全国硕士研究生入学考试数学一考试大纲.pdf
2024研究生入学考试数学一

2024年全国硕士研究生入学统一考试数学一考试内容主要包括
高等数学、线性代数、概率论与数理统计、离散数学、常微分方程、数学分析、复变函数等。
数学一的总分是150分,考试时间一般为
3小时,难度相对较高。
具体来说,数学一主要考察的内容有:
1. 高等数学:主要包括极限、一元函数微积分学、常微分方程、无穷级数、多元函数微积分学以及空间解析几何等。
2. 线性代数:主要包括行列式、矩阵、向量、线性方程组、特
征值和特征向量以及实二次型等。
3. 概率论与数理统计:主要包括随机事件和概率、随机变量及
其分布、多维随机变量及其分布、随机变量的数字特征以及大数定
律和中心极限定理等。
4. 离散数学:主要包括图论基础、组合计数和概率基础、集合
论基础、逻辑基础等。
5. 数学分析:主要包括极限理论、实数理论、导数与微分、积分、级数等内容。
6. 复变函数:主要包括复数与复变函数、导数与微分、积分、
级数等内容。
在备考研究生入学考试数学一时,建议考生系统学习数学基础
知识,多做真题和模拟题,掌握解题技巧和方法,同时也要注重数
学思维和逻辑推理能力的培养。
1993年全国硕士研究生入学统一考试数学(一)真题及解析

1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)函数1()(2(0)xF x dt x =>⎰的单调减少区间为_____________.(2)由曲线223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小 (C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为 (A)6π(B)4π (C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则 (A)6t =时P 的秩必为1(B)6t =时P 的秩必为2 (C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sincos ).x x x x →∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰其中∑是由曲面z =与z =.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和. 六、(本题共2小题,每小题5分,满分10分)(1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.b aa b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关. 九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________. 十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1993年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】104x <≤【解析】由连续可导函数的导数与0的关系判别函数的单调性. 将函数1()(2,xF x dt =⎰两边对x 求导,得 ()2F x '=-.若函数()F x 严格单调减少,则()20F x'=-<,12<.所以函数()F x 单调减少区间为104x <≤. 【相关知识点】函数的单调性:设函数()y f x =在[,]a b 上连续,在(,)a b 内可导.(1) 如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; (2) 如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少.(2)【解析】先写出旋转面S 的方程:2223()212x z y ++=. 令 222(,,)3()212F x y z x z y =++-. 则S 在点(,,)x y z 的法向量为{},,6,4,6F F F n x y z x y z ⎧⎫∂∂∂=±=±⎨⎬∂∂∂⎩⎭,所以在点处的法向量为{{0,42n =±=±. 因指向外侧,故应取正号,单位法向量为()0220,0,||0nn n ====. (3)【答案】23π【解析】按傅式系数的积分表达式 1()sin n b f x nxdx πππ-=⎰,所以 22311()sin 3sin 3sin 3b x x xdx x xdx xxdx πππππππππ---=+=+⎰⎰⎰.因为2sin 3x x 为奇函数,所以2sin 30xxdx ππ-=⎰;sin3x xdx 为偶函数,所以30sin 32sin 3b x xdx x xdx πππ-==⎰⎰01222(cos3)cos3cos3333x xd x x xdx πππ⎡⎤=-=-+⎢⎥⎣⎦⎰⎰22sin 323333x πππ⎡⎤=+=⎢⎥⎣⎦. (4)【答案】2221x y z ++【解析】先计算u 的梯度,再计算该梯度的散度. 因为 grad u u u u i j k x y z∂∂∂=++∂∂∂, 所以 222222(grad ),,u u u u u udiv u div x y z x y z ⎧⎫∂∂∂∂∂∂==++⎨⎬∂∂∂∂∂∂⎩⎭.数量场u =,,x y z 求偏导数,得222uxxx y z∂==∂++, 由对称性知222u y y x y z ∂=∂++, 222u zz x y z∂=∂++, 将,,u u ux y z∂∂∂∂∂∂分别对,,x y z 求偏导,得 2222222222222222()2()()u x y z x x y z x x x y z x y z ∂++-⋅+-==∂++++, 222222222()u z x y y x y z ∂+-=∂++, 222222222()u x y z z x y z ∂+-=∂++, 因此, 2222222221(grad )u u u div u x y z x y z ∂∂∂=++=∂∂∂++.(5)【答案】(1,1,,1)T k【解析】因为()1r A n =-,由()1n r A -=知,齐次方程组的基础解系为一个向量,故0Ax =的通解形式为k η.下面根据已知条件“A 的各行元素之和均为零”来分析推导0Ax =的一个非零解,它就是0Ax =的基础解系.各行元素的和均为0,即111212122212000n n n n nn a a a a a a a a a ++=⎧⎪++=⎪⎨⎪⎪++=⎩,而齐次方程组0Ax =为111122121122221122000n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩. 两者比较,可知121n x x x ====是0Ax =的解.所以应填(1,1,,1)T k .二、选择题(本题共5小题,每小题3分,满分15分.)(1)【答案】(B) 【解析】0()lim()x f x g x →为“0”型的极限未定式,又分子分母在点0处导数都存在, 运用洛必达法则,有sin 22203423230000sin()()sin(sin )cos sin(sin )limlim lim lim lim cos ()3434xx x x x x t dt f x x x x x g x x x x x x x →→→→→===⋅+++⎰洛2230sin(sin )lim 34x x x x →=+.因为当0x →,sin 0,x →所以222sin(sin )sin x x x ,所以222323000sin(sin )11lim lim lim 3434343x x x x x x x x x x →→→===+++, 所以()f x 与()g x 是同阶但非等价的无穷小量.应选(B). 【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (2)【答案】(A)【解析】由方程可以看出双纽线关于x 轴、y 轴对称,(如草图) 只需计算所围图形在第一象限部分的面积; 双纽线的直角坐标方程复杂,而极坐标方程 较为简单:2cos 2ρθ=.显然,在第一象限部分θ的变化范围是[0,]4πθ∈.再由对称性得2441001442cos 22S S d d ππρθθθ==⋅=⎰⎰,应选(A). (3)【答案】(C)【解析】这实质上是求两个向量的夹角问题,1L 与2L 的方向向量分别是12(1,2,1),110(1,1,2)021i j k l l =- =-=--,1L 与2L 的夹角ϕ的余弦为121212||1cos |cos(,)|2||||66l l l l l l ϕ⋅====,所以3πϕ=,应选(C).(4)【答案】(B)【解析】在所考察的单连通区域上,该曲线积分与路径无关⇔((())sin )(()cos )x f x e y f x y y x∂∂-=-∂∂, 即 (())cos ()cos xf x e y f x y '-=-,化简得 ()()xf x f x e '+=, 即 2()x x e f x e '⎡⎤=⎣⎦, 解之得 21()2xx e f x e C =+, 所以 21()()2x x f x e e C -=+.由(0)0f = 得12C =-,因此 1()()2x xf x e e -=-,故应选(B). 【相关知识点】曲线积分LPdx Qdy +⎰在单连通区域内与路径无关的充分必要条件是P Qy x∂∂=∂∂. (5)【答案】(C)【解析】若A 是m n ⨯矩阵,B 是n s ⨯矩阵,0AB =,则()()r A r B n +≤.当6t =时,矩阵的三行元素对应成比例,()1r Q =,有()()3r P r Q +≤,知()2r P ≤, 所以,()r P 可能是1,也有可能是2,所以(A)、(B)都不准确;当6t ≠时,矩阵的第一行和第三行元素对应成比例,()2r Q =,于是从()()3r P r Q +≤得()1r P ≤,又因0P ≠,有 ()1r P ≥,从而()1r P =必成立,所以应当选(C).三、(本题共3小题,每小题5分,满分15分.) (1)【解析】令1t x=,则当x →∞时,0t →, 1021lim(sin cos )lim(sin 2cos )xt x t t t x x→∞→+=+, 这是1∞型未定式,11sin 2cos 1sin 2cos 10lim(sin 2cos )lim(1sin 2cos 1)t t t t t tt t t t t t +-⋅+-→→+=++-,而1sin 2cos 1lim(1sin 2cos 1)t t t t t +-→++-是两个重要极限之一,即1sin 2cos 1lim(1sin 2cos 1)t t t t t e +-→++-=.所以 01sin 2cos 1sin 2cos 1limlim(sin 2cos )lim t t t t t t ttt t t t ee→+-+-→→+==.而 00sin 2cos 12cos 2sin lim lim 21t t t t t tt →→+--=洛,故 221lim(sin cos )x x e x x→∞+=.(2)【解析】方法一:222x==⎰.t =,则 222ln(1),1tdtx t dx t =+=+,所以22222122(1)111tdt t t dt dt t t t =⋅==-+++⎰⎰⎰22arctan t t C C =-+=, 所以22x=2C =. 方法二t =,则 22221,ln(1),1xtdte t x t dx t =+=+=+, 所以2222(1)ln(1)22ln(1)1xt t t dt t dt t t ++=⋅=++⎰⎰222222ln(1)2ln(1)2ln(1)41t t t td t t t dt t =+-+=+-+⎰⎰. 关于221t dt t +⎰的求解同方法一,所以22ln(1)4(arctan )xt t t t C =+--+2C =. (3)【解析】解法一:所给方程为伯努利方程,两边除以2y 得2211x y y xy --'+=,即211()1x y xy --'-+=.令1yz -=,则方程化为21x z xz '-+=,即211z z x x'-=-, 即 31()z x x '=-,积分得 212z x C x -=+.由1yz -=得2112x C xy -=+, 即 2212xy Cx =+,代入初始条件1|1x y ==,得 12C =,所以所求方程的特解是221x y x =+.解法二:所给方程可写成 2()y yy xx'=-的形式,此方程为齐次方程. 令yu x=,则,y xu y u xu ''==+,所以方程可化为 2u xu u u '+=-,分离变量得(2)du dxu u x=-,积分得112ln ln ||2u x C u -=+, 即22u Cx u-=. 以yu x=代入上式,得22y x Cx y -=.代入初始条件1|1x y ==,得1C =-, 故特解为221xy x =+.四、(本题满分6分) 【解析】将I 表成I Pdydz Qdzdx Rdxdy ∑=++⎰⎰,则22P Q R z z z z x y z∂∂∂++=+-=∂∂∂. 又∑是封闭曲面,可直接用高斯公式计算.记∑围成区域Ω,见草图,∑取外侧,由高斯公式得P Q R I dV zdV x y z ΩΩ⎛⎫∂∂∂=++= ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰.用球坐标变换求这个三重积分.在球坐标变换下,Ω为:02,0,024πθπϕρ≤≤≤≤≤≤,于是22240cos sin I zdV d d d ππθϕρϕρϕρΩ==⎰⎰⎰⎰⎰⎰2342sin sin d d ππϕϕρρ=⋅⎰⎰242401112sin 212442πππϕρπ⎡⎤⎡⎤=⋅⋅=⋅⋅=⎢⎥⎢⎥⎣⎦⎣⎦.五、(本题满分7分) 【解析】先将级数分解,2000(1)(1)(1)(1)1()222n n nn nn n n n n n n A ∞∞∞===--+--==+-∑∑∑.第二个级数是几何级数,它的和已知112()1231()2n n ∞=-==--∑. 求第一个级数的和转化为幂级数求和.考察1(1)(||1)1nn n x x x∞=-=<+∑. 2()(1)(1)((1))nn n n n n S x n n xx ∞∞-==''=--=-∑∑312()1(1)x x ''==++, 所以 230(1)(1)11124()1222427(1)2n n n n n S ∞=--===+∑. 因此原级数的和 422227327A =+=.六、(本题共2小题,每小题5分,满分10分.)(1)【解析】证法一:由拉格朗日中值定理可知,在(0,)x 存在一点ξ,使得()(0)()(0)()f x f f x xf ξξ''-=-=,即 ()()(0)f x xf f ξ'=+.因为()0f k ξ'≥>,所以当x →+∞时,()xf ξ'→+∞,故()f x →+∞. 由(0)0f <,所以在(0,)x 上由介值定理可知,必有一点(0,)x η∈使得()0f η=.又因为()0f k ξ'≥>,故()f x 为严格单调增函数,故η值唯一. 证法二:用牛顿-莱布尼兹公式,由于()(0)()(0)(0)xxf x f f t dt f kdt f kx '=+≥+=+⎰⎰,以下同方法1.(2)【解析】先将不等式做恒等变形:因为b a e >>,故原不等式等价于ln ln b a a b >或ln ln a ba b>. 证法一:令()ln ln ,()f x x a a x x a e =- >>,则 ()ln af x a x'=-.因为x a e >>,所以ln 1,1a a x ><,故()ln 0af x a x'=->.从而()f x 在x a e >>时为严格的单调递增函数,故 ()()0,()f x f a x a e >= >>. 由此 ()ln ln 0f b b a a b =->,即 baa b >. 证法二:令ln ()()x f x x e x =>,则 21ln ()xf x x-'=. 当(,)x e ∈+∞时,()0f x '<,所以()f x 为严格的单调递减函数,故存在b a e >>使得ln ln ()()b af b f a b a=<=成立.即baa b >.七、(本题满分8分)【解析】写出二次型f 的矩阵为2000303A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,它的特征方程是22200||03(2)(69)003E A a a aλλλλλλλ--=--=--+-=--.f 经正交变换化成标准形22212325f y y y =++,那么标准形中平方项的系数1,2,5就是A 的特征值.把1λ=代入特性方程,得240a -=2a ⇒=±.因0a >知2a =.这时 200032023A ⎛⎫⎪= ⎪ ⎪⎝⎭.对于11λ=,由()0E A x -=, 100100022011022000-⎛⎫⎛⎫ ⎪ ⎪--→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,得 1(0,11)TX =-.对于22λ=,由(2)0E A x -=,000012012003021000⎛⎫⎛⎫ ⎪ ⎪--→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,得2(1,0,0)TX =.对于35λ=,由(5)0E A x -=,300300022011022000⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,得3(0,1,1)TX =.将123,,X X X 单位化,得1230101,0,1101γγγ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪===⎪ ⎪⎪⎪ ⎪⎪-⎭⎝⎭⎭. 故所用的正交变换矩阵为123010(,,)00P γγγ⎛⎫⎪ ⎪ ==⎝. 【相关知识点】二次型的定义:含有n 个变量12,,,n x x x 的二次齐次多项式(即每项都是二次的多项式)()1211,,,,n nn ij i j i j f x x x a x x ===∑∑ 其中ij ji a a =,称为n 元二次型.令()12,,,Tn x x x x =,()ij A a =,则二次型可用矩阵乘法表示为()12,,,,T n f x x x x Ax =其中A 是对称矩阵()T A A =,称A 为二次型()12,,,n f x x x 的矩阵.八、(本题满分6分)【解析】证法一:对B 按列分块,记12(,,)n B βββ=,若11220n n k k k βββ+++=,即 1212(,,,)0n n k k k βββ⎛⎫⎪ ⎪= ⎪⎪⎝⎭, 亦即 120n k k Bk ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭. 两边左乘A ,得 120n k k AB k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,即 120n k k E k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,亦即 120n k k k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.所以12,,n βββ线性无关.证法二:因为B 是m n ⨯矩阵,n m <,所以()r B n ≤.又因()()()r B r AB r E n ≥==,故()r B n =.所以12,,n βββ线性无关.【相关知识点】1. 向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k ,使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.2. 矩阵乘积秩的结论:乘积的秩小于等于单个矩阵的秩九、(本题满分6分)【解析】如图,设当A 运动到(0,)Y 时,B 运动到(,)x y . 由B 的方向始终指向A ,有0dy y Ydx x -=-,即 .dyY y xdx=- (1) 又由dYv dt =,222()()dy dx v dt dt =+,得22()()2dy dx dY dt dt dt+=. 由题意,()x t 单调增,0dxdt>,所以 21()2dx dy dY dt dx dt +=.亦即 21()2dy dY dx dx+=. (2) 由(1),(2)消去Y ,dY dx,便得微分方程 2210xy y '''++=. 初始条件显然是(1)0,(1)1y y '-=-=.十、填空题(本题共2小题,每小题3分,满分6分,把答案填在题中横线上.) (1)【解析】可以用古典概型,也可以用抽签原理.方法一:从直观上看,第二次抽出次品的可能性与第一次抽到正品还是次品有关,所以考虑用全概率公式计算.设事件i B =“第i 次抽出次品”1,2,i =由已知得11210(),(),1212P B P B == 121212(|),(|)1111P B B P B B ==.应用全概率公式 1121212211021()()(|)()(|)121112116P B P B P B B P B P B B =+=⨯+⨯=.方法二:对填空题和选择题可直接用抽签原理得到结果.由抽签原理(抽签与先后次序无关),不放回抽样中第二次抽得次品的概率与第一次抽得次品的概率相同,都是21126=. (2)【解析】方法一:可以用分布函数法,即先求出分布函数,再求导得到概率密度函数.由已知条件,X 在区间(0,2)上服从均匀分布,得X 的概率密度函数为1,02()20,X x F x ⎧ <<⎪=⎨⎪ ⎩其它. 先求F 的分布函数2()()()Y F y P Y y P X y =≤=≤.当0y ≤时,()0Y F y =;当4y ≥时,()1Y F y =;当04y <<时,{}{}{2()Y F y P Y y P X y P X =≤=≤=≤≤1()2X x dx dx dx ==+=⎰. 即0,0()04,1, 4.Y y F y y y ≤ ,⎧=<<⎪ ≥⎪⎩于是,对分布函数求导得密度函数04()()0,Y Y y f y F y <<'== ⎩其他.故随机变量2Y X =在(0,4)内的概率分布密度()Y f y =方法二:也可以应用单调函数公式法.由于2y x =在(0,4)内单调,反函数()x h y =(0,2)内可导,且导数()h y '=恒不为零,因此,由连续型随机变量函数的密度公式,得到随机变量Y 的概率密度为[]1,04,04,()(),042()0,0,0,X Y y y h y f h y y f y << <<'⎧ <<⎪===⎨ ⎪⎩ ⎩⎩其他其他,其他.故随机变量2Y X =在(0,4)内的概率分布密度()Y f y =十一、(本题满分6分)【解析】(1)第一问是常规问题,直接运用公式对其计算可得期望与方差.||()()02x x E X xf x dx e dx +∞+∞--∞-∞===⎰⎰. (因为被积函数||2x x e -是奇函数,积分区域关于y 轴对称,所以积分值为0.) 22||2||20()()211222x x x x D X x f x dx e dx x e dx x e dx +∞+∞--∞-∞+∞+∞---∞===⋅⎰⎰⎰⎰偶函数积分的性质220222() 2.x xx x x xx e dx x e xe dxxe e dx e +∞+∞--+∞-+∞-+∞--+∞==-+=-=-=⎰⎰⎰(+)(2) 根据协方差的计算公式(,)(||)()(||)cov X Y E X X E X E X =-来计算协方差.因为||()()02x x E X xf x dx e dx +∞+∞--∞-∞===⎰⎰,所以 ||(,)(||)0(||)(||)1||()||0.2x Cov X Y E X X E X E X X x x f x dx x x e dx +∞+∞--∞-∞=-====⎰⎰(因为被积函数||||2x xx e -是奇函数,积分区域关于y 轴对称,所以积分值为0.) 所以X 与||X 不相关. (3) 方法一:对于任意正实数(0)a a <<+∞,事件{}||X a <含于事件{}X a <,且{}01P X a <<<,所以 {}{},||||P X a X a P X a <<=<,{}{}{}||||P X a P X a P X a <<<<, 可见 {}{}{},||||P X a X a P X a P X a <<≠<<, 因此X 与||X 不独立.方法二:因为11111111{1}()1112222x x x P X f x dx e dx e dx e e+∞---+∞-∞-∞≤===-=+=-⎰⎰⎰; 又1111011011{1}()12x x xP X f x dx e dx e dx e e-----≤====-=-⎰⎰⎰,显然有{,}{}{}{}P X X P X P X P X ≤≤=≤≠≤≤11111,因此X 与||X 不独立.。
1998年全国硕士研究生入学统一考试数学(一)真题及解析

1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)0x →(2)设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2z x y∂∂∂=_____________.(3)设l 为椭圆221,43x y +=其周长记为,a 则22(234)Lxy x y ds ++⎰=_____________. (4)设A 为n 阶矩阵*,0,≠A A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值,λ则*2()+A E 必有特征值_____________.(5)设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 连续,则220()xd tf x t dt dx -⎰= (A)2()xf x (B)2()xf x - (C)22()xf x(D)22()xf x -(2)函数23()(2)f x x x x x =---不可导点的个数是 (A)3 (B)2 (C)1(D)0(3)已知函数()y y x =在任意点x 处的增量2,1y xy xα∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于(A)2π (B)π(C)4e π(D)4e ππ(4)设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A)相交于一点 (B)重合 (C)平行但不重合(D)异面(5)设,A B 是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有 (A)(|)(|)P A B P A B = (B)(|)(|)P A B P A B ≠ (C)()()()P AB P A P B =(D)()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z l --==-在平面:210x y z π-+-=上的投影直线0l 的方程,并求0l 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数,λ使在右半平面0x >上的向量42242(,)2()()x y xy x y x x y λλ=+-+A i j为某二元函数(,)u x y 的梯度,并求(,).u x y 五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度(y 从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为,m 体积为,B 海水密度为,ρ仪器所受的阻力与下沉速度成正比,比例系数为(0).k k >试建立y 与v 所满足的微分方程,并求出函数关系式().y y v =六、(本题满分7分)计算222212(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半平面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112x n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦设正向数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11()1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1)试证存在0(0,1),x ∈使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在区间0[,1]x 上以()y f x =为曲边的曲边梯形面积.(2)又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的. 十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=可以经过正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 化为椭圆柱面方程2244,ηξ+=求,a b 的值和正交矩阵.P 十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数,k 使线性方程组k x =A 0有解向量,α且1.k -≠A α0 证明:向量组1,,,k -αA αA α是线性无关的.十二、(本题满分5分)已知方程组(Ⅰ)1111221,222112222,221122,22000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=+++=+++=的一个基础解析为11121,221222,212,2(,,,),(,,,),,(,,,).T T T n n n n n n b b b b b b b b b 试写出线性方程组(Ⅱ)1111221,222112222,221122,22000n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=+++=+++=的通解,并说明理由.设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大? 附:标准正态分布表22()t zx dt -Φ=⎰十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70 分?并给出检验过程.附:t 分布表 {()()}p P t n t n p ≤=1998年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x →=24x →-=)221lim4x x →=2220112112lim 24x x xx →-- =-.方法2:采用洛必达法则.原式)()022limxx →''洛0x→= 0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x →-++=14=-. (2)【答案】()()()yf xy x y y x y ϕϕ'''''++++ 【分析】因为1()(),,z f xy y x y f xϕϕ=++具有二阶连续导数,利用混合偏导数在连续的条件下与求导次序无关,先求z x ∂∂或z y∂∂均可,但不同的选择可能影响计算的繁简. 方法1:先求z x∂∂. 211()()()()()z y f xy y x y f xy f xy y x y x x x x x ϕϕ∂∂⎡⎤''=++=-+++⎢⎥∂∂⎣⎦,2221()()()11()()()()()11()()()()()()()().z y f xy f xy y x y x y y x x yf xy x f xy f xy x x y y x y x x xf xy f xy yf xy x y y x y x xyf xy x y y x y ϕϕϕϕϕϕϕ∂∂⎛⎫''=-+++ ⎪∂∂∂⎝⎭'''''''=-++++++'''''''=-++++++'''''=++++ 方法2:先求z y∂∂. 11()()()()()()()(),z f xy y x y f xy x x y y x y y y x xf xy x y y x y ϕϕϕϕϕ∂∂⎡⎤''=++=++++⎢⎥∂∂⎣⎦''=++++ []22()()()()()().z z f xy x y y x y x y y x xyf xy x y y x y ϕϕϕϕ∂∂∂''==++++∂∂∂∂∂'''''=++++ 方法3:对两项分别采取不同的顺序更简单些:()[][][]21()()1()()()()()()().z f xy y x y x y x y x y x f xy x y x y x x y f xy y x y x yyf xy x y y x y ϕϕϕϕϕ⎡⎤∂∂∂∂∂⎛⎫⎡⎤=++ ⎪⎢⎥⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦⎣⎦∂∂⎡⎤''=++⎢⎥∂∂⎣⎦∂∂''=++∂∂'''''=++++ 评注:本题中,,f ϕ中的中间变量均为一元,因此本题实质上是一元复合函数的求导,只要注意到对x 求导时,y 视为常数;对y 求导时,x 视为常数就可以了. (3)【答案】12a【解析】L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上,22222213412(34)1212.43L L x y x y x y ds ds a +=⇒+=⇒+==⎰⎰因此, 原式222(34)12LLxyds x y ds a =++=⎰⎰.【相关知识点】对称性:平面第一型曲线积分(),lf x y ds ⎰,设(),f x y 在l 上连续,如果l 关于y 轴对称,1l 为l 上0x ≥的部分,则有结论:()()()()12,,,,0,l lf x y ds f x y x f x y ds f x y x ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. 类似地,如果l 关于x 轴对称,2l 为l 上0y ≥的部分,则有结论:()()()()22,,,,0,l lf x y ds f x y y f x y ds f x y y ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. (4)【答案】 21A λ⎛⎫+ ⎪⎝⎭【解析】方法1:设A 的对应于特征值λ的特征向量为ξ,由特征向量的定义有,(0)A ξλξξ=≠.由0A ≠,知0λ≠(如果0是A 的特征值0A ⇔=),将上式两端左乘A *,得A A A A A ξξλξλξ***===,从而有 *,AA ξξλ=(即A *的特征值为Aλ).将此式两端左乘A *,得()22**AA A A ξξξλλ⎛⎫== ⎪⎝⎭.又E ξξ=,所以()()22*1A A E ξξλ⎛⎫⎛⎫ ⎪+=+ ⎪ ⎪⎝⎭⎝⎭,故*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.方法2:由0A ≠,A 的特征值0λ≠(如果0是A 的特征值0A ⇔=),则1A -有特征值1λ,A *的特征值为A λ;*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.【相关知识点】1.矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘1A -,得1A αλα-=.因为0α≠,故0λ≠,于是有11Aααλ-=.按特征值定义知1λ是1A -的特征值.若AX X λ=,则()()A kE X AX kX k X λ+=+=+.即若λ是A 的特征值,则A kE +的特征值是k λ+.2.矩阵A 可逆的充要条件是0A ≠,且11AA A-*=. (5)【答案】14【解析】首先求(,)X Y 的联合概率密度(,)f x y .21(,)|1,0D x y x e y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭, 区域D 的面积为22111ln 2.e e D S dx x x===⎰1,(,),(,)20, x y D f x y ⎧∈⎪=⎨⎪⎩其他.其次求关于X 的边缘概率密度.当1x <或2x e >时,()0X f x =;当21x e ≤≤时,1011()(,)22x X f x f x y dy dy x+∞-∞===⎰⎰. 故1(2).4X f =二、选择题(本题共5小题,每小题3分,共15分.) (1)【答案】(A)【解析】为变限所定义的函数求导数,作积分变量代换22,u x t =-2:0:0t x u x →⇒→,()222du d x t tdt =-=-12dt du t⇒=-, 222022220001()()211()(),22xx xx tf x t dt u x t tf u dt t f u du f u du ⎛⎫-=-- ⎪⎝⎭=-=⎰⎰⎰⎰()2220022221()()211()()2(),22x x d d tf x t dt f u du dx dx f x x f x x xf x -='=⋅=⋅=⎰⎰选(A).【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t ft t f t ββαα'''=⋅-⋅.(2)【答案】(B)【解析】当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是分段函数.22()(2)1f x x x x x =---,当0,1x ≠±时()f x 可导,因而只需在0,1x =±处考察()f x 是否可导.在这些点我们分别考察其左、右导数.由 22222222(2)(1),1,(2)(1),10,()(2)(1),01,(2)(1),1,x x x x x x x x x x f x x x x x x x x x x x ⎧---<-⎪----≤<⎪=⎨---≤<⎪⎪---≤⎩⇒ ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x ---→-→-------'-===++, ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x +++→-→-------'-===++,即()f x 在1x =-处可导.又()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x ---→→-----'===, ()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x+++→→-----'===-,所以()f x 在0x =处不可导.类似,函数()f x 在1x =处亦不可导.因此()f x 只有2个不可导点,故应选(B). 评注:本题也可利用下列结论进行判断:设函数()()f x x a x ϕ=-,其中()x ϕ在x a =处连续,则()f x 在x a =处可导的充要条件是()0a ϕ=. (3)【答案】(D) 【解析】由2,1y x y x α∆∆=++有2.1y y x x xα∆=+∆+∆ 令0,x ∆→得α是x ∆的高阶无穷小,则0lim0x xα∆→=∆,0limx y x ∆→∆∆20lim 1x yx x α∆→⎛⎫=+ ⎪+∆⎝⎭200lim lim 1x x y x x α∆→∆→=++∆21y x =+ 即21dy y dx x=+. 分离变量,得2,1dy dx y x=+ 两边积分,得 ln arctan y x C =+,即arctan 1.xy C e=代入初始条件(0),y π=得()arctan0110.y C e C π===所以,arctan xy eπ=.故 arctan 1(1)xx y eπ==arctan1eπ=4.e ππ=【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (4)【答案】(A) 【解析】设3331121212:x a y b z c L a a b b c c ---==---,1112232323:x a y b z c L a a b b c c ---==---,题设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则由行列式的性质,可知 11112121222223232333333312230a b c a a b b c c a b c a a b b c c a b c a b c ------≠行减行,行减行, 故向量组121212(,,)a a b b c c ---与232323(,,)a a b b c c ---线性无关,否则由线性相关的定义知,一定存在12,k k ,使得11212122232323(,,)(,,)0k a a b b c c k a a b b c c ---+---=,这样上面行列式经过初等行变换值应为零,产生矛盾.121212(,,)a a b b c c ---与232323(,,)a a b b c c ---分别为12,L L 的方向向量,由方向向量线性相关,两直线平行,可知12,L L 不平行.又由333121212x a y b z c a a b b c c ---==---得333121212111x a y b z c a a b b c c ----=-=----,即()()()312312312121212x a a a y b b b z c c c a a b b c c ---------==---. 同样由111232323x a y b z c a a b b c c ---==---,得111232323111x a y b z c a a b b c c ---+=+=+---,即 ()()()123323323232323x a a a y b b b z c c c a a b b c c -+--+--+-==---, 可见12,L L 均过点()213213213,,a a a b b b c c c ------,故两直线相交于一点,选(A). (5)【答案】C【分析】由题设条件(|)(|)P B A P B A =,知A 发生与A 不发生条件下B 发生的条件概率相等,即A 发生不发生不影响B 的发生概率,故,A B 相互独立.而本题选项(A)和(B)是考虑(|)P A B 与(|)P A B 是否相等,选项(C)和(D)才是事件A 与B 是否独立. 【解析】由条件概率公式及条件(|)(|),P B A P B A =知{}{}{}{}{}{}{}1P AB P AB P B P AB P A P A P A-==-, 于是有 {}{}{}{}{}1P AB P A P A P B P AB -=⋅-⎡⎤⎡⎤⎣⎦⎣⎦, 可见 {}{}{}P AB P A P B =. 应选(C).【相关知识点】条件概率公式:{}{}{}|P AB P B A P A =.三、(本题满分5分)【解析】方法1:求直线L 在平面∏上的投影0L :方法1:先求L 与∏的交点1N .以1,:,1x t L y t z t =+⎧⎪=⎨⎪=-⎩代入平面∏的方程,得(1)2(1)101t t t t +-+--=⇒=.从而交点为1(2,1,0)N ;再过直线L 上点0(1,0,1)M 作平面∏的垂线11:112x y z L --'==-,即1,,12.x t y t z t =+⎧⎪=-⎨⎪=+⎩并求L '与平面∏的交点2N :1(1)()2(12)103t t t t +--++-=⇒=-,交点为2211(,,)333N .1N 与2N 的连接线即为所求021:421x y zL --==-. 方法2:求L 在平面∏上的投影线的最简方法是过L 作垂直于平面∏的平面0∏,所求投影线就是平面∏与0∏的交线.平面0∏过直线L 上的点(1,0,1)与不共线的向量(1,1,1)l =- (直线L 的方向向量)及(1,1,2)n =-(平面∏的法向量)平行,于是0∏的方程是111110112x y z ---=-,即3210x y z --+=. 投影线为 0210,:3210.x y z L x y z -+-=⎧⎨--+=⎩下面求0L 绕y 轴旋转一周所成的旋转曲面S 的方程.为此,将0L 写成参数y 的方程:2,1(1).2x y z y =⎧⎪⎨=--⎪⎩ 按参数式表示的旋转面方程得S 的参数方程为,,.xy yzθθ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩消去θ得S的方程为()222212(1)2x z y y⎡⎤+=+--⎢⎥⎣⎦,即2224174210.x y z y-++-=四、(本题满分6分)【解析】令42(,)2(),P x y xy x yλ=+242(,)(),Q x y x x yλ=-+则(,)((,),(,))A x y P x y Q x y=在单联通区域右半平面0x>上为某二元函数(,)u x y的梯度Pdx Qdy⇔+在0x>上∃原函数(,)u x y⇔,0.Q Pxx y∂∂=>∂∂其中, 42242132()()4Qx x y x x y xxλλλ-∂=-+-+⋅∂,424212()2()2Px x y xy x y yyλλλ-∂=+++⋅∂.由Q Px y∂∂=∂∂,即满足4224213424212()()42()2()2x x y x x y x x x y xy x y yλλλλλλ---+-+⋅=+++⋅,424()(1)01x x yλλλ⇔++=⇔=-.可见,当1λ=-时,所给向量场为某二元函数的梯度场.为求(,)u x y,采用折线法,在0x>半平面内任取一点,比如点(1,0)作为积分路径的起点,则根据积分与路径无关,有2(,)42(1,0)2(,)x yxydx x dyu x y Cx y-=++⎰24421020x yx xdx dy Cx x y⋅-=++++⎰⎰(折线法)242y x dy Cx y-=++⎰2242(1)yx dy C y x x -=+⎛⎫+ ⎪⎝⎭⎰(第一类换元法)222222004221(1)(1)yy x x y y d C d C x x y y x x x ⋅⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 2arctan yC x=-+(基本积分公式) 其中C 为任意常数.【相关知识点】1.二元可微函数(,)u x y 的梯度公式:u u gradu i +j x y∂∂=∂∂. 2.定理:设D 为平面上的单连通区域,函数()P x,y 与(,)Q x y 在D 内连续且有连续的一阶偏导数,则下列六个命题等价:(1),(,)Q Px y D x y∂∂≡∈∂∂; (2) 0,LPdx Qdy L +=⎰为D 内任意一条逐项光滑的封闭曲线;(3)LABPdx Qdy +⎰仅与点,A B 有关,与连接,A B 什么样的分段光滑曲线无关;(4) 存在二元单值可微函数(,)u x y ,使du Pdx Qdy =+(即Pdx Qdy +为某二元单值可微函数(,)u x y 的全微分; (5) 微分方程0Pdx Qdy +=为全微分方程;(6) 向量场P +Q i j 为某二元函数(,)u x y 的梯度u P +Q =grad i j .换言之,其中任一组条件成立时,其它五组条件皆成立.当条件成立时,可用试图法或折线法求函数(,)u x y .五、(本题满分6分)【解析】先建立坐标系,取沉放点为原点O ,铅直向下作为Oy 轴正向,探测器在下沉过程中受重力、浮力和阻力的作用,其中重力大小:mg ,浮力的大小:F B ρ=-浮;阻力:kv -,则由牛顿第二定律得202,0,0.t t d ym mg B g kv y vdtρ===--== (*)由22,dy d y dv dv dy dv dy v v v dv dt dt dt dy dt dy===⋅==,代入(*)得y 与v 之间的微分方程10,0y dy mv mg B kv v dv ρ-=⎛⎫=--= ⎪⎝⎭.分离变量得 mvdy dv mg B kv ρ=--,两边积分得 mvdy dv mg B kv ρ=--⎰⎰,2222()()()Bm m g Bm m g mv k k k k y dv mg B kv m Bm m g mg B kv k k k dv mg B kv m g Bm m k dvk mg B kv m m mg B dv dvk k mg B kv ρρρρρρρρρρ+--+=------+=--⎛⎫- ⎪=-+ ⎪-- ⎪ ⎪⎝⎭-=-+--⎰⎰⎰⎰⎰1()()()()m mg B m k v d mg B kv k k mg B kv ρρρ-⋅-=-+----⎰ (第一类换元法) 2()ln()m m mg B v mg B kv C k kρρ-=----+.再根据初始条件0|0,y v ==即22()()ln()0ln()m mg B m mg B mg B C C mg B k k ρρρρ----+=⇒=-.故所求y 与v 函数关系为()2ln .m mg B m mg B kv y v k k mg B ρρρ-⎛⎫--=-- ⎪-⎝⎭六、(本题满分7分)【解析】方法1:本题属于求第二类区面积分,且不属于封闭区面,则考虑添加一平面使被积区域封闭后用高斯公式进行计算,但由于被积函数分母中包含12222()x y z ++,因此不能立即加、减辅助面2221:0x y a z ⎧+≤∑⎨=⎩,宜先将曲面方程代入被积表达式先化简:2212222()1().()axdydz z a dxdy I axdydz z a dxdy a x y z ∑∑++==++++⎰⎰⎰⎰ 添加辅助面2221:0x y a z ⎧+≤∑⎨=⎩,其侧向下(由于∑为下半球面z =侧,而高斯公式要求是整个边界区面的外侧,这里我们取辅助面的下侧,和∑的上侧组成整个边界区面的内侧,前面取负号即可),由高斯公式,有11222211()()()1()().D I axdydz z a dxdy axdydz z a dxdy a a z a ax dV a dxdy a x z ∑+∑∑Ω=++-++⎛⎫⎡⎤∂+⎛⎫∂⎣⎦ ⎪=-+-- ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分前面加负号是由于我们取边界区面的内侧,第二个积分前面加负号是由于1∑的方向向下;另外由曲面片1∑在yoz 平面投影面积为零,则10axdydz ∑=⎰⎰,而1∑上0z =,则()22z a a +=.21(2())D I a z a dV a dxdy a Ω⎛⎫=-+++ ⎪⎝⎭⎰⎰⎰⎰⎰,其中Ω为∑与1∑所围成的有界闭区域,D 为1∑在xoy 面上的投影222{(,)|}D x y x y a =+≤. 从而,220322001321232.3D a I a dv zdv a dxdy a a a d rdr a a a ππθπΩΩ⎛⎫=--+ ⎪⎝⎭⎛⎫=-⋅-+⋅ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分用球体体积公式;第二个用柱面坐标求三重积分;第三个用圆的面积公式.()2042400242200242300224224440411222112()21()1122242412a a a aI a d r z dr a a a d r a r dr a a d a r r draa r r a a a a a a a a a a ππππθππθπθππππππ⎛⎫⎛=--+ ⎪⎝⎝⎭⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭=-+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-+⋅-=-+⋅- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+⋅⎰⎰⎰⎰⎰⎰4342a π⎛⎫=- ⎪⎝⎭ 方法2:逐项计算:2212222212()1()()1().axdydz z a dxdyI axdydz z a dxdy a x y z xdydz z a dxdy I I a ∑∑∑∑++==++++=++=+⎰⎰⎰⎰⎰⎰⎰⎰其中,12,Dyz DyzDyzI xdydz ∑==-+=-⎰⎰⎰⎰⎰⎰⎰⎰第一个负号是由于在x 轴的正半空间区域∑的上侧方向与x 轴反向;第二个负号是由于被积函数在x 取负数.yz D 为∑在yoz 平面上的投影域222{(,)|,0}yz D y z y z a z =+≤≤,用极坐标,得2102203223320212()2222()(0),333aI d a r a r a a ππθππππ=-=-⋅--=-=-=-⎰⎰⎰(222222002302300042230044411()1(22)2(22)2222123422(3Dxya a a a a a a I z a dxdy a dxdya a d a r rdra a r r dr a a rdr a r dr a r a r a a a a a a aπθππππ∑=+=-=-=-⎡⎤=--⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎢⎥=-⋅- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰3),46a π=其中yz D 为∑在yoz 平面上的投影域222{(,)|}yz D y z y z a =+≤.故312.2I I I a π=+=-【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.七、(本题满分6分)【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.当各项分母均相同是n 时,n 项和式2sin sinsin n n n n n x nnnπππ=+++是函数sin x π在[0,1]区间上的一个积分和.于是可由定积分1sin xdx π⎰求得极限lim nn x→∞.【解析】由于sinsin sin ,1,2,,11i i i n n n i n n n n iπππ≤≤=⋅⋅⋅++,于是,111sinsin sin 11nn ni i i i i i n n n n nn iπππ===≤≤++∑∑∑.由于 1011sin12limlim sin sin nnn n i i i i n xdx n n n ππππ→∞→∞=====∑∑⎰,10111sin112lim lim sin lim sin sin 11nn nn n n i i i i n i i n xdx n n n n n n πππππ→∞→∞→∞===⎡⎤=⋅===⎢⎥++⎣⎦∑∑∑⎰根据夹逼定理知,1sin2lim1nn i i n n iππ→∞==+∑. 【相关知识点】夹逼准则:若存在N ,当n N >时,n n n y x z ≤≤,且有lim lim n n n n y z a →+∞→+∞==,则lim n n x a →+∞=.八、(本题满分5分)【解析】方法1:因正项数列{}n a 单调减少有下界0,知极限lim n n a →∞存在,记为a ,则n a a ≥且0a ≥.又1(1)nn n a ∞=-∑发散,根据莱布尼茨判别法知,必有 0a >(否则级数1(1)n n n a ∞=-∑收敛).又正项级数{}n a 单调减少,有11,11nnn a a ⎛⎫⎛⎫≤ ⎪ ⎪++⎝⎭⎝⎭而1011a <<+,级数11()1n n a ∞=+∑收敛.根据正项级数的比较判别法,知级数11()1nn n a ∞=+∑也收敛. 方法2:同方法1,可证明lim 0n n a a →∞=>.令1,1nn n b a ⎛⎫= ⎪+⎝⎭则11lim1,11n n na a →∞==<++根据根值判别法,知级数11()1nn n a ∞=+∑也收敛. 【相关知识点】1.交错级数的莱布尼茨判别法:设交错级数11(1)n n n u ∞-=-∑满足:(1)1,1,2,;n n u u n +≥= (2)lim 0.n n u →∞=则11(1)n n n u ∞-=-∑收敛,且其和满足1110(1),n n n u u ∞-=<-<∑余项1.n n r u +<反之,若交错级数11(1)n n n u ∞-=-∑发散,只是满足条件(1),则可以反证说明此级数一定不满足条件(2)lim 0n n u →∞=,所以有lim 0.n n u →∞>(否则级数11(1)n n n u ∞-=-∑收敛)2.正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.3.根值判别法:设0n u >,则当111, 1, lim 0,1, .n n n n n n n u u u ρ∞=∞→∞=⎧<⎪⎪⎪=>≠⎨⎪⎪=⎪⎩∑∑时收敛,时发散,且时此判别法无效九、(本题满分6分)【解析】(1)要证0(0,1)x ∃∈,使0100()()x x f x f x dx =⎰;令1()()()x x xf x f t dt ϕ=-⎰,要证0(0,1)x ∃∈,使0()0x ϕ=.可以对()x ϕ的原函数0()()x x t dt ϕΦ=⎰使用罗尔定理:(0)0Φ=,11111111000(1)()()(())()()()0,xx x x x dx xf x dx f t dt dxxf x dx x f t dt xf x dx ϕ==Φ==-⎡⎤=-+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰分部又由()f x 在[0,1]连续()x ϕ⇒在[0,1]连续,()x Φ在[0,1]连续,在(0,1)可导.根据罗尔定理,0(0,1)x ∃∈,使00()()0x x ϕ'Φ==.(2) 由()()()()()2()0x xf x f x f x xf x f x ϕ'''=++=+>,知()x ϕ在(0,1)内单调增,故(1)中的0x 是唯一的.评注:若直接对()x ϕ使用零点定理,会遇到麻烦:1(0)()0,(1)(1)0f t dt f ϕϕ=-≤=≥⎰.当()0f x ≡时,对任何的0(0,1)x ∈结论都成立;当()f x ≡0时,(0)0,ϕ<但(1)0ϕ≥,若(1)0ϕ=,则难以说明在(0,1)内存在0x .当直接对()x ϕ用零点定理遇到麻烦时,不妨对()x ϕ的原函数使用罗尔定理. 【相关知识点】1.罗尔定理:如果函数()f x 满足 (1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.十、(本题满分6分)【解析】经正交变换化二次型为标准形,二次型矩阵与标准形矩阵既合同又相似.由题设知,二次曲面方程左端二次型对应矩阵为111111b A b a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则存在正交矩阵P ,使得 1000010004P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B 记,即A B 与相似.由相似矩阵有相同的特征值,知矩阵A 有特征值0,1,4.从而,211014,3, 1.(1)0.a a b A b B ++=++⎧⎪⇒==⎨=--==⎪⎩从而,111131.111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦当10λ=时,()1110131111E A ---⎡⎤⎢⎥-=---⎢⎥⎢⎥---⎣⎦1(1)23⨯-行分别加到,行111020000---⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦于是得方程组(0)0E A x -=的同解方程组为12320,20.x x x x ---=⎧⎨-=⎩(0)2r E A -=,可知基础解系的个数为(0)321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为1(1,0,1).Tα=-当21λ=时,()011121110E A --⎡⎤⎢⎥-=---⎢⎥⎢⎥--⎣⎦3(1)2⨯-加到行011011110--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦1(1)2⨯-行加到行011000110--⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦23,行互换011110000--⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦, 于是得方程组()0E A x -=的同解方程组为23120,0.x x x x --=⎧⎨--=⎩()2r E A -=,可知基础解系的个数为()321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为2(1,1,1).Tα=-当34λ=时,()3114111113E A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦12,行互换111311113--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦1行的3,(-1)倍分别加到2,3行111024024--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦23行加到行111024000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦,于是得方程组(4)0E A x -=的同解方程组为123230,240.x x x x x -+-=⎧⎨-=⎩(4)2r E A -=,可知基础解系的个数为(4)321n r E A --=-=,故有1个自由未知量,选2x 为自由未知量,取22x =,解得基础解系为3(1,2,1).Tα=由实对称矩阵不同特征值对应的特征向量相互正交,可知123,,ααα相互正交. 将123,,ααα单位化,得111222333,,.TTTαηααηααηα======因此所求正交矩阵为0P ⎡⎢⎢⎢=⎢⎢⎢⎢⎣. 评注:利用相似的必要条件求参数时,iiiia b=∑∑是比较好用的一个关系式.亦可用E A E B λλ-=-比较λ同次方的系数来求参数.【相关知识点】1.特征值的性质:11nni iii i aλ===∑∑2.相似矩阵的性质:若矩阵A B 与相似,则A B =.十一、(本题满分4分)【解析】用线性无关的定义证明.设有常数011,,,,k λλλ-⋅⋅⋅使得10110.()k k A A λαλαλα--++⋅⋅⋅+=*两边左乘1k A -,则有()110110k k k A A A λαλαλα---++⋅⋅⋅+=,即 12(1)0110k k k k A A Aλαλαλα---++⋅⋅⋅+=. 上式中因0kA α=,可知()2110k k A A αα-+===,代入上式可得100.k A λα-=由题设10k Aα-≠,所以00.λ=将00λ=代入()*,有1110k k A A λαλα--+⋅⋅⋅+=.两边左乘2k A -,则有 ()21110k k k A A A λαλα---+⋅⋅⋅+=,即123110k k k A A λαλα---+⋅⋅⋅+=.同样,由0kA α=,()2110k k A A αα-+==,可得110.k A λα-=由题设10k Aα-≠,所以10.λ=类似地可证明210,k λλ-=⋅⋅⋅==因此向量组1,,,k A A ααα-⋅⋅⋅是线性无关的. 【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k 使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.十二、(本题满分5分) 【解析】()II 的通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.理由:可记方程组22()0,()0,n n n n I A X II B Y ⨯⨯==()I ,()II 的系数矩阵分别记为,A B ,由于B 的每一行都是20n n A X ⨯=的解,故0T AB =.TB 的列是()I 的基础解系,故由基础解系的定义知,T B 的列向量是线性无关的,因此()r B n =.故基础解系所含向量的个数2()n n r A =-,得()2r A n n n =-=.因此,A 的行向量线性无关.对0TAB =两边取转置,有()0TT T ABBA ==,则有T A 的列向量,即A 的行向量是0BY =的线性无关的解.又()r B n =,故0BY =基础解系所含向量的个数应为2()2n r B n n n -=-=,恰好等于A 的行向量个数.故A 的行向量组是0BY =的基础解系,其通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.十三、(本题满分6分)【分析】把X Y -看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的性质,可以知道N(0,1)X Y-,这样可以简化整题的计算.【解析】令Z X Y =-,由于,X Y 相互独立,且都服从正态分布,因此Z 也服从正态分布,且()()()0E Z E X E Y =-=,11()()()122D Z D X D Y =+=+=. 于是,(0,1)Z X Y N =-~.()()()()()()()22222()1.D X Y D ZE ZE Z D Z E Z E ZE Z-==-=+-=-而2222z z E Z z dz ze dz +∞+∞---∞==⎰2222202z z z ed e+∞+∞--⎡⎤⎛⎫==-=⎥ ⎪⎝⎭⎥⎦ 故21.D X Y π-=-【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.2.方差的定义:22()DX EX EX =-.3.随机变量函数期望的定义:若()Y g X =,则()()EY g x f x dx +∞-∞=⎰.十四、(本题满分4分) 【解析】由题知:212,,,~(3.4,6)n X X X N ,11nn i i X X n ==∑,各样本相互独立,根据独立正态随机变量的性质,211~(,)n n i i X X N n μσ==∑.其中11n n i i EX E X n μ=⎛⎫== ⎪⎝⎭∑,211n n i i DX D X n σ=⎛⎫== ⎪⎝⎭∑.根据期望和方差的性质,1122222211111 3.4 3.4,11166.n nn i i i i n n nn i i i i i i n EX E X EX n n n n DX D X D X DX n n n n n μσ=====⎛⎫===== ⎪⎝⎭⎛⎫⎛⎫====== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑所以,2116~(3.4,)n n i i X X N n n ==∑.把n X 标准化,~(0,1)X U N =. 从而,{}{}{}{}1.4X 5.4 1.4 3.4X 3.4 5.4 3.42X 3.42X 3.42210.95,P P P P P <<=-<-<-=-<-<=-<=<=Φ-≥⎝⎭⎪⎩⎭故0.975,Φ≥⎝⎭查表得到 1.96,3≥即()21.96334.57,n ≥⨯≈所以n 至少应取35. 【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数. 2.若2~(,)Z N u σ,则~(0,1)Z uN σ-十五、(本题满分4分)【解析】设该次考试的考生成绩为X ,则2~(,)X N μσ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,则在显著性水平0.05α=下建立检验假设:001:70,:70,H H μμμ==≠由于2σ未知,故用t 检验.选取检验统计量,X T ==在070μμ==时,2~(70,),~(35).X N T t σ 选择拒绝域为{}R T λ=≥,其中λ满足:{}0.05P T λ≥=,即{}0.9750.975,(35) 2.0301.P T t λλ≤===由0 36,66.5,70,15,n x s μ====可算得统计量T 的值:1.42.0301t ==<.所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.。
硕士研究生入学考试大纲-601数学分析

全国硕士研究生入学统一考试数学专业《数学分析》考试大纲I 考查目标全国硕士研究生入学统一考试数学专业《数学分析》考试是为我校招收数学硕士生设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读数学专业硕士所必须的基本素质、一般能力和培养潜能,以利于选拔具有发展潜力的优秀人才入学,为数学学科及社会的发展培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决问题能力的高层次、应用型、复合型的数学专业人才。
考试要求是测试考生掌握分析、表达与解决问题的一些基本能力和技能。
具体来说就是:要求考生理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
不得使用带有公式和文本存储功能的计算器。
三、试卷内容与题型结构一元函数微积分约占 60%,多元函数微积分约占 25%,无穷级数约占 20有以下三种题型:填空题或选择题(20%)、计算题(30%)、综合题(50%)III 考查内容1、极限和函数的连续性(1)熟练掌握数列极限与函数极限的概念;理解无穷小量、无穷大量的概念及基本性质。
(2)掌握极限的性质及四则运算法则,能够熟练运用迫敛性定理和两个重要极限。
(3)熟练掌握:区间套定理,确界存在定理,单调有界原理,聚点定理,有限覆盖定理,Cauchy收敛准则;并理解其相互关系。
(4)熟练掌握函数连续性的概念及相关的不连续点类型。
能够熟练地运用函数连续的四则运算与复合运算性质。
(5)熟练掌握闭区间上连续函数的基本性质:有界性定理、最值定理、介值定理,一致连续性。
(6)熟练掌握实数基本理论和性质,会用实数理论及性质表达和证明相关命题。
2、一元函数微分学(1)理解导数和微分的概念及其相互关系,理解导数的几何意义,理解函数可导性与连续性之间的关系。
1978-2019年全国硕士研究生入学统一考试(数学一)真题及部分答案

历年考研数学一真题1987-20191987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2x y x =⋅取得极小值. (2)由曲线ln y x=与两直线e 1y x=+-及y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+2z t =+及121111x y z +++==都平行且过原点的平面方程为_____________.(4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)L xy y dx x x dy -+-⎰= _____________. (5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分) (1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x∂∂∂∂ (2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2()()lim1,()x af x f a x a →-=--则在x a =处 (A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值 (C)()f x 取得极小值 (D)()f x 的导数不存在 (2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值(A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s (D)依赖于s ,不依赖于t (3)设常数0,k >则级数21(1)n n k n n∞=+-∑(A)发散 (B)绝对收敛 (C)条件收敛 (D)散敛性与k 的取值有关 (4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于(A)a (B)1a(C)1n a - (D)na六、(本题满分10分) 求幂级数1112n nn x n ∞-=∑的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分) 问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量X 的概率密度函数为221(),xx f x-+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y - 00y y >≤, 求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域.(3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(1)若21()lim (1),tx x f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且31(),x f t dt x -=⎰则(7)f =_____________. (3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是(A)与x ∆等价的无穷小 (B)与x∆同阶的无穷小(C)比x ∆低阶的无穷小 (D)比x ∆高阶的无穷小 (2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处(A)取得极大值 (B)取得极小值(C)某邻域内单调增加 (D)某邻域内单调减少 (3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则(A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处(A)条件收敛 (B)绝对收敛(C)发散 (D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤ααα线性无关的充要条件是(A)存在一组不全为零的数12,,,,s k k k 使11220s s k k k +++≠ααα(B)12,,,s ααα中任意两个向量均线性无关(C)12,,,s ααα中存在一个向量不能用其余向量线性表示(D)12,,,s ααα中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x y u yf xg yx=+其中函数f 、g 具有二阶连续导数,求222.u u x y x x y∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,x y y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x =六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M 沿直线y =(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y (2)求一个满足1-=PAP B的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________.(2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________.(3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分) 设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0(3)(3)lim2h f h f h→--= _____________. (2)设()f x 是连续函数,且10()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lxy ds +⎰=_____________.(4)向量场div u在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x >时,曲线1sin y x x=(A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线 (D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是(A)(1,1,2)- (B)(1,1,2)-(C)(1,1,2) (D)(1,1,2)-- (3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是(A)11223c y c y y ++ (B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +--- (D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,n n S x b n x x π∞==-∞<<+∞∑其中12()sin ,1,2,3,,n b f x n xdx n π==⎰则1()2S -等于(A)12- (B)14-(C)14(D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例(C)必有一列向量是其余列向量的线性组合 (D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分) (1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y∂∂∂ (2)设曲线积分2()c xy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分)将函数1()arctan 1x f x x+=-展为x 的幂级数.五、(本题满分7分)设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln exx π=-⎰在区间(0,)+∞内有且仅有两个不同实根.七、(本题满分6分)问λ为何值时,线性方程组13x x λ+= 123422x x x λ++=+ 1236423x x x λ++=+有解,并求出解的一般形式. 八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值.(2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分)设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件AB的概率()P AB =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.(3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+(1)过点(1,21)M -且与直线 34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim()x x x a x a→∞+-=_____________.(3)设函数()f x =111x x ≤>,则[()]f f x =_____________.(4)积分2220e y x dx dy -⎰⎰的值等于_____________. (5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),xx F x f t dt -=⎰则()F x '等于(A)e (e )()x x f f x ---- (B)e (e )()x x f f x ---+(C)e (e )()x x f f x ---(D)e (e )()x x f f x --+ (2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x + (B)1[()]n n f x +(C)2[()]n f x(D)2![()]n n f x(3)设a 为常数,则级数21sin()[n na n∞=∑ (A)绝对收敛 (B)条件收敛(C)发散 (D)收敛性与a 的取值有关 (4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim2,1cos x f x f x→==-则在点0x =处()f x (A)不可导 (B)可导,且(0)0f '≠(C)取得极大值 (D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα(B)1211212()2k k ++-+ββααα (C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e x y y y -'''++=的通解(一般解).四、(本题满分6分)求幂级数0(21)n n n x ∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 作用(见图).F 的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞ 则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设 21cos x t y t=+=,则22d ydx =_____________.(2)由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1ex x y --+=-(A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线 (D)既有水平渐近线又有铅直渐近线 (2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于(A)e ln 2x(B)2e ln 2x(C)eln 2x+(D)2eln 2x+(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7 (C)8 (D)9 (4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰ (B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰ (D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有(A)=ACB E (B)=CBA E(C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分) (1)求20lim ).x π+→(2)设n 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线 220yz x ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.六、(本题满分7分) 设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分) 已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β(1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程e cos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu=_____________.(3)设()f x =211x-+ 00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π处收敛于_____________. (4)微分方程tan cos y y x x'+=的通解为y=_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 其中0,0,(1,2,,).i i a b i n ≠≠=则矩阵A的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限(A)等于2 (B)等于0 (C)为∞ (D)不存在但不为∞(2)级数1(1)(1cos )(n n a n∞=--∑常数0)a >(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线(A)只有1条 (B)只有2条(C)至少有3条 (D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为 (A)0 (B)1(C)2 (D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212- (B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分) (1)求x x →(2)设22(e sin ,),x z f y x y =+其中f 具有二阶连续偏导数,求2.zx y∂∂∂ (3)设()f x = 21exx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e x y y y -'''+-=的通解.五、(本题满分8分) 计算曲面积分323232()()(),xaz dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.六、(本题满分7分) 设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分) 在变力F yzizxj xyk=++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问:(1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β (1)将β用123,,ξξξ线性表出. (2)求(n n A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }X E X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数1()(2(0)x F x dt x =->⎰的单调减少区间为_____________.(2)2232120x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为1(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小(C)高阶无穷小 (D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰ (B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为(A)6π(B)4π(C)3π(D)2π(4)设曲线积分[()e ]sin ()cos xL f t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x--(B)e e 2x x--(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则(A)6t =时P 的秩必为1 (B)6t =时P的秩必为2(C)6t ≠时P 的秩必为1 (D)6t ≠时P的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sin cos ).x x x x→∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分) (1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.ba ab >七、(本题满分8分) 已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分) 设随机变量X的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)011lim cot ()sin x x xπ→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________. (3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________. (5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M << (B)MP N<<(C)N MP <<(D)P MN<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件 (D)既非充分条件又非必要条件(3)设常数0,λ>且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与λ有关 (4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e-→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c = (D)4a c =- (5)已知向量组1234,,,αααα线性无关,则向量组1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)011lim cot ()sin x x xπ→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________. (3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,)π处的值为_____________. (4)设区域D为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________. (5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M << (B)MP N<<(C)N MP <<(D)P MN<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件 (D)既非充分条件又非必要条件 (3)设常数0,λ>且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与λ有关 (4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =-(C)4a c = (D)4a c =- (5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设 2221cos()cos()tx t y t t udu ==-⎰,求dy dx 、22d y dx在t =的值.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x+⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdyx y z +++⎰⎰其中S是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分) 设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且()lim0,x f x x →=证明级数11()n f n ∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=AA 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分) 设随机变量X和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+(1)求Z 的数学期望EZ 和DZ 方差. (2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx ⎰= _____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R=_____________.(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设有直线:L321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上(C)垂直于π (D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是(A)(1)(0)(1)(0)f f f f ''>>-(B)(1)(1)(0)(0)f f f f ''>->(C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的(A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件 (4)设(1)ln(1n n u =-则级数 (A)1n n u ∞=∑与21nn u ∞=∑都收敛 (B)1n n u ∞=∑与21nn u ∞=∑都发散(C)1n n u ∞=∑收敛,而21nn u ∞=∑发散 (D)1n n u ∞=∑收敛,而21nn u ∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B (D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,y u f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.zϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求110()().x dx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)L xydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分) 假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f fg g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥= 则{max(,)0}P X Y ≥=____________.十一、(本题满分6分) 设随机变量X 的概率密度为()X f x = e 0x- 00x x ≥<,求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设2lim()8,x x x a x a →∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e x y y y '''-+=的通解为_____________. (4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0(C)1 (D)2 (2)设()f x 具有二阶连续导数,且()(0)0,lim1,x f x f x→'''==则(A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值 (C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3)设0(1,2,),n a n >=且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a nλ∞=-∑(A)绝对收敛 (B)条件收敛(C)发散 (D)散敛性与λ有关 (4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3 (D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b - (B)12341234a a a a b b b b +(C)12123434()()a a b b a a b b -- (D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +===试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z zx x y y∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分) 设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y轴上的截距等于01(),x f t dt x⎰求()f x 的一般表达式.。
2023年全国硕士研究生招生考试试题及答案解析(数学一)

2023年全国硕士研究生招生考试数学试题(数学一)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置.(1)曲线1ln(1y x e x =+-的渐近线方程为()(A)y x e=+(B)1y x e =+(C)y x=(D)1y x e=-(2)若微分方程0y ay by '''++=的解在(,)-∞+∞上有界,则()(A)0,0a b <>(B)0,0a b >>(C)0,0a b =>(D)0,0a b =<(3)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则()(A)()f x 连续,(0)f '不存在(B)(0)f '存在,()f x '在0x =处不连续(C)'()f x 连续,(0)f ''不存在(D)(0)f ''存在,()f x ''在0x =处不连续(4)已知(1,2,)n n a b n <=L ,若级数1nn a∞=∑与1nn b∞=∑均收敛,则“1nn a∞=∑绝对收敛”是“1nn b∞=∑绝对收敛的”()(A)充分必要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件(5)已知n 阶矩阵,,A B C 满足0ABC =,E 为n 阶单位矩阵,记矩阵0A BC E ⎛⎫⎪⎝⎭,0AB C E ⎛⎫ ⎪⎝⎭,0E AB AB⎛⎫⎪⎝⎭的秩分别为123,,γγγ,则()(A)123γγγ≤≤(B)132γγγ≤≤(C)312γγγ≤≤(D)213γγγ≤≤(6)下列矩阵中不能相似于对角矩阵的是()(A)11022003a ⎛⎫ ⎪ ⎪⎪⎝⎭(B)1112003a a ⎛⎫⎪ ⎪⎪⎝⎭(C)11020002a ⎛⎫ ⎪ ⎪⎪⎝⎭(D)11022002a ⎛⎫ ⎪ ⎪⎪⎝⎭(7)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫⎪= ⎪ ⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=()(A)33,4k k R⎛⎫⎪∈ ⎪ ⎪⎝⎭(B)35,10k k R⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(C)11,2k k R-⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(8)设随机变量X 服从参数为1的泊松分布,则()E X EX -=()(A)1e(B)12(C)2e(D)1(9)设12,,,n X X X L 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y L 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11m i i Y Y m ==∑,22111(1n i i S X X n ==--∑,22211(1mi i S Y Y m ==--∑,则()(A)2122~(,)S F n m S (B)2122~(1,1)S F n m S --(C)21222~(,)S F n m S (D)21222~(1,1)S F n m S --(10)设12,X X 为来自总体2(,)N μσ的简单随机样本,其中(0)σσ>是未知参数.若12ˆa X X σ=-为σ的无偏估计,则a =()(A)2(B)2(C)(D)二、填空题:11~16小题,每小题5分,共30分.(11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =-是等价无穷小,则ab =____.(12)曲面222ln(1)z x y x y =++++在点(0,0,0)处的切平面方程为________.(13)设()f x 为周期为2的周期函数,且()1,[0,1]f x x x =-∈,若01()+cos 2n n a f x a n x π∞==∑,则21nn a∞==∑_______.(14)设连续函数()f x 满足2(2)(),()0f x f x x f x dx +-==⎰,则31()f x dx =⎰_______.(15)已知向量12311223311010111,,,,10111111k k k αααβγααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-=====++ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,若(1,2,3)TTi i i γαβα==,则222123k k k ++=________.(16)设随机变量与Y 相互独立,X 且11~(1,),~(2,)32X B Y B 则{}P X Y ==________.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线)()(0y x x y =>经过点(1,2),该曲线上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距.(I)求()y x ;(II)求函数1()()xf x y t dt =⎰在(0,)+∞上的最大值.(18)(本题满分12分)求函数23(,)()()f x y y x y x =--的极值.(19)(本题满分12分)设空间有界区域Ω中,柱面221x y +=与平面0z =和1x z +=围成,∑为Ω边界的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy ∑=++⎰⎰Ò.(20)设函数()f x 在[,]a a -上具有二阶连续导数,证明:(I)若(0)0f =,则存在(,)a a ξ∈-,使得21()[()()]f f a f a a ξ''=+-;(II)若()f x 在(,)a a -内取得极值,则存在(,)a a η∈-使得21()()()2f f a f a a η''≥--.(21)已知二次型2221231231213(,,)2222f x x x x x x x x x x =+++-,22212312323(,,)2g y y y y y y y y =+++(I)求可逆变换x Py =,将123(,,)f x x x 化为123(,,)g y y y ;(II)是否存在正交变换x Qy =,将123(,,)f x x x 化为123(,,)g y y y .(22)设二维随机变量(,)X Y 的概率密度为22222(),1(,)0,x y x y f x y π⎧++≤⎪=⎨⎪⎩其它(I)求X 与Y 的斜方差;(II)求X 与Y 是否相互独立;(IIi)求22Z X Y =+的概率密度.答案及解析(1)【答案】(B)【解析】1limlim ln()11x x y k e x x →∞→∞==+=-,11lim()lim[ln(]lim [ln()1]11→∞→∞→∞=-=+-=+---x x x b y kx x e x x e x x 11lim ln[1]lim .(1)(1)→∞→∞=+==--x x x x e x e x e所以斜渐近线方程为1.=+y x e(2)【答案】(C)【解析】微分方程0'''++=y ay by 的特征方程为20++=a b λλ,当240∆=->a b 时,特征方程有两个不同的实根12,λλ,则12,λλ至少有一个不等于零,若12,C C 都不为零,则微分方程的解1212--=+xx y C eC e λλ在(,)-∞+∞无界;当240∆=-=a b 时,特征方程有两个相同的实根,1,22=-a λ,若20≠C ,则微分方程的解2212--=+a x a x y C eC xe 在(,)-∞+∞无界;当240∆=-<a b时,特征方程的根为1,222=-±a i λ,则通解为212(cos sin )22-=+ax y eC x C x ,此时,要使微分方程的解在(,)-∞+∞有界,则0=a ,再由240∆=-<a b ,知0.>b (3)【答案】(C)【解析】0t ≥时,3sin x t y t t =⎧⎨=⎩,得sin 33x xy =;0t <时,sin x t y t t=⎧⎨=-⎩,得sin y x x =-;综上,sin ,033sin ,0xx x y x x x ⎧≥⎪=⎨⎪-<⎩,从而由00sin 0sin 033(0)lim 0,(0)lim 0x x x xx x y y x x +-+-→→---''====,得(0)0y '=;于是1sin cos ,033930,0sin cos ,0x x x x y x x x x x ⎧+>⎪⎪'==⎨⎪--<⎪⎩,得y '连续;又由001sin cos 02sin cos 03393(0)lim ,(0)lim 29x x x x x x x x y y x x+++-→→+----''''====-,得(0)y ''不存在.(4)【答案】(A)【解析】由条件知1()nn n ba ∞=-∑为收敛的正项级数,进而绝对收敛;设1nn a∞=∑绝对收敛,则由n n n n n n n b b a a b a a =-+≤-+与比较判别法,得1nn b∞=∑绝对收敛;设1nn b∞=∑绝对收敛,则由n n n n n n n a a b b b a b =-+≤-+与比较判别法,得1nn a∞=∑绝对收敛.(5)【答案】(B)【解析】因初等变换不改变矩阵的秩,10000,A ABC r r r r n BC E BC E BC E -⎛⎫⎛⎫⎛⎫====⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20(),00AB C AB r r r r AB n E E ⎛⎫⎛⎫===+ ⎪⎪⎝⎭⎝⎭300EAB Er r r AB AB ABAB ⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭0()()0E r r ABAB n r AB nABAB ⎛⎫==+≤+ ⎪-⎝⎭故选(B).(6)【答案】(D)【解析】选项(A)矩阵的特征值为三个不同特征值,所以必可相似对角化;选项(B)矩阵为实对称矩阵,所以必可相似对角化;选项(C)矩阵特征值为1,2,2,二重特征值的重数()232r C E =--,所以必可相似对角化;选项(D)矩阵特征值为1,2,2,二重特征值的重数()232r D E ≠--,所以不可相似对角化.故选(D).(7)【答案】(D)【解析】设11221122r x x y y ααββ=+=+,则112211220x x y y ααββ+--=.又()121212211003,,,2150010131910011ααββ--⎛⎫⎛⎫ ⎪ ⎪--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,故()()1212,,,3,1,1,1,TTx x y y c c R =--∈.所以()()()121,5,81,5,81,5,8,T T Tr c c c c k k R ββ=-+=---=-=∈.(8)【答案】(C)【解析】由题可知()1E X =,所以1,0||1,1,2,X X EX X X =⎧-=⎨-=⎩L,故()1||1{0}(1){}k E X EX P X k P X k ∞=-=⋅=+-=∑01(1){}(01){0}k k P X k P X e ∞==+-=--=∑112(1)(01)E X e e e=+---=,故选(C).(9)【答案】(D)【解析】12,,...,n X X X 的样本方差()221111n i i S X Xn ==--∑,12,,...,n Y Y Y 的样本方差()222111mi i S Y Y m ==--∑,则()()21221~1n S n χσ--,()()22221~12m S m χσ--,两个样本相互独立,所以()()()()()2122221122222222112~1,11212n S n S S F n m m S S S m σσσσ--==----,故选(D).(10)【答案】(A)【解析】由题可知212~(0,2)X X N σ-.令12Y X X =-,则Y 的概率密度为2222()y f y σ-⋅=.22222240(||)||y y E Y y dy yedy σσ--+∞+∞⋅-∞===⎰,12(||)(||)E a X X aE Y -==.由12ˆ||)a X X σ=-为σ的无偏估计,有^()E σσ=,得2a =.故选(A).二、填空题:11~16小题,每小题5分,共30分.(11)【答案】2-【解析】2200()ln(1)lim lim ()cos x x x f x ax bx x g x e x →→+++=-222022221()2lim 11()1()2x ax bx x x x x x x x οοο→++-+=⎡⎤++--+⎢⎥⎣⎦1=,可得10a +=,1322b -=,即1,2a b =-=,故2ab =-.(12)【答案】20x y z +-=【解析】22(,,)2ln(1)F x y z x y x y z =++++-,222222(,,)(1,2,1)11x y z x yF F F x y x y'''==++-++++n ,即在点(0,0,0)处的法向量为()1,2,1-,即切平面方程为20x y z +-=.(13)【答案】0【解析】由()f x 展开为余弦级数知,()f x 为偶函数.由傅里叶系数计算公式有12(1)cos n a x n xdxπ=-⎰()112cos cos n xdx x n xdx ππ=-⎰⎰1100112sin sin n x xd n x n n ππππ⎛⎫=- ⎪ ⎪⎝⎭⎰102sin xd n x n ππ=-⎰()11002sin sin x n x n xdxn πππ-=-⎰102sin n xdx n ππ=⎰12202cos n x n ππ-=()222cos 1n n ππ-=-.故()()2222211cos 2111022n a n n n πππ--=-=-=.(14)【答案】12【解析】323112()()()f x dx f x dx f x dx=+⎰⎰⎰()211()(2)2f x dx f t dt x t =++=+⎰⎰令211()(2)f x dx f x dx=++⎰⎰[]211()()f x dx f x x dx=++⎰⎰2111()()f x dx f x dx xdx=++⎰⎰⎰21()f x dx xdx=+⎰⎰1xdx=⎰12=.(15)【答案】119【解析】11111221331123111130013TTTTTk k k k k k k γαβααααααα==⇒++=⇒⋅+⋅+⋅=⇒=.同理2311,3k k =-=-.所以,222123119k k k ++=.(16)【答案】13【解析】因为1~1,3X B ⎛⎫ ⎪⎝⎭,所以0,1X =;1~2,2Y B ⎛⎫⎪⎝⎭,所以0,1,2Y =.又因为X 与Y 相互独立,所以{}{0,0}{1,1}P X Y P X Y P X Y ====+=={0}{0}{1}{1}P X P Y P X P Y ===+==2201222111132323C C ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)【解析】(I)设点(,)x y 处的切线方程为()Y y y X x '-=-,故y 轴的截距为y y x '-,则x y y x '=-,解得(ln )y x C x =-,其中C 为任意常数.由(1)2y C ==,故()(2ln )y x x x =-.(II)由(I)知1()(2ln )xf x t t dt =-⎰,故()(2ln )0f x x x '=-=,则驻点为2x e =.当20x e <<时,()0f x '>;当2x e >时,()0f x '<,故()f x 在2x e =处取得极大值,同时也取得最大值,且最大值为224115()(2ln )44e f e x x dx e =-=-⎰.(18)【解析】323(235)020x y f x y xy x f y x x '⎧=-+-=⎪⎨'=--=⎪⎩,得驻点为(0,0),(1,1),210(,)327.32(235)(315)xxf y xy x x y x ''=-+---,(23)xy f x x ''=-+,2yy f ''=.代入(0,0),002xxxyyyA fB fC f ''⎧==⎪''==⎨⎪''==⎩,则20AC B -=,故充分条件失效,当0x →时,取23(0)y x kx k =+>,2332355(,)()()[(1)]()f x y y x y x kx x k x kx o x =--=+-=+,则555500(,)()lim lim 0x x f x y kx o x k x x →→+==>,由极限的局部保号性:存在0δ>,当(,0)x δ∈-时,5(,)0f x y x >,(,)0(0,0)f x y f <=,当(0,)x δ∈时,5(,)0f x y x>,(,)0(0,0)f x y f >=,故(0,0)不是极值点;代入(1,1),1252xxxyyy A f B f C f ''⎧==⎪''==-⎨⎪''==⎩,则20AC B -<,故(1,1)不是极值点;代入210(,327的10027832xx xyyyA fB fC f ⎧''==⎪⎪⎪''==-⎨⎪''==⎪⎪⎩,则20AC B ->且0A >,故210(,)327是极小值点;故2104(,)327729f =-为极小值.(19)【解析】由高斯公式可得:()2sin 3sin I z xz y y x dVΩ=-+⎰⎰⎰2zdV Ω=⎰⎰⎰102xy x D dxdy zdz -=⎰⎰⎰()21xy D x dxdy =-⎰⎰()22:1xy D x y +≤()212xy D x x dxdy =-+⎰⎰()2212xyD x y dxdy π=++⎰⎰2130012d r dr ππθ=+⎰⎰544πππ=+=.(20)【解析】(I)证明:22()()()(0)(0)(0),02!2!f f f x f f x x f x x x ηηη''''''=++=+介于与之间,则211()()(0),02!f f a f a a a ηη'''=+<<.①()222()()(0),02!f f a f a a a ηη'''-=-+-<<.②①+②得:[]212()()()()2a f a f a f f ηη''''+-=+.③又()f x ''在[]21,ηη上连续,则必有最大值M 与最小值m ,即,()()12,,m f M m f M ηη''''≤≤≤≤从而()()122f f m M ηη''''+≤≤.由介值定理得:存在[]()21,,a a ξηη∈⊂-,有()()()122f f f ηηξ''''+''=,代入③得:()()22()()()(),f a f a f a f a a f f a ξξ+-''''+-==即.(II)设()0(),f x x x a a =∈-在取极值,且0()f x x x =在可导,则0()0f x '=.又()()()22000000()()()()()(),02!2!f f f x f x f x x x x x f x x x x γγγ'''''=+-+-=+-介于与之间,则()21001()()(),02!f f a f x a x a γγ''-=+---<<.()22002()()(),02!f f a f x a x a γγ''=+-<<.从而()()()()22020111()()22f a f a a x f a x f γγ''''--=--+()()()()2202011122a x f a x f γγ''''≤-++.又()f x ''连续,设(){}()12max ,M f f γγ''''=,则()()()222200011()()22f a f a M a x M a x M a x --≤++-=+又()0,x a a ∈-,则()2220()()2f a f a M a x Ma --≤+≤,则21()()2M f a f a a ≥--,即存在()12,a a ηγηγ==∈-或,有()21()()2f f a f a aη''≥--.(21)【解析】(I)利用配方法将123(,,)f x x x 和123(,,)g y y y 化为规范形,从而建立两者的关系.先将123(,,)f x x x 化为规范形.2221231231213(,,)222f x x x x x x x x x x =+++-2221232323()2x x x x x x x =+-+++2212323()()x x x x x =+-++令112322333z x x x z x x z x =+-⎧⎪=+⎨⎪=⎩,则2212312(,,)f x x x z z =+.即112233*********z x z x z x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,使得2212312(,,)f x x x z z =+.再将123(,,)g y y y 化为规范形.2222212312323123(,,)2()g y y y y y y y y y y y =+++=++令1122333z y z y y z y =⎧⎪=+⎨⎪=⎩,则2212312(,,)g y y y z z =+.即112233100011001z y z y z y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,使得2212312(,,)g y y y z z =+.从而有112233*********z x z x z x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭123100011001y y y ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭,于是可得112233x y x P y x y ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1111100111011011010001001001P ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为所求矩阵,可将化为.(II)二次型和的矩阵分别为111120102A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,100011011B ⎛⎫ ⎪= ⎪ ⎪⎝⎭.由题意知,若存在正交变换x Qy =,则1T Q AQ Q AQ B -==,可得和相似.易知()5,()3tr A tr B ==,从而和不相似,于是不存在正交变换x Qy =,使得化为.(22)设二维随机变量(,)X Y 的概率密度为【解析】(I)()222()0D E X xx y d σπ=+=⎰⎰,()222()0D E Y yx y d σπ=+=⎰⎰,()222()0DE XY xyx y d σπ=+=⎰⎰,所以(,)()()()0Cov X Y E XY E X E Y =-=.(II)22),11()0X x y dy x f x ⎧+-<<⎪=⎨⎪⎩,其他24(121130x x π⎧+-<<⎪=⎨⎪⎩,其他同理,得:24(1211()30Y y y f y π⎧+-<<⎪=⎨⎪⎩,其他.因为,()()(,)X Y f x f y f x y ≠,所以X 与Y 不相互独立.(III)22(){}{}Z F z P Z z P X Y z =≤=+≤当0z <时,()0Z F z =;当01z ≤<时,222320022()()z Z D F z x y d d dr z πσθππ=+==⎰⎰⎰⎰;当1z ≥时,()1Z F z =;所以,Z 的概率密度为2,01()0,Z z z f z <<⎧=⎨⎩其他.。
考研数学考试大纲及解析

考研数学考试大纲及解析2017年考研数学考试大纲及解析今年的数学大纲与往年相比有并没有任何变化,以下是店铺大家整理的关于2017年考研数学考试大纲及解析,供参考阅读,希望对大家有所帮助!想了解更多相关信息请持续关注我们店铺!<数学一>1、考试形式和试卷结构试卷满分150分,考试时间180分钟2、答题方式答题方式为闭卷、笔试3、试卷内容结构高等数学约56% 线性代数约22% 概率论与数理统计约22%4、试卷题型结构单选题,8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分<数学二>试卷题型结构为:单项选择题8小题,每小题4分,共32分; 填空题 6小题,每小题4分,共24分;解答题(包括证明题) 9小题,共94分. 高等数学部分:2017年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2016完全相同.线性代数部分:2017年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2016完全相同.<数学三>1、考试形式和试卷结构试卷满分150分,考试时间180分钟2、答题方式答题方式为闭卷、笔试3、试卷内容结构微积分约56% 线性代数约22% 概率论与数理统计约22%4、试卷题型结构单项选择题选题,8小题,每小题4分,共32分填空题,6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分一、大纲要求:函数、极限、连续1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的`性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。
2024全国硕士研究生招生考试大纲

2024年全国硕士研究生招生考试大纲一、考试性质本大纲是全国硕士研究生招生考试的指导性文件,旨在规定当年全国硕士研究生入学考试的考试范围、考试要求、考试形式、试卷结构等权威政策。
二、考试目标通过本考试,旨在选拔具备创新精神、实践能力和国际视野的高素质人才,为国家和社会发展提供人才支持。
三、考试科目与分值分配1. 思想政治理论(满分100分)2. 英语一/英语二(满分100分)3. 数学一/数学二(满分150分)4. 专业课(满分150分)四、考试形式与时长1. 考试形式:闭卷,笔试。
2. 时长:每科考试时间为3小时。
五、考试内容与要求1. 思想政治理论(1)考试内容:包括马克思主义基本原理、中国近现代史纲要、思想道德修养与法律基础、形势与政策以及当代世界经济与政治等。
(2)考试要求:考生应全面掌握思想政治理论的基本概念、原理和方法,能够运用所学知识分析、解决实际问题。
2. 英语一/英语二(1)考试内容:包括听力、阅读理解、翻译和写作等部分。
(2)考试要求:考生应具备扎实的英语语言基础,掌握英语听、说、读、写、译的基本技能,能够运用英语进行交流和表达。
3. 数学一/数学二(1)考试内容:包括高等数学、线性代数和概率论与数理统计等部分。
(2)考试要求:考生应掌握数学的基本概念、原理和方法,能够运用所学知识分析、解决实际问题。
4. 专业课(1)考试内容:根据不同专业而有所不同,具体科目和考试范围由招生单位自行确定。
(2)考试要求:考生应掌握专业课程的基本概念、原理和方法,能够运用所学知识分析、解决实际问题。
六、试卷结构1. 选择题:约30%2. 填空题:约20%3. 简答题:约25%4. 论述题:约20%5. 案例分析题:约5%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学无 止 境 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的概念. 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、 右极限之间的关系.
6.掌握极限的性质及四则运算法则 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法.
学无 止 境 多元函数的概念 二元函数的几何意义 二元函数的极限和连续的概念 有界闭区 域上多元连续函数的性质 多元函数偏导数和全微分 全微分存在的必要条件和充分 条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线 和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件 极值 多元函数的最大值、最小值及其简单应用 考试要求 1.理解多元函数的概念,理解二元函数的几何意义。 2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条 件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念并掌握其计算方法。 5.掌握多元复合函数一阶、二阶偏导数的求法。 6.了解隐函数存在定理,会求多元隐函数的偏导数。 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8.了解二元函数的二阶泰勒公式。 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了 解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极 值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 六、多元函数积分学
8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐 近线,会描绘函数的图形.
9.掌握用洛必达法则求未定式极限的方法.
10.了解曲率和曲率半径的概念,会计算曲率和曲率半径.
三、一元函数积分学
考试内容
学无 止 境 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念 和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨 (Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、 三角函数的有理式和简单无理函数的积分 广义积分概定积分的应用
3.了解高阶导数的概念,会求简单函数的 n 阶导数.
4.会求分段函数的一阶、二阶导数.
5.会求隐函数和由参数方程所确定的函数以及反函数的导数.
6.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定 理.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌 握函数最大值和最小值的求法及其简单应用.
学无 止 境 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程 及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
考试要求 1.理解空间直角坐标系,理解向量的概念及其表示。 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、 平行的条件。 3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进 行向量运算的方法。 4.掌握平面方程和直线方程及其求法。 5.会求平面与平面、平面与直线、 直线与直线之间的夹角,并会利用平面、直线 的相互絭(平行、垂直、相交等)解决有关问题。 6.会求点到直线以及点到平面的距离。 7.了解曲面方程和空间曲线方程的概念。 8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线 平行于坐标轴的柱面方程。 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会 求其方程。 五、多元函数微分学 考试内容
学无 止 境 2005 年全国硕士研究生入学考试数学一考试大纲 数学一 考试科目: 高等数学、线性代数、概率论与数理统计
高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函 数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函 数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大 的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个 准则:单调有界准则和夹逼准则 两个重要极限 : 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的 性质 考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。 2.了解函数的有界性、单调性、周期性和奇偶性.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的 弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及 函数的平均值等.
四、向量代数和空间解析几何
考试内容
向混合积 两向 量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数 与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平 面与直线、直线与直线的以及平行、垂直的条件 点到平面和点到直线的距离 球面
考试要求
学无 止 境
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平 面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解 函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公 式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
考试要求
1.理解原函数概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理, 掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式及简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.
5.了解广义积分的概念,会计算广义积分.
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质.
二、一元函数微分学
考试内容
导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的 关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合 函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式 的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径