空间向量及其线性运算(教案)
1.1.1+空间向量及其线性运算+教学设计-高二上学期数学人教A版(2019)选择性必修第一册

《1.1.1空间向量及其线性运算》教学设计一、教学内容解析《1.1空间向量及其运算》是人教A版《普通高中教科书·数学(选择性必修)》第一册(以下简称“教科书”) 第一章《空间向量与立体几何》的第一节内容,包括“空间向量及其线性运算”和“空间向量的数量积运算”两小节内容,其中第1课时“空间向量及其线性运算”要学习的核心知识有: 空间向量的概念;零向量、单位向量、相等向量、相反向量、共线向量、共面向量;空间向量的加法、减法以及数乘运算.这些核心知识是后续学习空间向量基本定理、空间向量运算的坐标表示、应用空间向量解决立体几何图形位置关系与度量关系的基石.二、学情分析在学习本节课内容之前,学生已在人教A版必修第二册中学习了《平面向量及其应用》和《立体几何初步》内容.大致了解了平面向量的基本研究思路与框架即“实际背景→基本概念→向量运算( 线性运算、数量积) →向量基本定理及坐标表示→向量的应用”,这也是研究和学习空间向量的基本研究思路.三、教学目标(1)了解空间向量的实际背景;理解空间向量及相关概念;掌握空间向量的加法、减法和数乘运算;(2)经历由平面向量的概念、运算推广到空间向量的过程;通过空间向量加法结合律的证明体会维数增加对向量推广带来的变化;(3)在借助几何图形解释空间向量相关概念中进一步发展直观想象核心素养,领悟数形结合的思想方法,提升数学运算和逻辑推理能力; 从平面向量推广得到空间向量、空间向量问题转化为平面向量问题的过程中提升数学抽象素养,领悟类比、特殊与一般、转化与化归等思想.四、教学重难点重点: 空间向量及其相关概念,空间向量的线性运算;难点: 空间向量加法结合律的证明,空间向量的线性运算.五、教学策略分析本节课采用创设问题情境,设置问题链引导学生类比平面向量层层深入学习空间向量的概念、线性运算、运算律和位置关系等内容.学生通过自主探究、交流、师生互动等教学活动参与学习过程,突破学习中的难点和疑点.利用PPT等教学软件绘制图形、平移图形、展示图片,借助几何直观图形帮助学生分析和理解概念.六、教学过程设计1、情境引入如图所示,一只蚂蚁从A点出发,一直沿着棱爬行,先爬行到B点,再爬行到C点,那么它的实际位移是什么?若蚂蚁继续沿着棱从C点向上爬行到C1点,那么它的实际位移是什么?追问:位移在数学中可以用什么概念表示?这些向量是否位于同一平面?【设计意图】通过学生情境引入,引导学生回忆熟悉的平面向量,同时发现空间向量,感受到与平面向量的差异,进而激发学生的求知欲.师:通过平面向量及其应用的学习,我们知道平面内的点、直线可以通过平面向量及其运算来表示,他们之间的平行、垂直、夹角、距离等关系,可以通过平面向量运算得到,从而有关平面图形的问题可以利用平面向量的方法解决。
空间向量及其线性运算(教案)

空间向量及其线性运算(教案)课题:空间向量及其线性运算教学⽬标:1.运⽤类⽐⽅法,经历向量及其运算由平⾯向空间推⼴的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件教学重点:空间向量的概念、空间向量的线性运算及其性质;教学难点:空间向量的线性运算及其性质。
教学过程:⼀、创设情景1、蚂蚁爬⾏的问题引⼊为什么要研究空间向量.2、平⾯向量的概念及其运算法则;⼆、建构数学1.空间向量的概念:在空间,我们把具有⼤⼩和⽅向的量叫做向量注:⑴空间的⼀个平移就是⼀个向量⑵向量⼀般⽤有向线段表⽰同向等长的有向线段表⽰同⼀或相等的向量⑶空间的两个向量可⽤同⼀平⾯内的两条有向线段来表⽰ 2.空间向量的运算定义:与平⾯向量运算⼀样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a ∈=λλ运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++ ⑶数乘分配律:b a b aλλλ+=+)(3.平⾏六⾯体:平⾏四边形ABCD 平移向量a到D C B A ''''的轨迹所形成的⼏何体,叫做平⾏六⾯体,并记作:ABCD -D C B A '''',它的六个⾯都是平⾏四边形,每个⾯的边叫做平⾏六⾯体的棱。
4.共线向量与平⾯向量⼀样,如果表⽰空间向量的有向线段所在的直线互相平⾏或重合,则这些向量叫做共线向量或平⾏向量.a 平⾏于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表⽰a 、b的有向线段所在的直线可能是同⼀直线,也可能是平⾏直线. 5.共线向量定理:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,A / B使a=λb .三、数学运⽤1、例1 如图,在三棱柱111C B A ABC -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:(1)1BA CB +; (2)121AA CB AC ++; (3)AA --1解:(1)11CA BA CB =+ (2)AA =++121(3)11BA CB AC AA =--2、如图,在长⽅体///B D CA OADB -中,1,2,4,3======OK OJ OI OC OB OA ,点E,F 分别是//,B D DB 的中点,设===,,,试⽤向量,,表⽰OE 和OF解:j i OE 423+=2423++=3、课堂练习已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量:(1)AB BC CD ++;(2)1()2AB BD BC ++;(3)1()2AG AB AC -+ .四、回顾总结空间向量的定义与运算法则五、布置作业72页练习2,3《数学之友》选T3.1空间向量及其线性运算BCDMGA。
教案)空间向量及其运算

教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
【新教材精品教案】1.1.1空间向量及线性运算

理问题的方法,能否把平面向量推广到空间向量,从而利用向量研究滑翔运动员呢,下面我们类比平面向量,研究空间向量,先从空间上的概念和平面向量的概念,给出空间向量的概念.的量叫做空间向量,向量的大小叫做向师生互动:1.想一想,向量线性运算的结果,与向量起点的选择有关吗?2.你能否证明这些运算律?证明结合律时,与证明平面向量的结合律有什么不同?】.-般地,对于三个不共为邻边作平行六面体,则c b a ,,的和等于以O为起点的平行六面体对角线所表示的向量,另外,利用向量加法的交换律和结合,由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得的方向向量.任意两个空间向量总是共面的,但三个空间向量既可能是共面的,也可能是不共面的,那么,什么情况下三个空间向量共面呢?【师生互动:板书示范.】四课堂练习四归纳总结1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题.其中合理选取基底是优化运算的关键.五课后作业同步基础训练六板书设计空间向量及其线性运算空间向量的概念方向向量与共面向量加减运算及运算律例题1随堂练习设计意图:通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、数学建模的核心素养.教学反思:教学中主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。
二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。
并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。
三是注重渗透类比法、归纳法等一般的数学思想方法。
新教材高中数学第1章空间向量及其线性运算教案新人教A版选择性必修第一册

新教材高中数学教案新人教A 版选择性必修第一册:第1章 空间向量与立体几何1.1 空间向量及其运算 1.1.1 空间向量及其线性运算学 习 目 标核 心 素 养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点)1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O )游览结束后乘车到外滩(A )观赏黄浦江,然后抵达东方明珠(B )游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1 图2如果游客还要登上东方明珠顶端(D )俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称 方向 模 记法 零向量 任意 0 0 单位向量 任意 1相反向量 相反 相等 a 的相反向量:-aAB →的相反向量:BA →相等向量相同相等a =b3.空间向量的线性运算 (1)向量的加法、减法 空间向量的运算加法 OB →=OA →+OC →=a +b减法CA →=OA →-OC →=a -b加法运算律①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算. 当λ>0时,λa 与向量a 方向相同; 当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍. ②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb . 思考:向量运算的结果与向量起点的选择有关系吗? [提示] 没有关系. 4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.(2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量.(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”) (1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c . ( ) (2)相等向量一定是共线向量. ( ) (3)三个空间向量一定是共面向量. ( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行. (2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个 D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________.-53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.] 4.在三棱锥A BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念【例1】 (1)给出下列命题: ①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |; ③在正方体ABCD A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→[(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确; 对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确; 对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向. (2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.[跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( ) ①长度相等、方向相同的两个向量是相等向量; ②平行且模相等的两个向量是相等向量; ③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同. A .0 B .1 C .2 D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算【例2】 (1)如图所示,在正方体ABCD A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1的有( )①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zPA →; ②PA →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解. (1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; 对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; 对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; 对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.] (2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PC →-12PA →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点, ∴PA →+PC →=2PO →,PC →+PD →=2PQ →, ∴PA →=2PO →-PC →,PC →=2PQ →-PD →, ∴PA →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.[跟进训练]2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB →B .3MG →C .3GM →D .2MG → B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB → =MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC =-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧λ=7λk =k +6,解得k =1.](2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM → =2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. (1)存在实数λ,使PA →=λPB →成立. (2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). (3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F→=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如PA →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c . 因为a ,b ,c 不共面,所以⎩⎪⎨⎪⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示, 即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →), ∴3CP →=PA →+2PB →,即PA →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面. [解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →,∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎪⎨⎪⎧ 1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断?[解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1.∴点P 与点A 、B 、C 不共面.解决向量共面的策略1若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →x +y +z =1,然后利用指定向量表示出已知向量,用待定系数法求出参数.2证明三个向量共面或四点共面,需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的.(2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( )A .OM →=2OA →-OB →-OC →B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.]2.已知正方体ABCD A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .]4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a,b满足|a|>|b|且a,b同向,则a>b;③不相等的两个空间向量的模必不相等;④对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为________.④[对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,求k的值.[解]∵两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,∴k e1+e2=t(e1+k e2),则(k-t)e1+(1-tk)e2=0.∵非零向量e1,e2不共线,∴k-t=0,1-kt=0,解得k=±1.。
《3.1.1 空间向量及其线性运算》教案

《3.1.1 空间向量及其线性运算》教案一、教学目标:1.运用类比的方法,经历向量及其线性运算由平面向空间推广的过程;2.了解空间向量的概念,掌握空间向量的线性运算及其性质;3.理解空间向量共线(平行)的充要条件及共线向量定理.二、教学重难点:1.空间向量的线性运算及其性质.2.空间向量及其线性运算法则的运算.三、教学方法建议:新授课、启发式——引导发现、合作探究.四、教学过程:(A)类问题(学生自学)1、在平面内既有大小又有方向的量叫平面向量.2、在空间,既有大小又有方向的量叫空间向量.3、空间向量的加法和数乘运算满足的运算律.加法交换律: a b b a +=+;加法结合律:()() a b c a b c ++=++;数乘分配律:(λλλ a b a b +)=+.4、共线向量定理:空间任意两个向量 a , b ( a ≠0 ), a //b 的充要条件是存在实数λ,使 b =λ a .(B)类问题(学生练习,教师点拨)1、如图,在三棱柱111ABC A B C -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:(1)1 CB BA +; (2)112AC CB AA ++; (3)1 AA AC CB --.(C)类问题(学生思考,教师点拨)如图,在长方体111OADB CA D B 中,OA=3,OB=4,OC=2,OI=OJ=OK=1,点E,F 分别是DB,D1B1的中点.设 OI i =, OJ j =, OK k =,试用向量 i , j , k 表示OE 和 OF.五、问题解决情况检测:(A)类问题检测(B)类问题检测正方体AC1中,点E,F 分别为棱BC 和A1D1的中点,求证:四边形DEB1F 为平行四边形.(C)类问题检测已知空间四边形ABCD,连结AC,BD,设M,G 分别是BC,CD 的中点,化简下列各表达式,并标出化简结果向量:(1) AB BC CD ++; (2)1()2AB BD BC ++. 六、教学反思:。
新版高中数学《1.1.1空间向量及其线性运算》教学设计

空间向量及其线性运算教学设计(人教A版普通高中教科书数学选修第一册第一章)一、教学目标1.复习空间向量的相关概念2.能够熟练应用空间向量的线性运算及运算律3.理解并掌握共线、共面定理的推论,会用共线、共面定理及其推论解决问题二、教学重难点重点:空间向量的线性运算及运算律难点:共线、共面定理的推论三、教学过程1.复习回顾知识点一:空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:(1)几何表示法:空间向量用有向线段表示.(2)字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作:AB,其模记为a或AB.|知识点二:空间向量的线性运算知识点三:共线定理与共面定理2.空间向量概念的应用【设计意图】通过简单的习题,加深学生对于空间向量概念的理解,纠正易错点.3.空间向量的加减运算【设计意图】选自课本中本节习题,旨在让学生体会表示未知向量时,可将未知向量放入三角形中,通过向量加减的三角形法将其表示出来.4.空间向量的数乘运算【设计意图】与例2对比,此题在加减运算的基础上加入数乘运算,是一道线性运算的综合题型,通过此题可以使学生加深对空间向量线性运算的认识,提高计算能力.5.空间向量共线、共面定理【设计意图】通过将共线、共面定理的推论以思考题的形式给出,使学生在证明的过程中加深对共线、共面定理的理解与记忆,同时引出推论.【设计意图】将推论引出后通过两个较为简单的练习题,让学生初步感受共线、共面定理推论的应用.【设计意图】用共线定理及其推论两种解法解此题目,让学生再次感受共线定理及推论在证明三点共线时的应用.,,.ABCD .AC O OA,OB,OC,ODOE OF OG OHE,F,G,H ====k,OA OB OC ODE,F,G,H 例5.如图,已知平行四边形过平面外一点作射线在四条射线上分别取点使求证:四点共面1111,,,,,,.OE OF OG OH====k OA OB OC ODOA OE OB OF OC OG OD OHOA OD OB OC OE OB OC OD ∴====∴-=-∴=-+∴k k k kABCD E F G H 四边形为平行四边形四点共面【设计意图】此题是第一课时例题,用共面定理的推论给出此题目的第二种解法,让学生再次感受共面定理及推论在证明四点共面问题时的应用,以达到开拓学生的思路的目的.6.归纳小结(1).用好已有的定理及推论:如共线向量定理、共面向量定理及推论等, 并能运用它们证明空间向量的共线和共面的问题.(2).在解决空间向量问题时,结合图形,将未知向量放入三角形中,再运用向量加减的三角形法则解决问题。
新人教版高中数学《1.1.1空间向量及其线性运算》教学设计

1.1.1空间向量及其线性运算教学设计一、教学目标(1)理解空间向量的概念,掌握空间向量的表示方法;会用图形说明空间向量加法,减法,数乘向量及它们的运算律;(2)会用向量共线和向量共面充要条件;(3)会用空间向量的运算及运算律解决简单的立体几何问题;形成事物与事物之间普遍联系及其相互转化的辨证观点;(4)通过探究、练习,提高学生对事物个性与共性之间联系的认识水平,提升学生的直观想象、数学运算、逻辑推理等数学学科核心素养.二、教学重难点教学重点:空间向量的概念和线性运算及其应用教学难点:空间向量的线性运算及其应用三、教学过程(一)创设情境,导入新课师生活动:阅读章前引言,章头图展示的是一个做滑翔伞运动的场景,可以想象在滑翔过程中,飞行员会受到来自不同方向大小各异的力,你能用图示法表示这些力吗?设计意图:图1中的引入情境于学生而言,非常熟悉。
课堂上追问学生,飞行员收到来自不同方向的力又该如何表示,用图示法表示这些力吗?既贴近学生生活实际又自然将平面向量拓展到空间向量,既揭示了学习空间向量的必要性,又激发了学生的学习兴趣,也为后续空间向量的加法运算做了铺垫(尤其是在验证空间向量的加法结合律).(二)类比归纳,形成概念问题 1 我们已经学习过平面向量的概念和线性运算,你能类比平面向量,给出空间向量的概念和线性运算吗?追问(1):平面向量是什么的?你能类比平面向量给出空间向量的概念吗?追问(2):如何表示平面向量??你能类比平面向量的表示,给出空间向量的表示吗?追问(3):从平面向量的概念出发,我们又学习了不少新的概念. 你还记得吗?有哪些?你能把这些概念推广到空间向量中吗?与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模.与平面向量一样,空间向量也用有向线段来表示,有向线段的长度表示空间向量的模。
空间向量可以用字母a,b,c,…表示.如图,若向量a的起点是A,终点是B,则向量a也可以记作向量AB,其模记为向量a的模或向量AB的模.如图所示,对于任意一个空间向量,我们都可以将其放在一个平面内研究,这时,这个空间向量就是我们熟悉的平面向量了.几何表示:字母表示:,向量的大小:,方向相同且长度相等问题2 在学习完平面向量的相关概念以后,我们研究了平面向量的线性运算.你能类比平面向量的线性运算,得出空间向量的线性运算及运算律吗?追问(1):平面向量的线性运算有哪些?我们如何研究这些运算?答:平面向量有加法、减法和数乘运算. 先研究它们的定义及运算法则,再研究它们的运算律;追问(2):平面向量的加法、减法和数乘运算的定义或法则分别是什么?你能类比它们得出空间向量的加、减和数乘运算的定义或法则吗?追问(3):平面向量线性运算的运算律有哪些?你能类比它们得出空间线性运算的运算律吗?由于任意两个空间向量都可以通过平移,转化为同一平面内的向量,因此,我们猜想,空间向量的线性运算也具有和平面向量线性运算相同的运算律.数学结论是需要严格证明的, 由合情推理、猜想得到的结论不一定正确,需要严格证明.追问(4):空间向量线性运算运算律的证明,和平面向量有哪些异同?除空间向量加法的结合律以外,其他运算律都可以转化为平面向量线性运算的运算律进行证明.结合律涉及三个向量,它们可能不在同一个平面内.追问(5)如何证明空间向量的加法结合律呢?如图,可将空间中任意三个不共面的向量,通过平移使它们起点重合,分别平移表示表示这三个向量的线段,构成一个平行六面体. 我们借助这个平行六面体来证明加法的结合律.一般地,对于三个不共面的向量a ,b , c ,以任意点O 为起点, a ,b , c 为邻边作平行六面体,则a ,b , c 的和等于以O 为起点的平行六面体对角线所表示的向量.问题 3 平面向量的线性运算可以解决平面中的很多问题,空间向量的线性运算是否可以解决空间中相应的问题呢?由平面向量的线性运算,我们研究了平面向量的共线及线性表示等问题.追问(1):你还记得两个向量共线的充要条件吗?这个充要条件对于空间向量也成立吗? 追问(2):任意两个空间向量都可以通过平移,移到同一平面内,三个向量呢?答:任意两个空间向量总是共面的,但三个空间向量既可能共面,也可能不共面.追问(3):你还记得平面向量基本定理的内容吗?它和三个空间向量共面有什么关系?问题4 如右图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB ,OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,使OE OF OG OH k OA OB OC OD====. 求证: E ,F ,G ,H 四点共面.追问(1):如何证明E ,F ,G ,H 四点共面?答:可以通过证明E ,F ,G ,H 这四点构成的三个向量,如EF EH EG ,,共面,来证明这四点共面.追问(2):如何证明这三个向量共面?答:根据向量共面的充要条件,用EF EH ,表示EG 即可. 追问(3):如何实现上述表示?答:可以根据三角形法则,把EF EH EG ,,分别用,,,OE OF OG OH 等向量来表示;再利用已知条件,将它们转化用,,,OA OB OC OC 表示的形式.而由已知平行四边形ABCD ,得到=+AC AD AB ,从而可以得到,,,OA OB OC OC 的关系,进一步得到,,,OE OF OG OH 的关系,最终用用EF EH ,表示EG .思路小结:选择恰当的向量表示问题中的几何元素,通过向量运算得出几何元素的关系是解决立体几何问题的常用方法.问题5 回顾本节课的探究过程,你都学到了什么?1. 从知识层面,我们学习了空间向量的有关概念和线性运算.包括空间向量的概念,表示法以及零向量、单位向量、共线向量等相关概念;我们把平面向量的线性运算推广空间向量,研究了空间向量的加法、减法、数乘运算的定义、运算法则以及运算律;通过空间向量的线性运算,我们有了直线的方向向量,以及空间中证明向量或点共面的方法.2. 从本节课的研究方法上来看,我们始终类比平面向量的相关内容,在空间中进行推广,同时比较它与平面向量的共性和差异,并对差异之处进行了严格的证明,最终,在平面向量的相关内容推广过程中,既保持了原结论的延续性,又保证了新结论的严谨性.原有内容的融入到新内容中,这种兼容性是数学的特点, 是数学中常用的研究方法.今后继续研究空间向量的过程中,还会不断使用这样的方法.希望同学们在今后的学习中,继续大胆发现,勇于探索,严谨推理,体会数学的逻辑之美,严谨之美和广泛的应用.四、课外作业布置作业:教科书练P9复习巩固1,2,3,41.如图,E,F 分别是长方体''''D C B A ABCD -的棱CD AB ,的中点,化简下列表达式,并在图中标出化简结果的向量:(1)CB AA -' (2)'''C B AB AA ++(3)''D B AD AB +- (4)CF AB +2.如图,用',,AA AD AB 表示''',DB BD C A 及.3.如图,已知正方体''''D C B A ABCD -,F E ,分别是上底面''C A 和侧面'CD 的中心,求下列各式中x,y 的值:(1))(''CC BC AB x AC ++=(2)AD y AB x AA AE ++='设计意图:通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、数学建模的核心素养.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
C'
B'
A'
D'D
A
B
C 课 题:空间向量及其线性运算 教学目标:
1.运用类比方法,经历向量及其运算由平面向空间推广的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件
教学重点:空间向量的概念、空间向量的线性运算及其性质; 教学难点:空间向量的线性运算及其性质。
教学过程: 一、创设情景
1、蚂蚁爬行的问题引入为什么要研究空间向量.
2、平面向量的概念及其运算法则; 二、建构数学
1.空间向量的概念:
在空间,我们把具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量
⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算
定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)
b a AB OA OB
+=+=
b a OB OA BA
-=-= )(R a OP ∈=λλ
运算律:
⑴加法交换律:a b b a
+=+
⑵加法结合律:)()(c b a c b a
++=++
⑶数乘分配律:b a b a
λλλ+=+)(
3.平行六面体:
平行四边形ABCD 平移向量a
到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''',它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。
4.共线向量
与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向
量叫做共线向量或平行向量.a 平行于b 记作b a //.
当我们说向量a 、b 共线(或a //b )时,表示a 、b
的有向线段所在的直线可能是同
一直线,也可能是平行直线. 5.共线向量定理:
共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b
的充要条件是存在实数λ,
C B A
O
b b b
a
a
A / B
使a
=λb .
三、数学运用
1、例1 如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)12
1
AA CB AC +
+; (3)CB AC AA --1
解:(1)11CA BA CB =+ (2)AM AA CB AC =+
+12
1
(3)11BA CB AC AA =--
2、如图,在长方体///B D CA OADB -中,1,2,4,3======OK OJ OI OC OB OA ,点E,F 分别是//,B D DB 的中点,设k OK j OJ i OI ===,,,试用向量k j i ,,表示OE 和OF
解:j i OE 423
+=
k j i OF 242
3
++=
3、课堂练习
已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量: (1)AB BC CD ++;
(2)1
()2AB BD BC +
+; (3)1
()2
AG AB AC -+.
四、回顾总结
空间向量的定义与运算法则 五、布置作业
72页 练习2,3
《数学之友》选T3.1空间向量及其线性运算
B
C
D
M
G
A。