B=A时,即0,-4是方程x2+2(a+1)x+a2-1=0的两根,代入解得a=1.(2)当B≠A时:①当B=∅时,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1;②当B={0}或B={-4}时,方程x2+2(a+1)x+a2-1=0应有两个相等的实数根0或-4,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满足条件.综上可知a=1或a≤-1.填空题设集合A={x||x|0},则集合{x|x∈A,且x∉A∩B}=________.【答案】{x|1≤x≤3}【解析】A={x|-43或x故a+b=4.选择题已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A. {0}B. {0,1}C. {0,2}D. {0,1,2}【答案】C【解析】因为A={x|x2-2x=0}={0,2},B={0,1,2},所以A ∩B={0,2}.选C.选择题设P={x|x1或x0} B. {x|x1}C. {x|x1}D. {x|x0},所以A∪∁UB={x|x0}.选A.选择题若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k 的值为()A. 1B. 0C. 0或1D. 以上答案都不对【答案】C【解析】当k=0时,A={-1};当k≠0时,Δ=16-16k=0,k =1.故k=0或k=1.选C.选择题设全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若点P(2,3)∈A∩(∁UB),则下列选项正确的是()A. m>-1,n<5B. m<-1,n<5C. m>-1,n>5D. m<-1,n>5【答案】A【解析】由P(2,3)∈A∩(∁UB)得P∈A且P∉B,故,选A.选择题已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁UB=()A. {3}B. {4}C. {3,4}D. ∅【答案】A【解析】由题意A∪B={1,2,3},又B={1,2}.所以∁UB={3,4},故A∩∁UB={3}.选A.选择题已知集合A={1,2},B={(x,y)|x-y=1},则A∩B=()A. {1}B. {2}C. {(1,2)}D. ∅【答案】D【解析】由于A是数集,B是点集,故A∩B=∅.选D.解答题已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.(1)已知a=3,求(∁RP)∩Q;(2)若P∪Q=Q,求实数a的取值范围.【答案】(1) (∁RP)∩Q={x|-2≤x<4}.(2) (-∞,2].【解析】试题分析:(1)先求集合Q以及∁RP,再求(∁RP)∩Q;(2)由P∪Q=Q,得P⊆Q.再根据P为空集与非空分类讨论,结合数轴求实数a的取值范围.试题解析:解:(1)因为a=3,所以集合P={x|4≤x≤7}.所以∁RP={x|x<4或x>7},Q={x|1≤2x+5≤15}={x|-2≤x≤5},所以(∁RP)∩Q={x|-2≤x<4}.(2)因为P∪Q=Q,所以P⊆Q.①当a+1>2a+1,即a<0时,P=∅,所以P⊆Q;②当a≥0时,因为P⊆Q,所以所以0≤a≤2.综上所述,实数a的取值范围为(-∞,2].解答题已知A={x|a-4<x<a+4},B={x|x<-1或x>5}.(1)若a=1,求A∩B;(2)若A∪B=R,求实数a的取值范围.【答案】(1) {x|-3<x<-1}.(2){a|1<a<3}.【解析】试题分析:(1)根据数轴求集合交集(2)结合数轴,确定A∪B=R成立时实数a满足的条件,解不等式可得实数a的取值范围.试题解析:解:(1)当a=1时,A={x|-3<x<5},B={x|x<-1或x>5}.所以A∩B={x|-3<x<-1}.(2)因为A={x|a-4<x<a+4},B={x|x<-1或x>5},又A∪B=R,所以⇒1<a<3.所以所求实数a的取值范围是{a|1<a<3}.填空题设集合M={x|2x2-5x-3=0},N={x|mx=1},若N⊆M,则实数m的取值集合为________.【答案】【解析】集合M=.若N⊆M,则N={3}或或∅.于是当N={3}时,m=;当N=时,m=-2;当N=∅时,m=0.所以m的取值集合为.选择题(2015·山东卷)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0}.则A∩B=()A. (1,3)B. (1,4)C. (2,3)D. (2,4)【答案】C【解析】易知B={x|1<x<3},又A={x|2<x<4},所以A∩B={x|2<x<3}=(2,3).选C.选择题下列四句话中:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】空集是任何集合的子集,故④正确,②错误;③不正确,如∅只有一个子集,即它本身;结合空集的定义可知①不正确;故只有1个命题正确.选B.选择题已知集合A={x|x(x-1)=0},那么下列结论正确的是()A. 0∈AB. 1∉AC. -1∈AD. 0∉A【答案】A【解析】由x(x-1)=0得x=0或x=1,则集合A中有两个元素0和1,所以0∈A,1∈A.选A.。
苏教版高一数学必修一章末检测

苏教版高一数学必修一章末检测Modified by JEEP on December 26th, 2020.章末检测一、填空题1.f (x )=2x +13x -1的定义域为________. 2.y =2x 2+1的值域为________.3.已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是________.4.设f (x )=⎩⎪⎨⎪⎧x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是______. 5.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是________.6.函数f (x )=-x 2+2x +3在区间[-2,3]上的最大值与最小值的和为________.7.若函数f (x )=x 2+(a +1)x +a x为奇函数,则实数a =________. 8.若函数f (x )=x 2-mx +m +2是偶函数,则m =______.9.函数f (x )=x 2+2x -3,x ∈[0,2],那么函数f (x )的值域为________.10.用min{a ,b }表示a ,b 两数中的最小值,若函数f (x )=min{|x |,|x +t |}的图象关于直线x =-12对称,则t 的值为________. 11.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x <1,x 2+ax , x ≥1,当f [f (0)]=4a ,则实数a 的值为________. 12.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+3,则f (-2)的值为________.13.函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________.14.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是________函数(填“增”或“减”).二、解答题15.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数且1满足f (1)=52,f (2)=174,求f (x )的解析式.16.已知函数f (x )=x +4x,x ∈(0,+∞). (1)求证:f (x )在(0,2)上是减函数,在(2,+∞)上是增函数;(2)求f (x )在(0,+∞)上的最小值和值域.17.函数f (x )是R 上的偶函数,且当x >0时,函数的解析式为f (x )=2x-1. (1)用定义证明f (x )在(0,+∞)上是减函数;(2)求当x <0时,函数的解析式.18.已知f (x )=ax 3+bx -3,a 、b ∈R ,若f (3)=5,求f (-3).19.已知函数f (x )=|x +2|+x -3.(1)用分段函数的形式表示f (x );(2)画出y =f (x )的图象,并写出函数的单调区间、值域.20.已知函数f (x )对一切实数x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (3)=-2.(1)试判定该函数的奇偶性;(2)试判断该函数在R 上的单调性;(3)求f (x )在[-12,12]上的最大值和最小值.答案2.[1,+∞)3.[-3,0)4.245.m ≤26.-17.-18.09.[-3,5]10.111.212.-713.[25,+∞)14.减15.解 ∵f (x )=-f (-x ),∴ax +b x+c =-⎝⎛⎭⎫-ax -b x +c , ∴2c =0即c =0.∵f (1)=52,f (2)=174,∴a +b =52,2a +b 2=174,解得⎩⎪⎨⎪⎧ a =2b =12,∴f (x )=2x +12x . 16.(1)证明 任取x 1,x 2∈(0,2)且x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)+4(x 1-x 2)x 1x 2=(x 2-x 1)(x 1x 2-4)x 1x 2. ∵0<x 1<x 2<2,∴x 2-x 1>0,x 1x 2-4<0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在(0,2)上是减函数,同理f (x )在(2,+∞)上是增函数.(2)解 f (x )在(0,+∞)上的最小值为f (x )min =f (2)=4,且f (x )在(0,+∞)上无最大值,∴f (x )在(0,+∞)上的值域为[4,+∞).17.(1)证明 设0<x 1<x 2,则f (x 1)-f (x 2)=(2x 1-1)-(2x 2-1) =2(x 2-x 1)x 1x 2, ∵0<x 1<x 2,∴x 1x 2>0,x 2-x 1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是减函数.(2)解 设x <0,则-x >0,∴f (-x )=-2x-1, 又f (x )为偶函数,∴f (-x )=f (x )=-2x-1, 即f (x )=-2x-1(x <0). 18.解 f (x )=ax 3+bx -3的定义域为R .令g (x )=f (x )+3=ax 3+bx 的定义域为R .g (-x )=f (-x )+3=a (-x )3+b (-x )=-(ax 3+bx )=-g (x ),∴g (x )为R 上的奇函数,∴g (-3)=-g (3)=-[f (3)+3]=-8.19.解 (1)当x +2<0即x <-2时,f (x )=-(x +2)+x -3=-5,当x +2≥0即x ≥-2时,f (x )=x +2+x -3=2x -1,∴f (x )=⎩⎪⎨⎪⎧-5, x <-22x -1, x ≥-2. (2)y =f (x )的图象如图由图象知y =f (x )的单调增区间为[-2,+∞),值域为[-5,+∞).20.解 (1)令x =y =0,得f (0+0)=f (0)=f (0)+f (0)=2f (0),∴f (0)=0.令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ),∴f (x )为奇函数.(2)任取x 1<x 2,则x 2-x 1>0,∴f (x 2-x 1)<0,∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)<0,即f(x2)<f(x1)∴f(x)在R上是减函数.(3)∵f(x)在[-12,12]上是减函数,∴f(12)最小,f(-12)最大.又f(12)=f(6+6)=f(6)+f(6)=2f(6)=2[f(3)+f(3)]=4f(3)=-8,∴f(-12)=-f(12)=8.∴f(x)在[-12,12]上的最大值是8,最小值是-8.。
凤凰新学案 高中数学 苏教版 必修第一册 试卷及答案第1`章

综合测试 第1、2章集合与常用逻辑用语(满分150分,时间120分钟)班级 姓名 评价 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为犚,集合犃={狓|0<狓<2},犅={狓|狓≥1},则犃∩(瓓犚犅)等于( ) A.(0,1]B.(0,1)C.[1,2)D.(0,2)2.集合犃={狓∈犣|-2<狓<2}的真子集个数是( )A.8B.7C.4D.33.命题“存在实数狓,使狓>1”的否定是( )A.对任意实数狓,都有狓>1B.存在实数狓,使狓≤1C.不存在实数狓,使狓≤1D.对任意实数狓,都有狓≤14.给出下列语句:①一束美丽的花;②狓>3;③2是一个偶数;④若狓=2,则狓2-5狓+6=0.其中命题的个数是( )A.1B.2C.3D.45.已知集合犃={犪,|犪|,犪-2},若2∈犃,则实数犪的值为( )A.±2或4B.2C.-2D.46.下列存在量词命题是假命题的是( )A.存在狓∈犙,使2狓-狓3=0B.存在狓∈犚,使狓2+狓+1=0C.至少有一个正整数是偶数D.有的有理数没有倒数7.设犝为全集,犃,犅是集合,则“存在集合犆,使得犃 犆,犅 瓓犝犆”是“犃∩犅= ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.若集合犃={狓|狓2+狓-6=0},犅={狓|犿狓+1=0},且犅 犃,则负数犿的取值集合为( )A.13,-12{}B.12,-13{}C.0,13,-12{}D.0,12,-13{}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列说法中错误的是( )A.方程2狓槡-1+|3狔+3|=0的解集是12,-1{}—1—B.方程狓2+狓-6=0的解集为{(-3,2)}C.集合犕={狔|狔=狓2+1,狓∈犚}与集合犘={(狓,狔)|狔=狓2+1,狓∈犚}表示同一个集合D.方程组2狓+狔=0,狓-狔+3=0{的解集是{(狓,狔)|狓=-1或狔=2}10.若“ 狓∈犕,|狓|>狓”为真命题,“ 狓∈犕,狓>3”为假命题,则集合犕可以是( )A.(-∞,-5)B.(-3,-1]C.(3,+∞)D.[0,3]11.如图所示的电路图中,“开关S闭合”是“灯泡L亮”的充要条件的电路图有( )12.当一个非空数集犉满足条件“若犪,犫∈犉,则犪+犫,犪-犫,犪犫∈犉,且当犫≠0时,犪犫∈犉”时,称犉为一个数域.那么下列关于数域的命题中是真命题的为( )A.0是任何数域中的元素B.若数域犉有非零元素,则2021∈犉C.集合犘={狓|狓=3犽,犽∈犣}为数域D.有理数集为数域三、填空题:本题共4小题,每小题5分,共20分.其中第13题第一个空2分,第二个空3分.13.若集合犃={1,2},犅={狓|狓∈犃},犆={狓|狓 犃},用列举法表示集合犅= ,犆= .14.已知集合犃={狓|(狓-犪)(狓-犪+1)=0},犅={狓|(狓-2)(狓-犫)=0},若犃=犅,则实数犫的值为 .15.若命题“ 狓0∈犚,狓20-2狓0-犪=0”为假命题,则实数犪的取值范围是 .16.已知非空集合犕满足犕 {0,1,2,3},若存在非负整数犽(犽≤3),使得对任意犪∈犕,均有2犽-犪∈犕,则称集合犕具有性质犘.那么具有性质犘的集合犕的个数为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知二次方程狓2+犪狓+犫=0和狓2+犮狓+15=0的解集分别是犃,犅,且犃∪犅={3,5},犃∩犅={3},求犪,犫,犮的值.—2—18.(12分)请在①充分不必要,②必要不充分,③充要中选择一个条件补充到下面的横线上.已知集合犘={狓|1≤狓≤4},犛={狓|1-犿≤狓≤1+犿},则狓∈犘是狓∈犛的 条件.若存在实数犿,求出犿的取值范围;若不存在,请说明理由.19.(12分)已知狆:狓∈犃,且犃={狓|犪-1<狓<犪+1},狇:狓∈犅,且犅={狓|狓≥3或狓≤1}.(1)若犃∩犅= ,犃∪犅=犚,求实数犪的值;(2)若狆是狇的充分条件,求实数犪的取值范围.20.(12分)已知全集犝=犚,集合犃={狓|犪-1<狓<2犪+3},犅={狓|-1≤狓≤4}.(1)当犪=2时,求犃∩犅及(瓓犝犃)∪(瓓犝犅);(2)若犃∪犅=犅,求实数犪的取值范围.—3—21.(12分)已知犪犫≠0,求证:犪+犫=1成立的充要条件是犪3+犫3+犪犫-犪2-犫2=0.22.(12分)已知集合犘中元素有3狀(狀∈犖 )个且均为正整数,将集合犘分成元素个数相同且两两没有公共元素的三个集合犃,犅,犆,即犘=犃∪犅∪犆,犃∩犅= ,犃∩犆= ,犅∩犆= ,其中犃={犪1,犪2,…,犪狀},犅={犫1,犫2,…,犫狀},犆={犮1,犮2,…,犮狀},若集合犃,犅,犆中元素满足犮1<犮2<…<犮狀,犪犽+犫犽=犮犽,犽=1,2,…,狀,则称集合犘为“完美集合”.(1)若集合犘={1,2,3},犙={1,2,3,4,5,6},判断集合犘和集合犙是否为“完美集合”?并说明理由.(2)若集合犘{1,狓,3,4,5,6}为“完美集合”,求正整数狓的值.—4—测试卷与练习本参考答案测试卷部分综合测试 第1、2章集合与常用逻辑用语1.B 2.B 提示 由-2<狓<2,狓∈犣,得犃={-1,0,1},所以集合犃的真子集个数为23-1=73.D 4.B 提示 ③④是命题.命题的两个要件:陈述句与能判断真假 5.C 提示 因为2∈犃={犪,|犪|,犪-2},所以若犪=2,则犃={2,2,0},不符合题意;若犪-2=2,即犪=4,则犃={4,4,2},不符合题意;若|犪|=2且犪≠2,即犪=-2,则犃={-2,2,-4},符合题意 6.B 提示 狓=0∈犙,使2狓-狓3=0成立,A是真命题.狓2+狓+1=狓+12()2+34>0(狓∈犚)恒成立,因此不存在狓∈犚,使狓2+狓+1=0,B是假命题;2是偶数,C是真命题;0是有理数,0没有倒数,D是真命题 7.C 提示 由题意知犃 犆,则瓓犝犆 瓓犝犃.由犅 瓓犝犆,得犃∩犅= .若犃∩犅= ,则存在集合犆使得犃 犆,犅 瓓犝犆,所以“存在集合犆,使得犃 犆,犅 瓓犝犆”是“犃∩犅= ”的充要条件 8.C 提示 因为犅 犃={-3,2},所以若犅= ,则犿=0.若犅≠ ,则狓=-3或狓=2,所以-3犿+1=0或2犿+1=0,解得犿=13或犿=-12.综上,犿=0或13或-12 9.ABCD 提示 对于A,方程2狓槡-1+|3狔+3|=0的解集为12,-1(){};对于B,方程狓2+狓-6=0的解集为{-3,2};对于C,犕是数集,犖是点集;对于D,方程组2狓+狔=0,狓-狔+3=0{的解集为{(狓,狔)|狓=-1且狔=2} 10.AB 提示 因为“ 狓∈犕,狓>3”为假命题,所以“ 狓∈犕,狓≤3”为真命题,可得犕 (-∞,3].又“ 狓∈犕,|狓|>狓”为真命题,所以犕 (-∞,0).故犕 (-∞,0) 11.BD 提示 易知BD正确.电路图A中,开关S闭合,灯泡L亮,而灯泡L亮,开关S不一定闭合,故为充分不必要条件;电路图C中,开关S闭合,灯泡L不一定亮,灯泡L亮,开关S一定闭合,故为必要不充分条件12.ABD 解析 若犪∈犉,则犪-犪=0∈犉,故A正确;若犪∈犉且犪≠0,则1=犪犪∈犉,由此2=1+1∈犉,3=1+2∈犉,依次类推2021∈犉,故B正确;犘={狓|狓=3犽,犽∈犣},3∈犘,6∈犘,但36 犘,所以犘不是数域,故C错误;犪,犫是两个有理数,则犪+犫,犪-犫,犪犫,犪犫(犫≠0)都是有理数,所以有理数集是数域,故D正确 13.{1,2}{ ,{1},{2},{1,2}} 14.1或3提示 犃={犪,犪-1},犅={2,犫}.因为犃=犅,若犪=2,则犫=犪-1=1;若犪-1=2,则犫=犪=3 15.(-∞,-1) 提示 由题意知“ 狓∈犚,狓2-2狓-犪≠0”为真命题.而狓2-2狓=(狓-1)2-1≥-1,故犪<-1 16.8 提示 当犽=0时,犕为{0};当犽=1时,犕为{1},{0,2},{0,1,2};当犽=2时,犕为{2},{1,3},{1,2,3};当犽=3时,犕为{3}.所以满足条件的集合犕有8个17.因为犃∩犅={3},所以3∈犅,即9+3犮+15=0,解得犮=-8.当犮=-8时,犅={3,5}.因为犃∪犅={3,5},犃∩犅={3},所以犃={3},犪2=4犫,9+3犪+犫=0,{,解得犪=-6,犫=9.{综上,犪=-6,犫=9,犮=-818.若选择①,即狓∈犘是狓∈犙的充分不必要条件,则犘 犛,则—14—犛≠ ,即1-犿≤1+犿,解得犿≥0,且1-犿≤1,1+犿≥4,{两个等号不同时成立,解答犿≥3,故犿≥3,即实数犿的取值范围是[3,+∞).若选择②,即狓∈犘是狓∈犛的必要不充分条件,则犛 犘.若选择③,即狓∈犘是狓∈犛的充要条件,则犘=犛,即1-犿=1,1+犿=4,{此方程组无解,则不存在实数犿,使狓∈犘是狓∈犛的充要条件 ①当犛= 时,1-犿>1+犿,解得犿<0.②当犛≠ 时,1-犿≤1+犿,解得犿≥0,且1-犿≥11+犿≤4{(两个等号不同时成立),解得犿≤0,所以犿=0.综上,实数犿的取值范围是(-∞,0] 19.(1)由题意得犪-1=1,犪+1=3,{解得犪=2 (2)因为狆是狇的充分条件,所以犃 犅,结合数轴可知犪+1≤1或犪-1≥3,解得犪≤0或犪≥4,所以实数犪的取值范围是(-∞,0]∪[4,+∞) 20.(1)当犪=2时,犃={狓|1<狓<7},犅={狓|-2≤狓≤4},所以犃∩犅={狓|1<狓≤4}.又犝=犚,所以(瓓犝犃)∪(瓓犝犅)=瓓犝(犃∩犅)={狓|狓≤1或狓>4} (2)若犃∪犅=犅,则犃 犅.当犪-1≥2犪+3,即犪≤-4时,犃= ,满足题意;当犪>-4时,应满足犪-1≥-1,2犪+3≤4,{解得0≤犪≤12.综上,实数犪的取值范围是(-∞,-4]∪-1,12[] 21.①必要性:因为犪+犫=1,所以犫=1-犪,所以犪3+犫3+犪犫-犪2-犫2=犪3+(1-犪)3+犪(1-犪)-犪2-(1-犪)2=犪3+1-3犪+3犪2-犪3+犪-犪2-犪2-1+2犪-犪2=0.②充分性:因为犪3+犫3+犪犫-犪2-犫2=0,即(犪+犫)(犪2-犪犫+犫2)-(犪2-犪犫+犫2)=0,所以(犪2-犪犫+犫2)(犪+犫-1)=0.又犪犫≠0,即犪≠0且犫=0,所以犪2-犪犫+犫2=犪-犫2()2+3犫24≠0,故犪+犫-1=0,即犪+犫=1.综上①②得证 22.(1)对于集合犘={1,2,3},取犃={1},犅={2},犆={3},满足犘=犃∪犅∪犆,犃∩犅= ,犃∩犆= ,犅∩犆= ,且犪1+犫1=犮1,所以集合犘为“完美集合”.若犙={1,2,3,4,5,6}为“完美集合”,则存在犃,犅,犆,使得犘=犃∪犅∪犆,犃∩犅= ,犃∩犆= ,犅∩犆= .设犃中各元素的和为犕,犅中各元素的和为犖,犆中各元素的和为犔,则犕+犖+犔=1+2+3+4+5+6=21且犕+犖=犔,所以犔=212,它不是整数,故犙不是“完美集合” (2)因为犘={1,狓,3,4,5,6}为“完美集合”,由(1)可知狓≥7.根据定义可知犮狀为犘中的最大元素,故犮狀=狓.又犆中各元素的和为犔=狓+1+3+4+5+62=狓+192,所以犆的另一个元素为19-狓2,它是1,3,4,5,6中的某个数,所以狓的值可能为17,13,11,9,7.当狓=7时,犆={6,7},犃={1,3},犅={5,4},满足定义要求;当狓=9时,犆={5,9},犃={1,3},犅={4,6},满足定义要求;当狓=11时,犆={4,11},犃={1,5},犅={3,6},满足定义要求;当狓=13或狓=17时,犆={3,13}或犆={1,17},3和1没办法写成两个元素的和,故不满足定义要求.综上,狓的值为7,9,11—24—练习本部分第1章 集合第1课时 集合的含义及其表示(1)1.D 2.AD 3.ACD 提示 犖中最小的数为0.若-犪 犖,则犪可能不是整数 4.B 提示 当狓>0时,-狓,|狓|=狓,狓槡2=狓,狓;当狓<0时,-狓,|狓|=-狓,狓槡2=-狓,狓 5.D 提示 2+4=6 6.-2 0 提示 由题意得犪+犫+2=0,4+2犪-犫=0,{解得犪=-2,犫=0{ 7.(1)因为槡0=0+0×2,所以0∈犃 (2)因为1槡2-1槡=1+1×2,所以1槡2-1∈犃 (3)因为1槡槡3-2槡槡=3+1×2,槡3 犣,所以1槡槡3-2 犃 8.B 提示 当狓与狔异号时,狕=-1+1-1=-1.当狓>0,狔>0时,狕=1+1+1=3;当狓<0,狔<0时,狕=-1-1+1=-1.综上,犃={-1,3} 9.D 提示 由题意得狓-1≠2且狓2-1≠2且狓-1≠狓2-1,解得狓≠3,狓≠槡±3,狓≠0,狓≠1 10.0或1 提示 当犪=0时,狓无解,没有元素;当犪≠0时,狓=-1犪,有1个元素 11.3 提示 由题意得2狓-5=-3或狓2-4狓=-3,解得狓=1或狓=3.当狓=1时,{-3,-3,12},不符合题意;当狓=3时,{1,-3,12},符合题意 12.设犪∈犣,犫∈犣,犮∈犣,犱∈犣,则狓=犪2+犫2∈犕,狔=犮2+犱2∈犕,所以狓狔=(犪2+犫2)(犮2+犱2)=(犪犮)2+(犪犱)2+(犫犱)2+(犫犮)2=[(犪犮)2+(犫犱)2+2犪犫犮犱]+[(犪犱)2+(犫犮)2-2犪犫犮犱]=(犪犮+犫犱)2+(犪犱-犫犮)2.因为犪,犫,犮,犱都是整数,所以犪犮+犫犱∈犣,犪犱-犫犮∈犣,因此有狓狔∈犕 13.(1)当2∈犛时,11-2=-1∈犛,11-(-1)=12∈犛 (2)答案不唯一,如:4∈犛,则11-4=-13∈犛,11--13()=34∈犛 (3)结论1:集合犛中的元素不能只有一个.证明:假设集合犛中只有一个元素,则犪=11-犪,即犪2-犪+1=0,此方程无解,所以犪≠11-犪,故集合犛中的元素不能只有一个 结论2:若犪∈犛且犪≠1,则犛中必有元素11-犪,犪-1犪,且这三个数的乘积为-1.证明:若犪∈犛且犪≠1,则11-犪∈犛且11-犪≠1,所以11-11-犪=犪-1犪∈犛且犪-1犪≠1,进而有11-犪-1犪=犪∈犛.由结论1知11-犪,犪-1犪,犪互不相等,且犪-1犪·11-犪·犪=-1第2课时 集合的含义及其表示(2)1.D 2.CD 3.C 4.ACD 提示 (5,2)与(2,5)表示两个不同的点.狓=2犿+1,狓=2犿-1,犿∈犣都表示奇数.因为狓=2犿且狓=3狀,犿∈犣,狀∈犣,所以狓表示6的倍数,即狓=6犽,犽∈犣 5.(1){狓|狓=2狀,狀∈犣} (2){(狓,狔)|狓<0,狔<0} (3){狓|狓=3狀-2,狀∈犣} 6.(1){(0,1),(0,2),(1,1),(1,2)} (2){14,23,32,41,50} (3){(0,4),(5,2),(10,0)} 7.6 提示 由题意得-1,3是方程狓2+犪狓+犫=0的两个根,所以犪=-(-1+3)=-2,犫=-1×3=-3 8.A 提示 满足狓2+狔2≤3,狓∈犣,狔∈犣的(狓,狔)有(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1) 9.C 提示 当狓=0,狔∈犅时,狕=0;当狓=1,狔=2时,狕=狓狔(狓+狔)=2×3=6;当狓=1,狔=3时,狕=狓狔(狓+狔)=3×4=12 10.{-3,0,1,2} 提示 因为63-犪∈犖,所以3-犪>0,所以3-犪=1,3-犪=2,3-犪=3,3-犪=6,解释犪=2,犪=1,犪=0,犪=-3 11.因为犘=犙,所以{-1,犪,犫}={-1,犪2,犫2}.若犪=犪2,犫=犫2,则犪,犫一个为0,另一个为1,此时{-1,0,1}.若犪=犫2,犫=犪2,则犪=犪4,解得犪=0或1,所以犪=犫,不符合题意.综上,1+犪2+犫2=1+0+1=2 12.(狓-犪)(狓2—55—-犪狓+犪-1)=(狓-犪)(狓-1)[狓-(犪-1)]=0,解得狓=犪,狓=1,狓=犪-1.若犪=1,则1+0=1,不符合题意.若犪-1=1,则犪=2,所以1+2=3,符合题意.若犪,犪-1,1都不相等,则犪+犪-1+1=3,解得犪=32.综上,当犪=2时,犕={1,2};当犪=32时,犕=12,1,32{} 13.(1)当犪=0时,-3狓+2=0,解得狓=23,此时犃=23{};当犪≠0时,Δ=(-3)2-8犪=0,解得犪=98,此时犃=43{}.综上,犪=0或犪=98(2)当犪=0时,由(1)知成立;当犪≠0时,Δ=(-3)2-8犪≥0,解得犪≤98.综上,实数犪的取值范围是犪犪≤98{} (3)当犪=0时,由(1)知成立;当犪≠0时,Δ=(-3)2-8犪≤0,解得犪≥98.综上,实数犪的取值范围是犪犪≥98或犪=0{}第3课时 子集、全集、补集1.B 2.CD 3.C 4.B 提示 当犪=0时,犫=3或4,则犮=3或4;当犪=1时,犫=3或4,则犮=4或5.所以犃 犅={3,4,5},则集合犃 犅的真子集的个数为23-1=7 5.3 6.{狓|狓≤1或狓>6} {狓|1<狓≤6} 7.4 提示 犃={狓|狓2-3狓+2=0}={1,2},犅={狓|0<狓<5,狓∈犖}={1,2,3,4}.因为犃 犆 犅,所以犆={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4} 8.D 解析犛的无“孤立元素”的有2个元素的子集犃为{0,1},{1,2},{2,3},{3,4},{4,5},共5个;犛的无“孤立元素”的有3个元素的子集犃为{0,1,2},{1,2,3},{2,3,4},{3,4,5},共4个;犛的无“孤立元素”的有4个元素的子集犃为{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共6个;犛的无“孤立元素”的有5个元素的子集犃为{0,1,2,3,4},{0,1,2,4,5},{0,1,3,4,5},{1,2,3,4,5},共4个;犛的无“孤立元素”的有6个元素的子集为{0,1,2,3,4,5},共1个 9.ABC 解析 当犅=时,犿=0.当犅≠ 时,因为犅 犃,所以-5犿=5或5犿=5,解得犿=-1或1 10.A B=C 提示 犅=狓狓=犽2-14,犽∈犣{},当犽=2狀时,犅=狓狓=狀-14,狀∈犣{};当犽=2狀+1时,犅=狓狓=狀+14,狀∈犣{}.犆=狓狓=犽2+14,犽∈犣{},当犽=2狀时,犅=狓狓=狀+14,狀∈犣{};当犽=2狀-1时,犅=狓狓=狀-14,狀∈犣{}.所以犃 犅=犆 11.(1)犃={狓|-1≤狓+1≤6}={狓|-2≤狓≤5}.因为狓∈犣,所以犃={-2,-1,0,1,2,3,4,5},所以犃的非空真子集的个数为28-2=254 (2)当犅= 时,犿-1≥2犿+1,解得犿≤-2,满足题意;当犅≠ ,即犿>-2时,要犅 犃,则只要犿-1≥-2,2犿+1≤5,{解得-1≤犿≤2.综上,实数犿的取值范围是{犿|-1≤犿≤2或犿≤-2} 12.犃={狓|狓2+4狓=0}={0,-4},犅={狓|狓2+犪狓+犪=0}.因为犅 犃,当犅= 时,Δ=犪2-4犪<0,解得0<犪<4;当犅中只有1个元素时,Δ=犪2-4犪=0,解得犪=0或犪=4,此时犅={0}或犅={-2}(舍去);当犅=犃时,无解.综上,实数犪的取值范围是{犪|0≤犪<4} 13.(1)当狀=4时,犝={1,2,3,4}.由题意知,当1∈犃时,则2 犃,即2∈瓓犝犃,则4 瓓犝犃,即4∈犃,但元素3与集合犃的关系不确定,故犃={1,4}或犃={1,3,4};当2∈犃时,则4 犃,1 犃,但元素3与集合犃的关系不确定,故犃={2}或犃={2,3}(2)当狀=7时,犝={1,2,3,4,5,6,7}.由题意知,当2∈瓓犝犃时,1,4∈犃;当2∈犃时,1,4∈瓓犝犃;当3∈犃时,6∈瓓犝犃;当3∈瓓犝犃时,6∈犃;元素5,7没有限制.故满足条件的集合犃的个数为24=16 第4课时 交集、并集1.C 2.C 3.C 4.AB 5.(1)犃∩犅 (2)犃∪犆 6.{狓|0≤狓<1或狓>3} 提示 由题意得犃∪犅={狓|狓≥0},犃∩犅={狓|1≤狓≤3},所以犃 犅={狓|0≤狓<1或狓>3} 7.{3,4} 8.BC 提示注意端点处的值能否取到 9.CD 提示 因为犃∪犅=犃,所以犅 犃.又犃={0,1,2,狓},犅={1,狓2},所以狓2=0或狓2=2或狓2=狓.当狓2=0时,集合犃违背集合中元素的互异性,所以狓2≠0;当狓2=2时,狓槡=-2或狓槡=2,符合题意;当狓2=狓时,得狓=0或狓=1,集合犃均违背集合中元素的互异—65—性,所以狓2≠狓.因此满足条件的实数狓有2个 10.9 提示 当犃={1,3}时,犅={1,2,3,4}或{1,2,3}或{1,3,4}或{1,3},共4个;当犃={1,2,3}时,犅={1,3,4}或{1,3},共2个;当犃={1,3,4}时,犅={1,2,3}或{1,3},共2个;当犃={1,2,3,4}时,犅={1,3},共1个 11.根据题意画出Venn图(略),总人数=21+17+10-12-6-5+2=27,所以需要预购27张车票 12.(1)当犿=4时,犅={狓|5≤狓≤7},所以犃∩犅={狓|5≤狓<7}.又瓓犚犃={狓|狓≤-2或狓≥7},所以犅∪(瓓犚犃)={狓|狓≤-2或狓≥5} (2)因为犃∪犅=犃,所以犅 犃.当犅= 时,犅 犃,此时2犿-1<犿+1,解得犿<2.当犅≠ 时,犅 犃,所以犿+1≤2犿-1,犿+1>-2,2犿-1<7,烅烄烆解得2≤犿<4.综上,实数犿的取值范围是{犿|犿<4} 13.犅={狓|狓2-5狓+6=0}={2,3},犆={狓|狓2+2狓-8=0}={2,-4}. (1)因为犃∩犅≠ ,犃∩犆= ,所以犃∩犅={3},所以9-3犪+犪2-19=0,解得犪=-2或犪=5.当犪=-2时,犃={狓|狓2+2狓-15=0}={3,-5},符合题意;当犪=5时,犃={狓|狓2-5狓+6=0}={2,3},不符合题意.综上,犪=-2 (2)因为犅∩犆={2},所以犃 {2}.当犃= 时,犃 {2},此时Δ=犪2-4(犪2-19)=-3犪2+4×19<0,解得犪<-槡2573或犪>槡2573.当犃={2}时,4-2犪+犪2-19=0,解得犪=-3或犪=5.若犪=5,则犃={狓|狓2-5狓+6=0}={2,3},不符合题意;若犪=-3,则犃={狓|狓2+3狓-10=0}={2,5},不符合题意.综上,实数犪的取值范围是-∞,-槡2573()∪槡2573,+∞()章末复习 考点聚焦&素养提升1.A 2.C 3.B 4.B 提示 因为犃∩犅有4个子集,所以犃∩犅中有2个元素,所以犅 犃,所以犪∈(0,3)且犪≠1 5.6 提示 设三个模块都选择的学生有狓人,则28+26+26-11-12-13+狓=50,解得狓=6 6.7 提示 犕={犪}或{犪,犫}或{犪,犮}或{犪,犱}或{犪,犫,犮}或{犪,犫,犱}或{犪,犮,犱} 7.4提示 当犪=0时,不符合题意;当犪≠0时,Δ=犪2-4犪=0,解得犪=4,此时犃=-12{} 8.ABD 提示因为4狀=(狀+1)2-(狀-1)2,所以4狀∈犕.因为4狀+1=(2狀+1)2-(2狀)2,所以4狀+1∈犕.因为4狀+3=(2狀+2)2-(2狀+1)2,所以4狀+3∈犕.若4狀+2∈犕,则存在狓,狔∈犣,使得狓2-狔2=4狀+2,即4狀+2=(狓+狔)(狓-狔).因为狓+狔和狓-狔的奇偶性相同,若狓+狔和狓-狔都是奇数,则(狓+狔)(狓-狔)为奇数,而4狀+2是偶数,不成立;若狓+狔和狓-狔都是偶数,则(狓+狔)(狓-狔)能被4整除,而4狀+2不能被4整除,不成立,∴4狀+2 犕 9.犪犪=1或犪<-916{} 提示 当犃= 时,犃 犅,此时Δ=9+16犪<0,解得犪<-916.当犃=犅时,犃 犅,此时犪=1.当犃中只有一个元素时,Δ=9+16犪=0,解得犪=-916,此时犃=-83{}犅.综上,犪=1或犪<-916 10.(1)当犪=3时,犘={狓|4≤狓≤7},所以瓓犚犘={狓|狓<4或狓>7},所以(瓓犚犘)∩犙={狓|-2≤狓<4} (2)当犘= 时,犘 犙,此时2犪+1<犪+1,即犪<0;当犘≠ 时,犘 犙,则应有2犪+1≥犪+1,2犪+1≤5,犪+1≥-2,烅烄烆所以0≤犪≤2.综上,实数犪的取值范围为(-∞,2] 11.因为1≤犪1<犪2<犪3<犪4,所以犪21<犪22<犪23<犪24.因为犃∩犅={犪1,犪4},所以只可能有犪1=犪21,解得犪1=1.而犪1+犪4=10,所以犪4=9,且犪24≠犪4.若犪22=犪4,则犪2=3,所以犃∪犅={1,3,犪3,9,犪23,81},所以犪3+犪23+94=124,解得犪3=5.若犪23=犪4,则犪3=3,同样可得犪2=5>犪3,与条件矛盾,不合题意.综上,犃={1,3,5,9},犅={1,9,25,81} 12.(1)犝-犃={狓|狓是高一(1)班的男同学},瓓犝犃={狓|狓是高一(1)班的男同学} (2)阴影部分如图所示 (3)①若犃-犅= ,则犃 犅;②若犃 犅,则犅-犃=瓓犅犃;③若犃∩犅= ,则犃-犅=犃,犅-犃=犅;等等—75—13.BCD 提示 对于A,-1∈犅,1∈犅,但是-1-1=-2 犅,所以犅不是“完美集”.对于B,因为0,狓,狔∈犃,所以0-狔=-狔∈犃,所以狓-(-狔)=狓+狔∈犃.对于C,若狓,狔中有0或1,显然狓狔∈犃;若狓,狔中没有0,1,则1狓狔=12狓狔+12狓狔=1(狓+狔)2-狓2-狔2+1(狓+狔)2-狓2-狔2.因为1,狓,狔∈犃,所以狓-1∈犃,从而1狓,1狓-1∈犃,所以1狓-1-1狓=1狓(狓-1)∈犃,从而狓(狓-1)∈犃,由B知狓(狓-1)+狓=狓2∈犃,狓+狔∈犃.同理(狓+狔)2∈犃,狔2∈犃,所以(狓+狔)2-狓2-狔2∈犃,从而1(狓+狔)2-狓2-狔2∈犃,所以1狓狔∈犃,故狓狔∈犃.对于D,因为狓,狔∈犃,所以1狓∈犃,由C知狔狓∈犃—85—。
(苏教版)高中数学必修一(全册)课时同步练习全汇总

(苏教版)高中数学必修一(全册)课时同步练习汇总第1章集合1.1 集合的含义及其表示A级基础巩固1.下列关系正确的是()①0∈N;②2∈Q;③12∉R;④-2∉Z.A.③④B.①③C.②④D.①解析:①正确,因为0是自然数,所以0∈N;②不正确,因为2是无理数,所以2∉Q;③不正确,因为12是实数,所以12∈R;④不正确,因为-2是整数,所以-2∈Z.答案:D2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:根据集合中元素的互异性可知,一定不是等腰三角形.答案:D3.集合M={(x,y)|xy<0,x∈R,y∈R}是()A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、第四象限内的点集解析:集合M 为点集,且横、纵坐标异号,故是第二、第四象限内的点集.答案:D4.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .0解析:若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A .答案:B5.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( ) A .{x =1,y =1}B .{1}C .{(1,1)}D .(1,1)解析:方程组的解集中元素应是有序数对形式,排除A 、B ,而D 不是集合的形式,排除D.答案:C6.下列集合中为空集的是( )A .{x ∈N|x 2≤0}B .{x ∈R|x 2-1=0}C .{x ∈R|x 2+x +1=0}D .{0}答案:C7.设集合A ={2,1-a ,a 2-a +2},若4∈A ,则a 的值是( )A .-3或-1或2B .-3或-1C .-3或2D .-1或2解析:当1-a =4时,a =-3,A ={2,4,14}.当a 2-a +2=4时,得a=-1或a=2.当a=-1时,A={2,2,4},不满足互异性;当a=2时,A={2,4,-1}.所以a=-3或a=2.答案:C8.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={(3,2)},N={3,2}解析:A中集合M,N表示的都是点集,由于横、纵坐标不同,所以表示不同的集合;B中根据集合元素的互异性知表示同一集合;C中集合M表示直线x+y=1上的点,而集合N表示直线x+y=1上点的纵坐标,所以是不同集合;D中的集合M表示点集,N表示数集,所以是不同集合.答案:B9.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},M={x|x =4k+1,k∈Z},若a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈MD.a+b不属于P,Q,M中任意一个解析:因为a∈P,b∈Q,所以a=2k1,k1∈Z,b=2k2+1,k2∈Z.所以a+b=2(k1+k2)+1,k1,k2∈Z.所以a+b∈Q.答案:B10.方程x2-2x-3=0的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.解析:方程x2-2x-3=0的两根分别是-1和3.由题意可知,a+b=2.答案:211.已知集合A中含有两个元素1和a2,则a的取值范围是________________.解析:由集合元素的互异性,可知a2≠1,所以a≠±1.答案:a∈R且a≠±112.点(2,11)与集合{(x,y)|y=x+9}之间的关系为__________________.解析:因为11=2+9,所以(2,11)∈{(x,y)|y=x+9}.答案:(2,11)∈{(x,y)|y=x+9}13.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A,且a∈B,则a为________.解析:集合A,B都表示直线上点的集合,a∈A表示a是直线y =2x+1上的点,a∈B表示a是直线y=x+3上的点,所以a是直线y=2x+1与y=x+3的交点,即a为(2,5).答案:(2,5)14.下列命题中正确的是________(填序号).①0与{0}表示同一集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|2<x<5}可以用列举法表示.解析:对于①,0表示元素与{0}不同;对于③,不满足集合中元素的互异性,故不正确;对于④,无法用列举法表示,只有②满足集合中元素的无序性,是正确的.答案:②B 级 能力提升15.下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?解:(1)在A ,B ,C 三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A 的代表元素是x ,满足y =x 2+1,故A ={x |y =x 2+1}=R.集合B 的代表元素是y ,满足y =x 2+1的y ≥1,故B ={y |y =x 2+1}={y |y ≥1}.集合C 的代表元素是(x ,y ),满足条y =x 2+1,表示满足y =x 2+1的实数对(x ,y );即满足条件y =x 2+1的坐标平面上的点.因此,C ={(x ,y )|y =x 2+1}={(x ,y )|点(x ,y )是抛物线y =x 2+1上的点}.16.若集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1又可表示为{a 2,a +b ,0},求a 2 016+b 2 017的值.解:由题知a ≠0,故b a=0,所以b =0.所以a 2=1, 所以a =±1.又a ≠1,故a =-1.所以a 2 016+b 2 017=(-1)2 016+02 017=1.17.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.又因为2∈A,所以11-2=-1∈A.因为-1∈A,所以11-(-1)=12∈A.因为12∈A,所以11-12=2∈A.所以A中另外两个元素为-1,12.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.所以集合A不可能是单元素集合.第1章集合1.2 子集、全集、补集A级基础巩固1.下列集合中,不是集合{0,1}的真子集的是()A.∅B.{0} C.{1} D.{0,1}解析:任何一个集合是它本身的子集,但不是它本身的真子集.答案:D2.(2014·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}解析:因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.答案:B3.若集合A={a,b,c},则满足B⊆A的集合B的个数是() A.1 B.2 C.7 D.8解析:把集合A的子集依次列出,可知共有8个.答案:D4.(2014·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:因为U={1,2,3,4,5,6,7},A={1,3,5,6},所以∁U A={2,4,7}.答案:C5.已知M={-1,0,1},N={x|x2+x=0},则能表示M,N 之间关系的Venn图是()解析:M={-1,0,1},N={0,-1},所以N M.答案:C6.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足()A.a<4 B.a≤4 C.a>4 D.a≥4解析:由A B,结合数轴,得a≥4.答案:D7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________________.解析:集合A和B的数轴表示如图所示.由数轴可知:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则实数a的值为________.解析:由A⊇B,得a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B 的包含关系是________.解析:因为∁U A={x|x<0},∁U B={y|y<1}={x|x<1},所以∁U A∁U B.答案:∁U A∁U B10.集合A={x|-3<x≤5},B={x|a+1≤x<4a+1},若B A,则实数a的取值范围是________.解析:分B=∅和B≠∅两种情况.答案:{a|a≤1}11.已知∅{x|x2-x+a=0},则实数a的取值范围是________.解析:因为∅{x|x2-x+a=0},所以方程x2-x+a=0有实根.则Δ=1-4a ≥0,所以a ≤14. 答案:a ≤1412.已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值.解:因为B ⊆A ,A ≠∅,所以B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B =⎩⎨⎧⎭⎬⎫-1a , 所以-1a ∈A ,即有-1a =-2,得a =12. 综上所述,a =0或a =12. B 级 能力提升13.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有( )A .1个B .2个C .3个D .4个解析:因为A ={1,2},B ={1,2,3,4},所以C 中必须含有1,2,即求{3,4}的子集的个数,为22=4.答案:D14.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的所有子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16.答案:5 1615.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}.若全集U =R ,且A ⊆(∁U B ),则a 的取值范围是________.解析:因为A ={x |-4≤x ≤-2},B ={x |x ≥a },U =R , 所以∁U B ={x |x <a }.要使A ⊆∁U B ,只需a >-2(如图所示).答案:{a |a >-2}16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若B A ,求a 的值.解:A ={x |x 2-2x -3=0}={-1,3},若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a . 由B A ,可知1a =-1或1a=3, 即a =-1或a =13. 综上可知a 的值为0,-1,13. 18.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B⊆∁R A,求a的取值范围.解:由题意得∁R A={x|x≥-1}.(1)若B=∅,则a+3≤2a,即a≥3,满足B⊆∁R A.(2)若B≠∅,则由B⊆∁R A,得2a≥-1且2a<a+3,即-12≤a<3.综上可得a≥-12.第1章集合1.3 交集、并集A级基础巩固1.(2014·课标全国Ⅱ卷)已知集合A={-2,0,2},B={x|x2-x -2=0},则A∩B=()A.∅B.{2}C.{0} D.{-2}解析:B={x|x2-x-2=0}={-1,2},又A={-2,0,2},所以A∩B={2}.答案:B2.设S={x||x|<3},T={x|3x-5<1},则S∩T=()A.∅B.{x|-3<x<3}C.{x|-3<x<2} D.{x|2<x<3}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3}, A∩∁U B={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B 为()A.{x=1或y=2} B.{1,2}C.{(1,2)} D.(1,2)(x,y)|4x+y=6,3x+2y=7={(1,2)}.解析:A∩B={}答案:C5.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2解析:因为A={x|x=3n+2,n∈N}={2,5,8,11,14,…}又B={6,8,10,12,14},所以A∩B={8,14}.故A∩B中有2个元素.答案:D6.(2014·辽宁卷)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:易知A∪B={x|x≤0或x≥1}.所以∁U(A∪B)={x|0<x<1}.答案:D7.已知集合A={3,2a},B={a,b},若A∩B={2},则A∪B=________.解析:因为A∩B={2},所以2a=2,所以a=1,b=2,故A∪B={1,2,3}.答案:{1,2,3}8.已知全集S=R,A={x|x≤1},B={x|0≤x≤5},则(∁S A)∩B =________.解析:∁S A={x|x>1}.答案:{x|1<x≤5}9.设集合A={x|-1<x<a},B={x|1<x<3}且A∪B={x|-1<x<3},则a的取值范围为________.解析:如下图所示,由A∪B={x|-1<x<3}知,1<a≤3.答案:{a|1<a≤3}10.已知方程x2-px+15=0与x2-5x+q=0的解分别为M和S,且M∩S={3},则pq=________.解析:因为M∩S={3},所以3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p=8,q=6.则pq=4 3.答案:4 311.满足条件{1,3}∪A={1,3,5}的所有集合A的个数是________.解析:A可以是集合{5},{1,5},{3,5}或{1,3,5}.答案:412.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={}x |2x +a >0,满足B ∪C =C ,求实数a 的取值范围.解:(1)因为B ={x |x ≥2},所以A ∩B ={x |2≤x <3}.(2)因为C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C , 所以-a 2<2.所以a >-4. B 级 能力提升13.集合A ={x ||x |≤1,x ∈R},B ={y |y =x 2,x ∈R},则A ∩B 为( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅解析:因为A ={x |-1≤x ≤1},B ={y |y ≥0},所以A ∩B ={x |0≤x ≤1}.答案:C14.图中的阴影部分表示的集合是( )A .A ∩(∁UB )B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )解析:阴影部分的元素属于集合B 而不属于集合A ,故阴影部分可表示为B ∩(∁U A ).答案:B15.设全集U =R ,集合A ={x |x ≤1或x ≥3},集合B ={x |k <x<k +1,k <2},且B ∩(∁U A )≠∅,则实数k 的取值范围是________.解析:由题意得∁U A ={x |1<x <3},又B ∩∁U A ≠∅,故B ≠∅,结合图形可知⎩⎪⎨⎪⎧k <k +1,1<k +1<3,解得0<k <2. 答案:0<k <216.已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解:假设存在x ,使B ∪(∁U B )=A .所以B A .(1)若x +2=3,则x =1符合题意.(2)若x +2=-x 3,则x =-1不符合题意.所以存在x =1,使B ∪(∁U B )=A ,此时A ={1,3,-1},B ={1,3}.17.已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.解:因为A ∪B =A ,所以B ⊆A .若B =∅时,2a >a +3,则a >3;若B ≠∅时,⎩⎪⎨⎪⎧2a ≥-2,a +3≤5,2a ≤a +3,解得-1≤a ≤2. 综上所述,a 的取值范围是{a |-1≤a ≤2或a >3}.18.设集合A ={x |x +1≤0或x -4≥0},B ={x |2a ≤x ≤a +2}.(1)若A ∩B ≠∅,求实数a 的取值范围;(2)若A ∩B =B ,求实数a 的取值范围.解:(1)A ={x |x ≤-1或x ≥4}.因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a ≤a +2,a +2≥4或⎩⎪⎨⎪⎧2a ≤a +2,2a ≤-1. 所以a =2或a ≤-12. 所以实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤-12或a =2. (2)因为A ∩B =B ,所以B ⊆A .①B =∅时,满足B ⊆A ,则2a >a +2⇒a >2.②B ≠∅时,则⎩⎪⎨⎪⎧2a ≤a +2,a +2≤-1或⎩⎪⎨⎪⎧2a ≤a +2,2a ≥4. 解之得a ≤-3或 a =2.综上所述,实数a 的取值范围为{a |a ≤-3或a ≥2}.章末知识整合一、元素与集合的关系[例1] 设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪62+x ∈N . (1)试判断1和2与集合B 的关系;(2)用列举法表示集合B .解:(1)当x =1时,62+1=2∈N ,所以1∈B . 当x =2时,62+2=32∉N ,2∉B . (2)令x =0,1,2,3,4,代入62+x ,检验62+x∈N 是否成立,可得B ={0,1,4}.规律方法1.判断所给元素a 是否属于给定集合时,若a 在集合内,用符号“∈”;若a 不在集合内,用符号“∉”.2.当所给的集合是常见数集时,要注意符号的书写规范.[即时演练] 1.已知集合A ={x |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 中只有一个元素,求实数a 的值,并把这个元素写出来. 解:(1)A =∅,则方程ax 2-3x +2=0无实根,即Δ=9-8a <0,所以a >98. 所以a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a >98. (2)因为A 中只有一个元素,所以①a =0时,A =⎩⎨⎧⎭⎬⎫23满足要求. ②a ≠0时,则方程ax 2-3x +2=0有两个相等的实根.故Δ=9-8a =0,所以a =98,此时A =⎩⎨⎧⎭⎬⎫43满足要求. 综上可知:a =0或a =98. 二、集合与集合的关系[例2] A ={x |x <-1或x >2},B ={x |4x +p <0},当B ⊆A 时,求实数p 的取值范围.分析:首先求出含字母的不等式,其次利用数轴解决.解:由已知解得,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-p 4.又因为因为A={x|x<-1或x>2},且B⊆A,利用数轴所以-p4≤-1.所以p≥4,故实数p的取值范围为{p|p≥4}.规律方法1.在解决两个数集的包含关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解.2.注意端点值的取舍,这是同学易忽视失误的地方.[即时演练] 2.设集合P={(x,y)|x+y<4,x,y∈N*},则集合P 的非空子集的个数是()A.2 B.3 C.7 D.8解析:当x=1时,y<3,又y∈N*,因此y=1或y=2;当x=2时,y<2,又y∈N*,因此y=1;当x=3时,y<1,又y∈N*,因此这样的y不存在;当x≥4时,y<0,也不满足y∈N*.综上所述,集合P中的元素有(1,1),(1,2),(2,1),所以P 的非空子集的个数是23-1=7.故选C.答案:C三、集合的运算[例3]已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B,分析:先确定集合A,B,然后讨论a的范围对结果的影响.解:A={x|x-2>3}={x|x>5},B={x|2x-3>3x-a}={x|x<a-3}.借助数轴表示如图所示.(1)当a -3≤5,即a ≤8时,A ∪B ={x |x <a -3或x >5}.(2)当a -3>5,即a >8时,A ∪B ={x |x >5}∪{x |x <a -3}={x |x ∈R}=R.综上可知,当a ≤8时,A ∪B ={x |x <a -3或x >5};当a >8时,A ∪B =R.规律方法解集合问题关键是读懂集合语言,明确意义,用相关的代数或几何知识进行解决.[即时演练] 3.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合∁A (A ∩B )=________.解析:因为A ={x |-4<x <4},B ={x |x <1或x >3},所以A ∩B ={x |-4<x <1或3<x <4}.所以∁A (A ∩B )={x |1≤x ≤3}.答案:{x |1≤x ≤3}四、利用集合的运算求参数[例4] 设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R},若M ∪N =M ,求实数t 的取值范围.分析:由M ∪N =M ,知N ⊆M .根据子集的意义,建立关于t 的不等式关系来求解.解:由M ∪N =M 得N ⊆M ,故当N =∅,即2t +1≤2-t ,t ≤13时,M ∪N =M 成立. 当N ≠∅时,由数轴图可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,所求实数t 的取值范围是{t |t ≤2}.规律方法1.用数轴表示法辅助理解,若右端点小于等于左端点,则不等式无解, N =∅.2.列不等式组的依据是左端点小于右端点,即2t +1在5的左侧(相等时也符合题意),2-t 在-2的右侧(相等时也符合题意).[即时演练] 4.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若A ∩B =B ,求实数m 的取值范围;(2)若A ∩B =∅,求实数m 的取值范围.解:(1)A ∩B =B ⇔B ⊆A ,当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;当m +1≤2m -1时,要使B ⊆A .则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,m +1≤2m -1⇒2≤m ≤3. 综上,m 的取值范围为{m |m ≤3}.(2)当m +1>2m -1,即m <2时,B =∅,满足A ∩B =∅; 当B ≠∅时,要使A ∩B =∅,则必须⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2⇒m >4. 综上,m 的取值范围是{m |m <2或m >4}.五、集合的实际应用[例5] 某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.分析:每名同学至多参加两个小组―→画出相应的Venn图―→根据全班有36名同学列等式―→得答案解析:设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,故同时参加数学和化学小组的有8人.答案:8规律方法解决有关集合的实际应用题时,首先要将文字语言转化为集合语言,然后结合集合的交、并、补运算来处理.此外,由于Venn图简明、直观,因此很多集合问题往往借助Venn图来分析.[即时演练] 5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜欢,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设A,B分别表示喜爱篮球运动、乒乓球运动的人数构成的集合,集合U表示全班人数构成的集合.设同时喜爱乒乓球和篮球运动的有x人.依题意,画出如图所示的Venn图.根据Venn图,得8+x+(15-x)+(10-x)=30.解得x=3.故喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.答案:12章末过关检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P解析:因为Q={x|-2<x<2},所以Q⊆P.答案:B2.已知集合A={1,2},B={(x,y)|x-y=1},则A∩B=()解析:由于A是数集,B是点集,故A∩B=∅.答案:D3.已知集合A={x|x(x-1)=0},那么下列结论正确的是() A.0∈A B.1∉AC.-1∈A D.0∉A解析:由x(x-1)=0得x=0或x=1,则集合A中有两个元素0和1,所以0∈A,1∈A.答案:A4.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=() A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:因为A={x|x2-2x=0}={0,2},B={0,1,2},所以A∩B ={0,2}.答案:C5.若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k的值为()A.1 B.0C.0或1 D.以上答案都不对解析:当k=0时,A={-1};当k≠0时,Δ=16-16k=0,k =1.故k=0或k=1.答案:C6.下列四句话中:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有()解析:空集是任何集合的子集,故④正确,②错误;③不正确,如∅只有一个子集,即它本身;结合空集的定义可知①不正确;故只有1个命题正确.答案:B7.(2015·山东卷)已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0}.则A ∩B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)解析:易知B ={x |1<x <3},又A ={x |2<x <4},所以A ∩B ={x |2<x <3}=(2,3).答案:C8.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅解析:⎩⎪⎨⎪⎧a -1≤3,5≤a +2⇒3≤a ≤4. 答案:B9.已知全集U =R ,集合A ={x |x >1或x <-2},B ={x |-1≤x ≤0},则A ∪∁U B 等于( )A .{x |x <-1或x >0}B .{x |x <-1或x >1}C .{x |x <-2或x >1}D .{x |x <-2或x ≥0}解析:∁U B ={x |x <-1或x >0},所以A ∪∁U B ={x |x <-1或x >0}.答案:A10.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C .{3,4}D .∅解析:由题意A ∪B ={1,2,3},又B ={1,2}.所以∁U B ={3,4},故A ∩∁U B ={3}.答案:A11.已知全集U =R ,集合A ={x |y =1-x },集合B ={x |0<x <2},则(∁U A )∪B 等于( )A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞)解析:因为A ={x |x ≤1},所以∁U A ={x |x >1}.所以(∁U A )∪B ={x |x >0}.答案:D12.设全集U ={(x ,y )|x ∈R ,y ∈R},集合A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},若点P (2,3)∈A ∩(∁U B ),则下列选项正确的是( )A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5解析:由P (2,3)∈A ∩(∁U B )得P ∈A 且P ∉B ,故⎩⎪⎨⎪⎧2×2-3+m >0,2+3-n >0,解得⎩⎪⎨⎪⎧m >-1,n <5. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =________.答案:{1,3,5}14.已知集合A ={(x ,y )|ax -y 2+b =0},B ={(x ,y )|x 2-ay +b =0},且(1,2)∈A ∩B ,则a +b =________.解析:因为(1,2)∈A ∩B ,所以⎩⎪⎨⎪⎧a -4+b =0,1-2a +b =0⇒a =53,b =73. 故a +b =4.答案:415.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合{x |x ∈A ,且x ∉A ∩B }=________.解析:A ={x |-4<x <4},B ={x |x >3或x <1},A ∩B ={x |3<x <4或-4<x <1},所以{x |x ∈A 且x ∉A ∩B }={x |1≤x ≤3}.答案:{x |1≤x ≤3}16.设集合M ={x |2x 2-5x -3=0},N ={x |mx =1},若N ⊆M ,则实数m 的取值集合为________.解析:集合M =⎩⎨⎧⎭⎬⎫3,-12.若N ⊆M ,则N ={3}或⎝ ⎛⎭⎬⎫-12或∅.于是当N ={3}时,m =13;当N =⎩⎨⎧⎭⎬⎫-12时,m =-2;当N =∅时,m =0.所以m 的取值集合为⎩⎨⎧⎭⎬⎫-2,0,13. 答案:⎩⎨⎧⎭⎬⎫-2.0,13 三、解答题(本大题共6小题,共70分.解答时写出必要文字说明、计算或证明推理过程)17.(本小题满分10分)A ={x |x 2-3x +2=0},B ={x |ax -2=0},且A ∪B =A ,求实数a 组成的集合C .解:因为A ∪B =A ,所以B ⊆A .当B =∅时,即a =0时,显然满足条件.当B ≠∅时,则B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2a ,A ={1,2}, 所以2a =1或2a=2,从而a =1或a =2. 故集合C ={0,1,2}.18.(本小题满分12分)已知集合A ={x |1≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R.(1)求A ∪B ,(∁R A )∩B ;(2)如果A ∩C ≠∅,求a 的取值范围.解:(1)A ∪B ={x |1≤x <10},(∁R A )∩B ={x |x <1或x ≥7}∩{x |2<x <10}={x |7≤x <10}.(2)当a >1时,满足A ∩C ≠∅.因此a 的取值范围是{a |a >1}.19.(本小题满分12分)已知A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},若B ⊆A ,求a 的取值范围.解:集合A ={0,-4},由于B ⊆A ,则:(1)当B =A 时,即0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,代入解得a =1.(2)当B ≠A 时:①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当B ={0}或B ={-4}时,方程x 2+2(a +1)x +a 2-1=0应有两个相等的实数根0或-4,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件.综上可知a =1或a ≤-1.20.(本小题满分12分)已知A ={x |a -4<x <a +4},B ={x |x <-1或x >5}.(1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围.解:(1)当a =1时,A ={x |-3<x <5},B ={x |x <-1或x >5}. 所以A ∩B ={x |-3<x <-1}.(2)因为A ={x |a -4<x <a +4},B ={x |x <-1或x >5},又A ∪B =R ,所以⎩⎪⎨⎪⎧a -4<-1,a +4>5⇒1<a <3. 所以所求实数a 的取值范围是{a |1<a <3}.21.(本小题满分12分)已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},求a 取何值时,A ∩B ≠∅与A ∩C =∅同时成立.解:因为B ={2,3},C ={2,-4},由A ∩B ≠∅且A ∩C =∅知,3是方程x 2-ax +a 2-19=0的解, 所以a 2-3a -10=0.解得a =-2或a =5.当a =-2时,A ={3,-5},适合A ∩B ≠∅与A ∩C =∅同时成立;当a =5时,A ={2,3},A ∩C ={2}≠∅,故舍去.所求a 的值为-2.22.(本小题满分12分)已知集合P ={x |a +1≤x ≤2a +1},Q ={x |1≤2x +5≤15}.(1)已知a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围.解:(1)因为a =3,所以集合P ={x |4≤x ≤7}.所以∁R P ={x |x <4或x >7},Q ={x |1≤2x +5≤15}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |-2≤x <4}.(2)因为P ∪Q =Q ,所以P ⊆Q .①当a +1>2a +1,即a <0时,P =∅,所以P ⊆Q ;②当a ≥0时,因为P ⊆Q ,所以⎩⎪⎨⎪⎧a ≥0,a +1≥-2,2a +1≤5.所以0≤a ≤2. 综上所述,实数a 的取值范围为(-∞,2].第2章 函数2.1 函数的概念2.1.1 函数的概念和图象A 级 基础巩固1.下列各图中,不可能表示函数y =f (x )的图象的是( )答案:B2.函数y =1-x +x 的定义域是( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1,或x ≤0}D .{x |0≤x ≤1}解析:由⎩⎪⎨⎪⎧1-x ≥0,x ≥0,得0≤x ≤1. 答案:D3.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a =( ) A .-3 B .-1 C .1 D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,适合题意.答案:A4.定义域在R 上的函数y =f (x )的值域为[a ,b ],则函数y =f (x +a )的值域为( )A .[2a ,a +b ]B .[0,b -a ]C .[a ,b ]D .[-a ,a +b ] 答案:C5.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:A 、C 、D 的定义域均不同. 答案:B6.二次函数y =x 2-4x +3在区间(1,4]上的值域是( ) A .[-1,+∞) B .(0,3] C .[-1,3] D .(-1,3)解析:y =x 2-4x +3=(x -2)2-1≥-1,再结合二次函数的图象(如右图所示)可知,-1≤y ≤3.答案:C7.已知函数f (x )的定义域为(-3,0),则函数y =f (2x -1)的定义域是( )A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析:由于f (x )的定义域为(-3,0) 所以-3<2x -1<0,解得-1<x <12.故y =f (2x -1)的定义域为⎝ ⎛⎭⎪⎫-1,12.答案:B8.函数f (x )=⎝ ⎛⎭⎪⎫x -120+x 2-1x +2的定义域是__________________.解析:要使f (x )有意义,必有⎩⎨⎧x -12≠0,x +2>0,解得x >-2且x ≠12. 答案:⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞9.已知函数f (x )的定义域为[0,1],值域为[1,2],则f (x +2)的定义域是________,值域是________.解析:因为f (x )的定义域为[0,1],所以0≤x +2≤1.所以-2≤x ≤-1,即f (x +2)的定义域为[-2,-1],值域仍然为[1,2].答案:[-2,-1] [1,2]10.(2015·课标全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________.解析:因为点(-1,4)在y =f (x )的图象上, 所以4=-a +2.所以a =-2. 答案:-211.若f (x )=ax 2-2,a 为正常数,且f [f (2)]=-2,则a =________.解析:因为f (2)=a ·(2)2-2=2a -2, 所以f ()f (2)=a ·(2a -2)2-2=- 2. 所以a ·(2a -2)2=0.又因为a 为正常数,所以2a -2=0.所以a =22.答案:2212.已知函数f (x )=x +1x .(1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.解:(1)要使函数f (x )有意义,必须使x ≠0, 所以f (x )的定义域是(-∞,0)∪(0,+∞). (2)f (-1)=-1+1-1=-2,f (2)=2+12=52.(3)当a ≠-1时,a +1≠0. 所以f (a +1)=a +1+1a +1. B 级 能力提升13.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域为( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以g (x )=f (2x )x -1需满足⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域为[0,1). 答案:B14.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )解析:因为汽车先启动,再加速、匀速,最后减速,s 随t 的变化是先慢,再快、匀速,最后慢,故A 图比较适合题意.答案:A15.已知函数f (x )=x 21+x 2,那么f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=______. 解析:因为f (x )=x 21+x 2,f ⎝ ⎛⎭⎪⎫1x =1x 2+1,所以f (x )+f ⎝ ⎛⎭⎪⎫1x =1.所以f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=12+1+1+1=72.答案:7216.已知函数f (x )=2x -1-7x .(1)求f (0),f ⎝ ⎛⎭⎪⎫17,f ⎝ ⎛⎭⎪⎫111; (2)求函数的定义域.解:(1)f (0)=-1,f ⎝ ⎛⎭⎪⎫17=217=277, f ⎝ ⎛⎭⎪⎫111=2111-1-711=411-411=0. (2)要使函数有意义,则⎩⎪⎨⎪⎧x ≥0,1-7x ≥0,解得⎩⎨⎧x ≥0,x ≤17,所以0≤x ≤17. 所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0≤x ≤17.17.已知函数y =1ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的值.解:已知函数y =1ax +1(a <0且a 为常数), 因为1ax +1≥0,a <0,所以x ≤-a ,即函数的定义域为(-∞,-a ]. 因为函数在区间(-∞,1]上有意义, 所以(-∞,1]⊆(-∞,-a ]. 所以-a ≥1,即a ≤-1.所以a 的取值范围是(-∞,-1].18.试画出函数f (x )=(x -2)2+1的图象,并回答下列问题: (1)求函数f (x )在x ∈[1,4]上的值域; (2)若x 1<x 2<2,试比较f (x 1)与f (x 2)的大小. 解:由描点法作出函数的图象如图所示.(1)由图象知,f (x )在x =2时有最小值为f (2)=1, 又f (1)=2,f (4)=5.所以函数f (x )在[1,4]上的值域为[1,5]. (2)根据图象易知,当x 1<x 2<2时,f (x 1)>f (x 2).第2章 函数 2.1 函数的概念 2.1.2 函数的表示方法A 级 基础巩固1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:因为f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,所以f (-7)=10.f (f (-7))=f (10)=10×10=100. 答案:A2.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-3解析:f (f (x ))=c ⎝ ⎛⎭⎪⎫cx 2x +32⎝ ⎛⎭⎪⎫cx 2x +3+3=c 2x 2cx +6x +9=x ,即x [(2c +6)x +9-c 2]=0,所以⎩⎪⎨⎪⎧2c +6=0,9-c 2=0,解得c =-3. 答案:B3.如果二次函数的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式可以是( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:由题意设f (x )=a (x -1)2+b (a >0),由于点(0,0)在图象上,所以a +b =0,a =-b ,故符合条件的是D.答案:D4.某同学从家里赶往学校,一开始乘公共汽车匀速前进,在离学校还有少许路程时,改为步行匀速前进到校.下列图形纵轴表示该同学与学校的距离s ,横轴表示该同学出发后的时间t ,则比较符合该同学行进实际的是( )解析:依题意:s 表示该同学与学校的距离,t 表示该同学出发后的时间,当t =0时,s 最远,排除A 、B ,由于汽车速度比步行快,因此前段迅速靠近学校,后段较慢.故选D.答案:D5.g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),则f ⎝ ⎛⎭⎪⎫12=( )A .1B .3C .15D .30解析:由g (x )=12得:1-2x =12⇒x =14,代入1-x 2x 2得:1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15. 答案:C6.(2015·陕西卷)设f (x )=⎩⎪⎨⎪⎧1-x ,x ≥0,x 2,x <0,则f (f (-2))=( )A .-1 B.14 C.12 D.32解析:f (-2)=(-2)2=4. 所以f (f (-2))=f (4)=1-4=-1. 答案:A7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+3x ,x ≤0,2,x >0,则方程f (x )=x 的解的个数为________.解析:x >0时,x =f (x )=2;x ≤0时,x 2+3x =x ⇒x =0或-2. 答案:38.如图所示,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2))=________.解析:由图象及已知条件知f (2)=0,即f (f (f (2)))=f (f (0)), 又f (0)=4,所以f (f (0))=f (4)=2. 答案:29.若某汽车以52 km/h 的速度从A 地驶向260 km 远处的B 地,在B 地停留32h 后,再以65 km/h 的速度返回A 地.则汽车离开A 地后行走的路程s 关于时间t 的函数解析式为________________.解析:因为260÷52=5(h),260÷65=4(h),所以s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝ ⎛⎭⎪⎫t -132,132<t ≤212. 答案:s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝⎛⎭⎪⎫t -132,132<t ≤212 10.设f (x )=⎩⎨⎧x +1,x ≥0,1x ,x <0.若f (a )>a ,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=a +1>a 恒成立. 当a <0时,f (a )=1a >a ,所以a <-1.综上a 的取值范围是a ≥0或a <-1. 答案:{a |a ≥0或a <-1}11.已知二次函数满足f (3x +1)=9x 2-6x +5,求f (x ). 解:设f (x )=ax 2+bx +c (a ≠0),则f (3x +1)=a (3x +1)2+b (3x +1)+c =9ax 2+(6a +3b )x +a +b +c .因为f (3x +1)=9x 2-6x +5,所以9ax 2+(6a +3b )x +a +b +c =9x 2-6x +5. 比较两端系数,得⎩⎪⎨⎪⎧9a =9,6a +3b =-6,a +b +c =5⇒⎩⎪⎨⎪⎧a =1,b =-4,c =8.所以f (x )=x 2-4x +8.12.已知f (x )=⎩⎪⎨⎪⎧x 2(-1≤x ≤1),1(x >1或x <-1).(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].B 级 能力提升13.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1.若f (f (0))=4a ,则实数a 的值为( )A .2B .1C .3D .4解析:易知f (0)=2,所以f (f (0))=f (2)=4+2a =4a ,所以a =2. 答案:A14.任取x 1,x 2∈[a ,b ]且x 1≠x 2,若f ⎝⎛⎭⎪⎫x 1+x 22>12[f (x 1)+f (x 2)],则f (x )在[a ,b ]上是凸函数,在以下图象中,是凸函数的图象是( )解析:只需在图形中任取自变量x 1,x 2,分别标出它们对应的函数值及x 1+x 22对应的函数值,并观察它们的大小关系即可. 答案:D15.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧C x ,x <A ,C A ,x ≥A ,A ,C 为常数.已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是( ) A .75,25B .75.16C .60,25D .60,16解析:由条件可知,x ≥A 时所用时间为常数,所以组装第4件产品用时必须满足第一段分段函数,即f (4)=C 4=30⇒C =60, f (A )=60A=15⇒A =16. 答案:D16.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值;(2)若f (x 0)=8,求x 0的值.解:(1)因为0≤x ≤2时,f (x )=x 2-4,所以f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8,得x 0=±23∉[0,2],故无解. 当x 0>2时,由2x 0=8,得x 0=4.因此f (x 0)=8时,x 0的值为4.17.某市出租车的计价标准是:4 km 以内10元,超过4 km 且不超过18 km 的部分1.2 元/km ,超过18 km 的部分1.8 元/km.(1)如果不计等待时间的费用,建立车费与行车里程的函数关系式;(2)如果某人乘车行驶了20 km ,他要付多少车费?解:(1)设车费为y 元,出租车行驶里程为x km.由题意知,当0<x ≤4时,y =10;当4<x ≤18时,y =10+1.2(x -4)=1.2x +5.2;当x >18时,y =10+1.2×14+1.8(x -18)=1.8x -5.6.所以,所求函数关系式为y =⎩⎪⎨⎪⎧10,0<x ≤4,1.2x +5.2,4<x ≤18,1.8x -5.6,x >18.(2)当x =20时,y =1.8×20-5.6=30.4.所以乘车行驶了20 km 要付30.4元的车费.18.某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系用图①表示,该商品在30天内日销售量Q (件)与时间t (天)之间的关系如下表所示:t /天 5 15 20 30Q /件 35 25 20 10(1)根据提供的图象(图①),写出该商品每件的销售价格P 与时间t 的函数解析式;(2)在所给平面直角坐标系(图②)中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定一个日销售量Q 与时间t 的函数解析式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天(日销售金额=每件的销售价格×日销售量).解:(1)根据图象,每件的销售价格P 与时间t 的函数解析式为:P =⎩⎪⎨⎪⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N.(2)描出实数对(t ,Q )的对应点,如下图所示.从图象发现:点(5,35),(15,25),(20,20),(30,10)似乎在同一条直线上,为此假设它们共线于直线l :Q =kt +b .由点(5,35),(30,10)确定出l 的解析式为Q =-t +40,通过检验可知,点(15,25),(20,20)也在直线l 上.所以日销售量Q 与时间t 的一个函数解析式为Q =-t +40(0<t ≤30,t ∈N).(3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800,0<t <25,t ∈N ,t 2-140t +4 000,25≤t ≤30,t ∈N. 因此y =⎩⎪⎨⎪⎧-(t -10)2+900,0<t <25,t ∈N ,(t -70)2-900,25≤t ≤30,t ∈N. 若0<t <25(t ∈N),则当t =10时,y max =900;若25≤t ≤30(t ∈N),则当t =25时,y max =1 125.因此第25天时销售金额最大,最大值为1 125元.第2章 函数2.2 函数的简单性质2.2.1 函数的单调性A 级 基础巩固1.函数f (x )的图象如图所示,则( )A .函数f (x )在[-1,2]上是增函数B .函数f (x )在[-1,2]上是减函数C .函数f (x )在[-1,4]上是减函数D .函数f (x )在[2,4]上是增函数解析:增函数具有“上升”趋势;减函数具有“下降”趋势,故A正确.答案:A2.已知函数f(x)是(-∞,+∞)上的增函数,若a∈R,则() A.f(a)>f(2a) B.f(a2)<f(a)C.f(a+3)>f(a-2) D.f(6)>f(a)解析:因为a+3>a-2,且f(x)在(-∞,+∞)上是增函数,所以f(a+3)>f(a-2).答案:C3.y=2x在区间[2,4]上的最大值、最小值分别是()A.1,12 B.12,1 C.12,14 D.14,12解析:因为函数y=2x在[2,4]上是单调递减函数,所以y max=22=1,y min=24=12.答案:A4.函数y=x2-6x的减区间是() A.(-∞.2] B.[2,+∞) C.[3,+∞) D.(-∞,3] 解析:y=x2-6x=(x-3)2-9,故函数的单调减区间是(-∞,3].答案:D5.下列说法中,正确的有()①若任意x1,x2∈I,当x1<x2时,f(x1)-f(x2)x1-x2>0,则y=f(x)在I上是增函数;②函数y =x 2在R 上是增函数; ③函数y =-1x在定义域上是增函数; ④函数y =1x的单调区间是(-∞,0)∪(0,+∞). A .0个 B .1个 C .2个 D .3个解析:当x 1<x 2时,x 1-x 2<0,由f (x 1)-f (x 2)x 1-x 2>0知f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),①正确;②③④均不正确.答案:B6.已知函数f (x )=4x -3+x ,则它的最小值是( )A .0B .1 C.34 D .无最小值解析:因为函数f (x )=4x -3+x 的定义域是⎣⎢⎡⎭⎪⎫34,+∞,且是增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫34=34. 答案:C7.函数y =f (x )的图象如图所示,则函数f (x )的单调递增区间是________________.解析:由图象可知函数f (x )的单调递增区间是(-∞,1]和(1,+∞).答案:(-∞,1]和(1,+∞)8.已知f (x )是R 上的减函数,则满足f (2x -1)>f (1)的实数x 的取值范围是________.解析:因为f (x )在R 上是减函数,且f (2x -1)>f (1),所以2x -1<1,即x <1.答案:(-∞,1)9.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上的最大值为3,最小值为2,则m 的取值范围是________.解析:因为f (x )=(x -1)2+2,其对称轴为直线x =1,所以当x =1时,f (x )min =2,故m ≥1.又因为f (0)=3,所以f (2)=3.所以m ≤2.故1≤m ≤2.答案:[1,2]10.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x (其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为________万元.解析:设公司在甲地销售x 台,则在乙地销售(15-x )台,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝ ⎛⎭⎪⎫x -1922+30+1924, 所以当x =9或10时,L 最大为120万元.答案:12011.讨论函数y =x 2-2(2a +1)x +3在[-2,2]上的单调性.解:因为函数图象的对称轴x =2a +1,所以当2a +1≤-2,即a ≤-32时,函数在[-2.2]上为增函数.当-2<2a +1<2,即-32<a <12时, 函数在[-2,2a +1]上是减函数,在[2a +1,2]上是增函数.当2a +1≥2,即a ≥12时,函数在[-2,2]上是减函数. 12.已知f (x )=x +12-x,x ∈[3,5]. (1)利用定义证明函数f (x )在[3,5]上是增函数;(2)求函数f (x )的最大值和最小值.解:(1)f (x )在区间[3,5]上是增函数,证明如下:设x 1,x 2是区间[3,5]上的两个任意实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+12-x 1-x 2+12-x 2=3(x 1-x 2)(2-x 1)(2-x 2). 因为3≤x 1<x 2≤5,所以x 1-x 2<0,2-x 1<0,2-x 2<0.所以f (x 1)<f (x 2).所以f (x )在区间[3,5]上是增函数.(2)因为f (x )在区间[3,5]上是增函数,所以当x =3时,f (x )取得最小值为-4,当x =5时,f (x )取得最大值为-2.B 级 能力提升13.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( )A .(-∞,40)B .[40,64]C .(-∞,40]∪[64,+∞)D .[64,+∞)。
2024-2025学年高一数学苏教版必修第一册单元测试:第5章 函数概念与性质(含解析)

2024-2025学年高一数学苏教版必修第一册单元测试:第5章 函数概念与性质一、选择题1.已知函数是奇函数,则( )A. B.1C. D.22.设偶函数的定义域为R ,当时,是增函数,则,,的大小关系是( )A. B.C. D.3.设函数若,且,4.已知定义在R 上的奇函数满足,则对所有这样的函数,由下列条件一定能得到的是( )A. B. C. D.5.已知函数是R 上的增函数,则a 的取值范围是( )A. B. C. D.6.已知函数在R 上单调递增,则实数m 的取值范围为( )A. B. C. D.7.定义在上的函数满足:,,且,成立,且,则不等式的解集为( )A. B. C. D.()22x x f x a -=-⋅a =1-2-()f x [0,)x ∈+∞()f x (f (π)f (3)f -(π)(3)(f f f >->(π)((3)f f f >>-(π)(3)(f f f <-<(π)((3)f f f <<-2()(2)3f x ax b x =+-+(1)3f =0a >b >()f x ()()f x f a x =-()f x ()()()139f f f ==2a =3a =4a =5a =()25,1=,1x ax x f x a x x⎧---≤⎪⎨>⎪⎩(),2-∞-(),0-∞(]3,2--[]3,2--23,1()(4)9,1m x x f x xm x x -⎧+≥⎪=⎨⎪+-<⎩[)3,2-[]3,2-()3,2-[]2,3-(0,)+∞()y f x =1x ∀2(0,)x ∈+∞12x x ≠()()2112120x f x x f x x x -<-(4)12f =()3f x x >(12,)+∞(0,12)(0,4)(4,)+∞8.已知函数为奇函数.则( )D.二、多项选择题9.下列函数中,在上单调递增的是( )A. B. C.10.定义在R 上的函数满足,当时,,则下列说法正确的是( )A. B.为奇函数C.在区间上有最大值D.的解集为11.已知函数,,则下列结论中正确的是( )A.函数是其定义域上的减函数B.函数是其定义域上的减函数C.函数是其定义域上的增函数D.函数是其定义域上的增函数三、填空题12.已知函数是定义域为R 的奇函数,当时,,则_______.13.已知函数在R 上单调递增,则实数的取值范围为________.14.已知函数的定义域为R ,且是奇函数,为偶函数,则___________.四、解答题15.函数的有关概念2()41xxf x x a =+⋅-a =1-()0,+∞()()21f x x =+()()21f x x =-()f x =()f x x=()f x ()()()f x y f x f y +=+0x <()0f x >()00f =()f x ()f x [],m n ()f n ()2(1)10f x f x -+->{}23x x -<<()ln f x x =0a >()()y f a x f x =+-()()y f a x f x =-+-()()y f a x f a x =-++()()y f a x f a x =+--()f x 0x >()21f x x =-()()02f f +-=()()23,1log ,1a a x x f x x x ⎧--≤=⎨>⎩()f x ()f x ()1f x +()2f -=(1)函数的概念______________________完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数.(3)函数的三要素:定义域、对应关系、值域是函数的三要素,缺一不可.16.定义域为R 的函数满足:对任意实数x ,y ,均有,且,当时,.(1)求,的值;(2)证明:当时,.17.已知函数(1)求,的值;(2)求证:的定值;()f x ()()()2f x y f x f y +=++()22f =1x >()0f x >()0f ()1f -1x <()0f x <()f x =()122f f ⎛⎫+ ⎪⎝⎭()133f f ⎛⎫+⎪⎝⎭()1f x f x ⎛⎫+ ⎪⎝⎭(3)求的值.18.作出下列函数的图象,并根据图象求其值域:(1),;(2).19.(1)已知函数的定义域为,求的定义域;(2)已知函数的定义域为,求的定义域.34y x =-+[]1,3x ∈-y =[)(]3,00,1x ∈- ()()()()()11112123202120222320212022f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()f x []0,1()21f x +(23)f x -[1,3)(13)f x -参考答案1.答案:B解析:因为的定义域为R ,所以,解得,经验证满足题意,故选:B.2.答案:A解析:因是偶函数,故,,又因当时,可得:,即.故选:A.3.答案:B解析:因为,,所以,即,又,,故选:B.4.答案:C解析:由题设,即,所以是周期为的奇函数,且当时,则,,不符合当时,则且,不符合;当时,则,,故;当时,则且,不符合;()f x ()010f a =-=1a =1a =()f x (f f =(3)(3)f f -=[0,)x ∈+∞()f x 3π<<(π)(3)f f f >>(π)(3)(f f f >->2()(2)3f x ax b x =+-+(1)3f =(2)313a b a b +-+=++=2a b +=0a >0b >4114141()()(14)(5222b a a b b a b a b =⨯++=+++≥+====()()()f x f x f a x -=-=--()()(2)f x f x a f x a =-+=+()f x 2a x =2a =()()112(3)f f f =-+=-()()1124(9)f f f =+⨯=3a =()()116f f n =+n ∈Z 4a =(1)(41)(3)f f f =-=(1)(124)(9)f f f =+⨯=()()()139f f f ==5a =(1)(110)f f n =+n ∈Z故选:C.5.答案:D解析:因为函数是R 上的增函数,所以,解得,即a 的取值范围是.故选:D.6.答案:B解析:因为函数,在R 上单调递增,当时,由于和单调递增函数,故上单调递增,所以,解得当时,根据对勾函数的性质可知,若在上单调递增,则,当时,,显然满足在R 上单调递增,综上,.故选:B.7.答案:C解析:因为对任意的,,且,()25,1=,1x ax x f x a x x⎧---≤⎪⎨>⎪⎩01215a a a a<⎧⎪⎪-≥⎨⎪---≤⎪⎩32a -≤≤-[]3,2--23,1()(4)9,1m x x f x xm x x -⎧+≥⎪=⎨⎪+-<⎩230m -<y x =y =1x ≥()f x x =1x ≥1234940230m m m m +-≥+-⎧⎪+>⎨⎪-<⎩3m -≤<230m ->()f x 1x ≥123012349m m m ≤->⎨⎪+-≥+-⎩2m <≤230m -=m =,1()119,12x x f x x x ≥⎧⎪=⎨-<⎪⎩()f x 32m -≤≤1x ()20,x ∈+∞1x x ≠0<即对任意两个不相等的正实数,,不妨设,都有,,设函数则函数上单调递减,且.当时,不等式,即,解得,所以不等式的解集为.故选:C.8.答案:B解析:因为奇函数,所以,,得到,所以,当时,的定义域为关于数0对称,符合意义,所以.故选:B.9.答案:AD解析:画出函数图象如图所示,由图可得A ,D 中的函数在上单调递增,B ,C 中的函数在上不单调.故选:AD.1x 2x 120x x <<()()()()211212121212120x f x x f x f x f x x x x x x x x x --=<--()22f x x >()g x =()g x =)+∞(4)(4)34f g ==0x >()3f x >3>()(4)g x g >04x <<()3f x x >(0,4)2()41xxf x x a =+⋅-()()0f x f x -+=2222(414)041441(4)(41)x x x x x x x x x x x a a x x a a a a a ⋅-+--++=+==⋅--⋅--⋅-414(41)(1)0x x x a a a ⋅-+-=+-=1a =1a =()241xxf x x =+-()(),00,-∞+∞ 1a =()0,+∞()0,+∞10.答案:AB解析:对于A 选项,在中,令,可得,解得,A 选项正确;对于B 选项,由于函数的定义域为R ,在中,令,可得,所以,则函数为奇函数,B 选项正确;对于C 选项,任取,,且,则,,所以,所以,则函数在上为减函数,所以在区间上有最小值,C 选项错误;对于D 选项,由可得,又函数在上为减函数,则,整理得,解得,D 选项错误.故选:AB.11.答案:ABD解析:对于A ,因为函数的定义域为,函数在上单调递减,所以A 正确;对于B ,因为函数的定义域为,函数和在上单调递减,所以函数在上单调递减,所以B 正确;对于C ,因为函数的定义域为,函数是偶函数,所以函数在上不可能是单调函数,所以C 错误;对于D ,因为函数的定义域为,函数和()f n ()2(1)10f x f x -+->()21(1)(1)f x f x f x ->--=-()f x R 211x x -<-220x x +-<21x -<<()()()f x y f x f y +=+0x y ==()()020f f =()00f =()f x ()()()f x y f x f y +=+y x =-()()()00f x f x f +-==()()f x f x -=-()f x 1x 2x ∈R 12x x <120x x -<()120f x x ->()()()()()1212120f x f x f x f x f x x -=+-=->()()12f x f x >()f x R ()f x [],m n ()()y f a x f x =+-(0,)+∞()()ln 1a y f a x f x x ⎛⎫=+-=+ ⎪⎝⎭(0,)+∞()()y f a x f x =-+-(,0)-∞()y f a x =-()y f x =-(,0)-∞()()y f a x f x =-+-(,0)-∞()()y f a x f a x =-++(,)a a -()22ln y a x =-()()y f a x f a x =-++(,)a a -()()y f a x f a x =+--(,)a a -()y f a x =+在上单调递增,所以函数在上为增函数,所以D 正确.故选:ABD.12.答案:解析:因为函数是定义域为R 的奇函数,所以,且,又当时,,所以,所以.故答案为:.13.答案:解析:在R 上单调递增,,解得:,即实数的取值范围为.故答案为:.14.答案:0解析:因为是奇函数,所以.因为为偶函数,所以.取,得,所以.故答案为:0.15.答案:非空的实数集;任意一个数x ;唯一确定的数y ;;,;自变量;取值范围;x 的值;;定义域;对应关系解析:16.答案:(1),(2)证明见解析解析:(1)令,则,解得.令,则,解得,()y f a x =--(,)a a -()()y f a x f a x =+--(,)a a -3-()f x ()00f =()()f x f x -=-0x >()21f x x =-()()()222213f f -=-=--=-()()()02033f f +-=+-=-3-(]2,5()f x 20123log 10a a a a ->⎧⎪∴>⎨⎪--≤=⎩25a <≤(]2,5(]2,5()f x ()00f =()1f x +()()11f x f x -+=+1x =()()020f f ==()()220f f -=-=:f A B →()y f x =x A ∈(){}f x x A ∈()02f =-()14f -=-0x y ==()()()0002f f f =++()02f =-1x y ==()()()2112f f f =++()10f =令,,则,解得.(2)当时,,则.因为,所以.17.答案:(1),(2)证明见解析(3)2022解析:(1)因为,;(2),是定值;(3)由(2)知,因为,,,……,,所以.18.答案:(1)图象见解析,(2)图象见解析,1x =1y =-()()()0112f f f =+-+()14f -=-1x <21x ->()20f x ->()()()()22222f f x x f x f x =-+=-++=()()20f x f x =--<()1212f f ⎛⎫+= ⎪⎝⎭()1313f f ⎛⎫+= ⎪⎝⎭()f x =()2222112221212112f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭()2222113331313113f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭()22222222211111111111x x x x f x f x x x x x x ⎛⎫ ⎪+⎛⎫⎝⎭+=+=+== ⎪++++⎝⎭⎛⎫+ ⎪⎝⎭()11f x f x ⎛⎫+= ⎪⎝⎭()()111f f +=()1212f f ⎛⎫+= ⎪⎝⎭()1313f f ⎛⎫+= ⎪⎝⎭()1202212022f f ⎛⎫+= ⎪⎝⎭()()()()11121232021232021f f f f f f f ⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1202220222022f f ⎛⎫++= ⎪⎝⎭[]5,7-4(,4],3⎡⎫-∞-+∞⎪⎢⎣⎭解析:(1)该函数的图象如图所示,由图可知值域为;(2)作出函数的图象,如图所示,由图象可知值域为.19.答案:(1)(2)解析:(1)因为函数的定义域为,所以,即,所以.故函数的定义域为.(2)因为函数的定义域为,即,所以,则的定义域为,令,解得.[]5,7-y =[)(]3,00,1x ∈- 4(,4],3⎡⎫-∞-+∞⎪⎢⎣⎭ {0}x x =∣22,33⎛⎤- ⎥⎝⎦()f x []0,12011x ≤+≤210x -≤≤0x =()21f x +{0}x x =∣(23)f x -[1,3)13x ≤<1233x -≤-<()f x [1,3)-1133x -≤-<2233x -<≤故函数的定义域为.(13)f x -22,33⎛⎤- ⎥⎝⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________________.2.设函数f (x )=⎩⎪⎨⎪⎧1-2x 2 (x ≤1)x 2+3x -2 (x >1),则f (1f (3))的值为________. 3.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是________. 4.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是________.5.若函数f (x )唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是________.(填序号)①函数f (x )在区间(0,1)内有零点;②函数f (x )在区间(0,1)或(1,2)内有零点;③函数f (x )在区间[2,16)内无零点;④函数f (x )在区间(1,16)内无零点.6.已知0<a <1,则方程a |x |=|log a x |的实根个数是________.7.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是________.8.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b %,则n 年后这批设 备的价值为________万元.9.下列4个函数中:①y =2 008x -1;②y =log a 2 009-x 2 009+x(a >0且a ≠1); ③y =x 2 009+x 2 008x +1; ④y =x (1a -x -1+12)(a >0且a ≠1). 其中既不是奇函数,又不是偶函数的是________.(填序号)10.设函数的集合P ={f (x )=log 2(x +a )+b |a =-12,0,12,1;b =-1,0,1},平面上点的集合Q ={(x ,y )|x =-12,0,12,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )的图象恰好..经过Q 中两个点的函数的个数是________. 11.计算:0.25×(-12)-4+lg 8+3lg 5=________. 12.若规定⎪⎪⎪⎪⎪⎪a b c d =|ad -bc |,则不等式log 2⎪⎪⎪⎪⎪⎪1 11 x <0的解集是________. 13.已知关于x 的函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是________.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________.二、解答题(本大题共6小题,共90分)15.(14分)已知函数f (x )A ,函数g (x )=223m x x ---1的值域为集合B ,且A ∪B =B ,求实数m 的取值范围.16.(14分)已知f (x )=x +a x 2+bx +1是定义在[-1,1]上的奇函数,试判断它的单调性,并证明你的结论.17.(14分)若非零函数f (x )对任意实数a ,b 均有f (a +b )=f (a )·f (b ),且当x <0时,f (x )>1;(1)求证:f (x )>0;(2)求证:f (x )为减函数; (3)当f (4)=116时,解不等式f (x 2+x -3)·f (5-x 2)≤14.18.(16分)我市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.(1)设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x);(2)选择哪家比较合算?为什么?19.(16分)已知函数y=f(x)的定义域为D,且f(x)同时满足以下条件:①f(x)在D上是单调递增或单调递减函数;②存在闭区间[a,b]D(其中a<b),使得当x∈[a,b]时,f(x)的取值集合也是[a,b].那么,我们称函数y=f(x)(x∈D)是闭函数.(1)判断f(x)=-x3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.(2)若f(x)=k+x+2是闭函数,求实数k的取值范围.(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)20.(16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值;(2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示.模块综合检测(B)1.4解析 ∵A ∪B ={0,1,2,a ,a 2},又∵A ∪B ={0,1,2,4,16},∴⎩⎪⎨⎪⎧ a =4,a 2=16,即a =4.否则有⎩⎪⎨⎪⎧ a =16a 2=4矛盾. 2.127128解析 ∵f (3)=32+3×3-2=16,∴1f (3)=116, ∴f (1f (3))=f (116)=1-2×(116)2=1-2256=127128. 3.[0,1)解析 由题意得:⎩⎪⎨⎪⎧0≤2x ≤2x ≠1,∴0≤x <1. 4.b <a <c解析 20.3>20=1=0.30>0.32>0=log 21>log 20.3.5.③解析 函数f (x )唯一的一个零点在区间(0,2)内,故函数f (x )在区间[2,16)内无零点.6.2解析 分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.7.1<a <54 解析 ∵f (x )=x 2-2ax +1,∴f (x )的图象是开口向上的抛物线.由题意得:⎩⎨⎧ f (0)>0,f (1)<0,f (2)>0.即⎩⎪⎨⎪⎧ 1>0,1-2a +1<0,4-4a +1>0,解得1<a <54. 8.a (1-b %)n 解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2;故第n 年后这批设备的价值为a (1-b %)n .9.①③解析 其中①不过原点,不可能为奇函数,也可能为偶函数;③中定义域不关于原点对称,则既不是奇函数,又不是偶函数.10.6解析 当a =-12,f (x )=log 2(x -12)+b , ∵x >12, ∴此时至多经过Q 中的一个点;当a =0时,f (x )=log 2x 经过(12,-1),(1,0), f (x )=log 2x +1经过(12,0),(1,1); 当a =1时,f (x )=log 2(x +1)+1经过(-12,0),(0,1), f (x )=log 2(x +1)-1经过(0,-1),(1,0);当a =12时,f (x )=log 2(x +12)经过(0,-1),(12,0), f (x )=log 2(x +12)+1经过(0,0),(12,1). 11.7解析 原式=0.25×24+lg 8+lg 53=(0.5×2)2×22+lg(8×53)=4+lg 1 000=7.12.(0,1)∪(1,2)解析 ⎪⎪⎪⎪⎪⎪1 11 x =|x -1|, 由log 2|x -1|<0,得0<|x -1|<1,即0<x <2,且x ≠1.13.(1,2)解析 依题意,a >0且a ≠1,∴2-ax 在[0,1]上是减函数,即当x =1时,2-ax 的值最小,又∵2-ax 为真数,∴⎩⎨⎧a >12-a >0,解得1<a <2. 14.(-∞,-1)解析 当x >0时,由1-2-x <-12,(12)x >32,显然不成立. 当x <0时,-x >0.因为该函数是奇函数,所以f (x )=-f (-x )=2x -1.由2x -1<-12,即2x <2-1,得x <-1. 又因为f (0)=0<-12不成立, 所以不等式的解集是(-∞,-1).15.解 由题意得A ={x |1<x ≤2},B =(-1,-1+31+m ]. 由A ∪B =B ,得A ⊆B ,即-1+31+m ≥2,即31+m ≥3, 所以m ≥0.16.解 ∵f (x )=x +a x 2+bx +1是定义在[-1,1]上的奇函数, ∴f (0)=0,即0+a 02+0+1=0,∴a =0. 又∵f (-1)=-f (1),∴-12-b =-12+b, ∴b =0,∴f (x )=x x 2+1. ∴函数f (x )在[-1,1]上为增函数.证明如下:任取-1≤x 1<x 2≤1,∴x 1-x 2<0,-1<x 1x 2<1,∴1-x 1x 2>0.∴f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1 =x 1x 22+x 1-x 21x 2-x 2(x 21+1)(x 22+1) =x 1x 2(x 2-x 1)+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1)<0, ∴f (x 1)<f (x 2),∴f (x )为[-1,1]上的增函数.17.(1)证明 f (x )=f (x 2+x 2)=f 2(x 2)≥0, 又∵f (x )≠0,∴f (x )>0.(2)证明 设x 1<x 2,则x 1-x 2<0,又∵f (x )为非零函数,∴f (x 1-x 2)=f (x 1-x 2)·f (x 2)f (x 2)=f (x 1-x 2+x 2)f (x 2)=f (x 1)f (x 2)>1,∴f (x 1)>f (x 2),∴f (x )为减函数. (3)解 由f (4)=f 2(2)=116,f (x )>0,得f (2)=14. 原不等式转化为f (x 2+x -3+5-x 2)≤f (2),结合(2)得: x +2≥2,∴x ≥0,故不等式的解集为{x |x ≥0}.18.解 (1)f (x )=5x,15≤x ≤40;g (x )=⎩⎪⎨⎪⎧ 90, 15≤x ≤3030+2x , 30<x ≤40. (2)①当15≤x ≤30时,5x =90,x =18, 即当15≤x <18时,f (x )<g (x );当x =18时,f (x )=g (x );当18<x ≤30时,f (x )>g (x ).②当30<x ≤40时,f (x )>g (x ),∴当15≤x <18时,选甲家比较合算;当x =18时,两家一样合算;当18<x ≤40时,选乙家比较合算.19.解 (1)f (x )=-x 3在R 上是减函数,满足①;设存在区间[a ,b ],f (x )的取值集合也是[a ,b ],则⎩⎪⎨⎪⎧-a 3=b -b 3=a ,解得a =-1,b =1, 所以存在区间[-1,1]满足②,所以f (x )=-x 3(x ∈R )是闭函数.(2)f (x )=k +x +2是在[-2,+∞)上的增函数,由题意知,f (x )=k +x +2是闭函数,存在区间[a ,b ]满足② 即:⎩⎪⎨⎪⎧ k +a +2=a k +b +2=b. 即a ,b 是方程k +x +2=x 的两根,化简得, a ,b 是方程x 2-(2k +1)x +k 2-2=0的两根. 且a ≥k ,b >k .令f (x )=x 2-(2k +1)x +k 2-2,得⎩⎪⎨⎪⎧ f (k )≥0Δ>02k +12>k ,解得-94<k ≤-2,所以实数k 的取值范围为(-94,-2]. 20.解 (1)∵f (x )是奇函数,∴f (-2)=-f (2),即f (2)+f (-2)=0.(2)当x <0时,-x >0,∴f (-x )=a -x -1. 由f (x )是奇函数,有f (-x )=-f (x ), ∵f (-x )=a -x -1,∴f (x )=-a -x +1(x <0).∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1 (x ≥0)-a -x +1 (x <0). (3)不等式等价于⎩⎪⎨⎪⎧ x -1<0-1<-a-x +1+1<4 或⎩⎪⎨⎪⎧ x -1≥0-1<a x -1-1<4, 即⎩⎪⎨⎪⎧ x -1<0-3<a -x +1<2或⎩⎪⎨⎪⎧ x -1≥00<a x -1<5. 当a >1时,有⎩⎨⎧ x <1x >1-log a 2或⎩⎨⎧x ≥1x <1+log a 5,注意此时log a 2>0,log a 5>0, 可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .。