高中数学 空间向量的线性运算教案
高二数学 教案 3.1.1 空间向量及其线性运算_苏教版_选修2-1

§3.1.1 空间向量及其线性运算 编写:陶美霞 审核:赵太田一、知识要点1.空间向量定义及其记法;2.空间向量的线性运算OB OA AB a b =+=+BA OA OB a b =-=- ()OP a R λλ=∈3.空间向量的加法和数乘运算满足如下运算律:⑴a b b a +=+;⑵()()a b c a b c ++=++;⑶()()a b a b R λλλλ+=+∈4.共线向量(平行向量)定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量。
规定:零向量与任意向量共线。
5.共线向量定律:对空间任意两个向量,(0)a b a ≠,b 与a 共线的充要条件是存在实数λ,使b a λ=二、典型例题例 1.如图,在三棱柱__111ABC A B C 中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量。
⑴1CB BA +;⑵112AC CB AA ++;⑶1AA AC CB --例2.如图,在长方体__OADB CA D B '''中,3,4,2,1OA OB OC OI OJ OK ======,点E F 、分别是,DB D B ''的中点,设,,OI i OJ j OK k ===,试用向量,,i j k 表示OE 和OF 。
例3.设四面体ABCD 的三条棱,,AB b AC c AD d ===,求四面体其他各棱所对应的向量,以及面BCD ∆上的中线所对应的向量DM 和向量AQ ,其中M 是BC 的中点,Q 是三角形BCD 的重心。
三、巩固练习1.如图,在空间四边形ABCD 中,E 是线段AB 的中点,2CF FD =,连结,,,EF CE AF BF ,化简下列各式,并在图中标出化简得到的向量。
⑴AC CB BD ++;⑵ AF BF AC --;⑶1223AB BC CD ++。
(理科简案)空间向量的线性运算

高二数学《空间向量的线性运算》(理科简案)第一课时 空间向量的线性运算(一)、复习回顾:(3分钟)1、平面向量的概念2、加法、减法和数乘运算及几何意义 (二)、概念形成(15分钟)1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量(1)空间中点的一个位移就是一个向量(2)向量一般用有向线段表示同向且等长的有向线段表示同一或相等的向量(3)零向量 记作 (4)向量的模 记作 (5)基线 (6)共线向量 记作 (7)零向量和任意向量共线。
练习;课本81页练习A 1 2、空间向量的运算(1)类比平面向量运算,定义空间向量的加法、减法与数乘向量运算实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下: |λa |=|λ||a |当λ>0时,λa 与a 同向;当λ<0时,λa 与a 反向;当λ=0时,λa =0(2)运算律:空间向量加法的运算律要注意以下几点: ⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则. (三)、概念深化(20分钟)例1 已知平行六面体ABCD -D C B A ''''化简下列向量表达式⑴BC AB +; ⑵A A AD AB ++;⑶C C AD AB ++21; ⑷)(21'DD -++; 引导学生画出一个平行六面体,在一个平行六面体中标出有关的向量,体会向量的加法、减法和数乘运算及其运算律。
得出三个不共面的向量的和的几何意义:三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量。
教案)空间向量及其运算

教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
高中数学_3.1.1 空间向量的线性运算教学设计学情分析教材分析课后反思

本节课分为6个环节:引入概念,概念形成,概念深化,应用概念,归纳小结和布置作业。
其中重点是概念的形成和概念的深化,实际教学时间25分钟1。
引入概念在引入概念环节中,我以一个生活实例(学生从宿舍到操场上完操回到教室再由教室到餐厅就餐的过程)引出空间向量的问题,通过追问激发学生学习新概念的兴趣,并给出本节课具体的研究方向。
这节课作为《空间向量与立体几何》一章的第一节课,我希望让它也起到章节“导游图”的作用。
2。
概念形成首先我向学生展示预习学案当中学生复习巩固的平面向量的知识。
教师引导:接着我给出平面向量概念的PPT,由学生从定义、表示、方向刻画、大小刻画、特殊向量、向量间的特殊关系等方面探究空间向量的概念。
我想学生提出问题:在已知平面向量的基本概念情况下如何研究空间向量的基本概念?学生回答:将平面向量的相关知识推广到空间向量。
师生小结:我通过问题串帮助学生将概念梳理清楚,让他们体会到空间向量与平面向量的概念完全相同,只是所处的环境不同而已。
以前研究的向量都位于平面内,现在他们可以在空间中任意平移了。
在这个过程中让学生明确空间向量的研究方法,体会数学的严谨性。
接着我通过提问让学生类比平面向量去定义空间向量的加法,减法和数乘运算,同时得到多个空间向量求和的多边形法则,让学生进一步体会空间向量与平面向量之间的关系,突出教学重点。
3。
概念深化为了简化运算就需要研究空间向量线性运算的运算律。
我向学生提出以下问题:平面向量中学习过哪些线性运算的运算律?这些运算律是不是也可以推广到空间中去呢?咱们先来看看哪些可以直接由平面结论得到?(PPT给出)学生通过探究发现由于加法交换律和分配律都只涉及到一个或两个向量,可以看作同一平面上的问题,可由平面结论直接得出;而空间中任意三个向量可能不共面,所以加法结合律还需要重新证明。
接着由学生自主完成对加法结合律的证明。
教师小结:通过结合律的证明能培养学生的空间观念,他们还能进一步体会空间向量中的某些问题与平面向量中相应问题的不同之处。
新教材高中数学第1章空间向量及其线性运算教案新人教A版选择性必修第一册

新教材高中数学教案新人教A 版选择性必修第一册:第1章 空间向量与立体几何1.1 空间向量及其运算 1.1.1 空间向量及其线性运算学 习 目 标核 心 素 养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点)1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O )游览结束后乘车到外滩(A )观赏黄浦江,然后抵达东方明珠(B )游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1 图2如果游客还要登上东方明珠顶端(D )俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称 方向 模 记法 零向量 任意 0 0 单位向量 任意 1相反向量 相反 相等 a 的相反向量:-aAB →的相反向量:BA →相等向量相同相等a =b3.空间向量的线性运算 (1)向量的加法、减法 空间向量的运算加法 OB →=OA →+OC →=a +b减法CA →=OA →-OC →=a -b加法运算律①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算. 当λ>0时,λa 与向量a 方向相同; 当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍. ②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb . 思考:向量运算的结果与向量起点的选择有关系吗? [提示] 没有关系. 4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.(2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量.(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”) (1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c . ( ) (2)相等向量一定是共线向量. ( ) (3)三个空间向量一定是共面向量. ( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行. (2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个 D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________.-53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.] 4.在三棱锥A BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念【例1】 (1)给出下列命题: ①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |; ③在正方体ABCD A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→[(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确; 对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确; 对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向. (2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.[跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( ) ①长度相等、方向相同的两个向量是相等向量; ②平行且模相等的两个向量是相等向量; ③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同. A .0 B .1 C .2 D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算【例2】 (1)如图所示,在正方体ABCD A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1的有( )①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zPA →; ②PA →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解. (1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; 对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; 对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; 对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.] (2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PC →-12PA →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点, ∴PA →+PC →=2PO →,PC →+PD →=2PQ →, ∴PA →=2PO →-PC →,PC →=2PQ →-PD →, ∴PA →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.[跟进训练]2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB →B .3MG →C .3GM →D .2MG → B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB → =MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC =-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧λ=7λk =k +6,解得k =1.](2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM → =2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. (1)存在实数λ,使PA →=λPB →成立. (2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). (3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F→=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如PA →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c . 因为a ,b ,c 不共面,所以⎩⎪⎨⎪⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示, 即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →), ∴3CP →=PA →+2PB →,即PA →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面. [解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →,∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎪⎨⎪⎧ 1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断?[解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1.∴点P 与点A 、B 、C 不共面.解决向量共面的策略1若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →x +y +z =1,然后利用指定向量表示出已知向量,用待定系数法求出参数.2证明三个向量共面或四点共面,需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的.(2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( )A .OM →=2OA →-OB →-OC →B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.]2.已知正方体ABCD A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .]4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a,b满足|a|>|b|且a,b同向,则a>b;③不相等的两个空间向量的模必不相等;④对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为________.④[对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,求k的值.[解]∵两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,∴k e1+e2=t(e1+k e2),则(k-t)e1+(1-tk)e2=0.∵非零向量e1,e2不共线,∴k-t=0,1-kt=0,解得k=±1.。
空间向量的线性运算教案

空间向量的线性运算教案引言:本教案旨在介绍空间向量的线性运算,包括向量的相加、相减、数量乘积和点乘积等操作方法和性质。
通过清晰的教学步骤和实例讲解,学生将能够理解和掌握空间向量的线性运算,提高其数学运算和空间几何分析能力。
一、向量的表示与性质1. 向量的定义和表示方法向量是具有大小和方向的量,可以用有向线段来表示。
在空间中,向量通常用坐标表示,即(a, b, c)。
其中,a、b、c分别代表向量在三个坐标轴上的分量。
2. 向量的相等与零向量两个向量相等的条件是它们的对应分量全部相等。
而零向量的分量为0,记作O。
3. 向量的加法向量的加法满足交换律和结合律。
即对于向量a、b、c来说,有:a +b = b + a,(a + b) +c = a + (b + c)。
4. 向量的数量乘积向量的数量乘积是指一个向量与一个实数的乘积。
例如,k * a = (ka, kb, kc),其中k为实数,a为向量。
二、向量的线性运算1. 向量的减法向量的减法可以通过向量加法和数量乘积来实现。
即a - b = a + (-1) * b。
2. 向量的数乘与共线关系若k≠0,k * a与a的方向相同;若k<0,k * a与a的方向相反;若k=0,k * a为零向量。
3. 线性相关与线性无关若存在实数k1、k2、...、kn,使得k1 * a1 + k2 * a2 + ... + kn * an= 0,其中a1、a2、...、an为不全为0的向量,则称向量组a1、a2、...、an线性相关。
否则,称它们线性无关。
4. 向量的点乘积向量的点乘积是指两个向量的数量乘积再求和。
即a · b = |a| * |b| * cosθ,其中θ为a和b之间的夹角。
5. 点乘积的性质- a · b = b · a,满足交换律;- a · a = |a|^2,其中|a|为向量a的模长;- 若a与b垂直,则a · b = 0;- 若a、b、c为三个向量,有(a + b) · c = a · c + b · c,满足分配律。
《3.1.1 空间向量及其线性运算》教案

《3.1.1 空间向量及其线性运算》教案一、教学目标:1.运用类比的方法,经历向量及其线性运算由平面向空间推广的过程;2.了解空间向量的概念,掌握空间向量的线性运算及其性质;3.理解空间向量共线(平行)的充要条件及共线向量定理.二、教学重难点:1.空间向量的线性运算及其性质.2.空间向量及其线性运算法则的运算.三、教学方法建议:新授课、启发式——引导发现、合作探究.四、教学过程:(A)类问题(学生自学)1、在平面内既有大小又有方向的量叫平面向量.2、在空间,既有大小又有方向的量叫空间向量.3、空间向量的加法和数乘运算满足的运算律.加法交换律: a b b a +=+;加法结合律:()() a b c a b c ++=++;数乘分配律:(λλλ a b a b +)=+.4、共线向量定理:空间任意两个向量 a , b ( a ≠0 ), a //b 的充要条件是存在实数λ,使 b =λ a .(B)类问题(学生练习,教师点拨)1、如图,在三棱柱111ABC A B C -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:(1)1 CB BA +; (2)112AC CB AA ++; (3)1 AA AC CB --.(C)类问题(学生思考,教师点拨)如图,在长方体111OADB CA D B 中,OA=3,OB=4,OC=2,OI=OJ=OK=1,点E,F 分别是DB,D1B1的中点.设 OI i =, OJ j =, OK k =,试用向量 i , j , k 表示OE 和 OF.五、问题解决情况检测:(A)类问题检测(B)类问题检测正方体AC1中,点E,F 分别为棱BC 和A1D1的中点,求证:四边形DEB1F 为平行四边形.(C)类问题检测已知空间四边形ABCD,连结AC,BD,设M,G 分别是BC,CD 的中点,化简下列各表达式,并标出化简结果向量:(1) AB BC CD ++; (2)1()2AB BD BC ++. 六、教学反思:。
新版高中数学《1.1.1空间向量及其线性运算》教学设计

空间向量及其线性运算教学设计(人教A版普通高中教科书数学选修第一册第一章)一、教学目标1.复习空间向量的相关概念2.能够熟练应用空间向量的线性运算及运算律3.理解并掌握共线、共面定理的推论,会用共线、共面定理及其推论解决问题二、教学重难点重点:空间向量的线性运算及运算律难点:共线、共面定理的推论三、教学过程1.复习回顾知识点一:空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:(1)几何表示法:空间向量用有向线段表示.(2)字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作:AB,其模记为a或AB.|知识点二:空间向量的线性运算知识点三:共线定理与共面定理2.空间向量概念的应用【设计意图】通过简单的习题,加深学生对于空间向量概念的理解,纠正易错点.3.空间向量的加减运算【设计意图】选自课本中本节习题,旨在让学生体会表示未知向量时,可将未知向量放入三角形中,通过向量加减的三角形法将其表示出来.4.空间向量的数乘运算【设计意图】与例2对比,此题在加减运算的基础上加入数乘运算,是一道线性运算的综合题型,通过此题可以使学生加深对空间向量线性运算的认识,提高计算能力.5.空间向量共线、共面定理【设计意图】通过将共线、共面定理的推论以思考题的形式给出,使学生在证明的过程中加深对共线、共面定理的理解与记忆,同时引出推论.【设计意图】将推论引出后通过两个较为简单的练习题,让学生初步感受共线、共面定理推论的应用.【设计意图】用共线定理及其推论两种解法解此题目,让学生再次感受共线定理及推论在证明三点共线时的应用.,,.ABCD .AC O OA,OB,OC,ODOE OF OG OHE,F,G,H ====k,OA OB OC ODE,F,G,H 例5.如图,已知平行四边形过平面外一点作射线在四条射线上分别取点使求证:四点共面1111,,,,,,.OE OF OG OH====k OA OB OC ODOA OE OB OF OC OG OD OHOA OD OB OC OE OB OC OD ∴====∴-=-∴=-+∴k k k kABCD E F G H 四边形为平行四边形四点共面【设计意图】此题是第一课时例题,用共面定理的推论给出此题目的第二种解法,让学生再次感受共面定理及推论在证明四点共面问题时的应用,以达到开拓学生的思路的目的.6.归纳小结(1).用好已有的定理及推论:如共线向量定理、共面向量定理及推论等, 并能运用它们证明空间向量的共线和共面的问题.(2).在解决空间向量问题时,结合图形,将未知向量放入三角形中,再运用向量加减的三角形法则解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用心 爱心 专心
- 1 -
课题:3.1.1空间向量的线性运算
设计人: 审核人:
班级: 组名: 姓名: 日期:
典型例题
例1.已知平行六面体''''D C B A ABCD -(如图),以图中一对顶点构造向量,使
它们分别等于:
;
⑴BC AB + ;⑵'AA AD AB ++ '2
1CC AD AB +
+⑶ .⑷
)'(3
1AA AD AB ++
(5)D D AB BC
→
→
→
'-+
1(6)()2
A B A D D D B C →
→
→
→
'++
-
(7)AB BC C C C D D A →
→
→
→
→
'''''++++
例3.已知平行六面ABCD-A1B1C1D1
,求满足下列各式的x 的值。
11111 )3(2 )2(AC
x AD AB AC AC x BD AD =++=-x C D A AB =++1111 )1(
1
C C '
D '
A '
B '
D
A
)(21,,.2→
→→+=BC AD MN CD AB ABCD N M 求证:的中点,
的棱分别是四面体例D
C
B
A
N
M
用心 爱心 专心
- 2 -
四.当堂检测
1.在三棱柱111ABC A B C -中,设M 、N 分别为1,BB AC 的中点,则MN
等于( )
A .11()2A C A
B B B ++ B .111111()2
B A B
C C C ++
C .11()2A C C B B B ++
D .11()2
B B B A B
C --
2.若A 、B 、C 、D 为空间四个不同的点,则下列各式为零向量的是 ( )①22AB BC CD DC +++ ②2233AB BC CD DA AC ++++
③AB CA BD ++ ④AB CB CD AD -+-
A .①②
B .②③
C .②④
D .①④
3.在空间四边形ABCD 中,点M 、G 分别是BC 、CD 边的中点,化简
4. 如图,在三棱柱111C B A ABC
-中,M
是1BB 的中点,
化简下列各式,并在图中标出化简得到的向量: (1)1
BA CB +;
(2)1
21AA CB AC +
+;
(3)CB
AC AA --1
五.课后练习
1.四棱锥P-ABCD 的底面ABCD 为平行四边形,,,AB a AD b AP c === ,E 为PC 中点,
则向量C E =
_______________________;
2.已知长方体
1111
ABC D A B C D -,化简向量表达式
1CB AC AD AA +++=
_____________;
3. 1(1) ()2
1(2) ()2
AB BC BD AG AB AC ++-+ a b AD c
a ,b,c C D ,.
ABC D AB BC AC BD ==
空间四边形中,,=,,试用来表示,。