高中数学空间向量的线性运算知识点解析
空间向量及线性运算

如图,如果表示向量的有向线段所在的直线OA与直线平行或重
合,那么称向量平行于直线.
如果直线OA平行于平面α或在平面α内,那么称向量平行于平面α.平
行于同一个平面的向量,叫做共面向量.
我们知道,任意两个空间向量总
是共面的,但三个空间向量既可能是
共面的,也可能是不共面的.那么,
线所表示的向量.
B'
D
A
C
B
知识点二 空间向量的加减运算及运算律
探究 对任意两个空间向量与,如果=λ (λ∈R),与有什么位置关
系?反过来,与有什么位置关系时,=λ?
对任意两个空间向, (≠0), ∥ 的充要条件是存在实数,
使 = .
知识点二 空间向量的加减运算及运算律
(4) +
解析:(1) ′ − = ’-=’ + =’;
(2)′ + +’’=’+’’=’;
(3) − + ’’=+’’=+=0
(4) + =+=
'
A'
D
A
C'
C
F
E
B
―→
―→
2.已知非零向量 e1,e2 不共线,如果 AB =e1+e2, AC =
量的线性运算推广到空间,定义空间向量的加法、减法以及数乘运算:
1 + = + =
与平面向量一样,空间向量的线性运算满足
2 − = − =
以下运算律(其中λ,μ∈R):
3 当 > 0时, = =
当 < 0时, = =
原创1:1.1.1 第一课时 空间向量的线性运算

课堂小结
课堂小结
1.空间向量与平面向量的关系
空间任意两个向量都可以平移到同一个平面内,
成为同一平面内的两个向量.
已知空间向量,
Ԧ b可以在任意平面α内,
以任意点O为起点,作向量=,=
Ԧ
b.
课堂小结
2.熟练应用三角形法则和平行四边形法则
(1)利用三角形法则进行加法运算时,注意“首尾相连”
向量,与向量的起点和终点无关,④不正确.综上可知只有①正确.
跟踪练习
练习1:设有四边形ABCD,O为空间任意一点,且AO + OB= DO + OC ,则四边
形ABCD是( A )
A.平行四边形
B.空间四边形
C.等腰梯形
D.矩形
解析 ∵ AO + OB= DO + OC ,
∴ A= D.
∴ A与D平行,| A |=| D |.
向量互为相反向量的充要条件是大小相等,方向相反.
典例精析
例3: 化简( − ) − ( − )
解析: ( − ) − ( − )
结合律
= − − +
化为加法
= + + +
= + + ( + )
= +
(2)不相等的两个空间向量的模必不相等;
(3)两个空间向量相等,则它们的起点相同,终点也相同;
(4)向量与向量的长度相等.
典例精析
解析: (1)假命题,有向线段只是空间向量的一种表示形式,
但不能把二者完全等同起来.
(2)假命题,不相等的两个空间向量的模也可以相等,
只要它们的方向不相同即可.
人教B版高中数学选修(2-1)-3.1知识点拨:空间向量的线性运算

3.1.1空间向量的线性运算本节,是数学必修4“平面向量”在空间的推广,又是数学必修2“立体几何初步”的延续,努力使学生将运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想象能力和几何直观能力。
一、其教育价值体现在:空间向量为处理立体几何问题提供了新的视角(“立体几何初步”侧重于定性研究,本章则侧重于定量研究)。
空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。
进一步体会向量方法在研究几何问题中的作用。
向量是一个重要的代数研究对象,引入向量运算,使数学的运算对象发生了一个重大跳跃:从数、字母与代数式到向量,运算也从一元到多元。
向量又是一个几何对象,本身既有方向,又有长度;是沟通代数与几何的一个桥梁,是一个重要的数学与物理模型,这些也为进一步学习向量和研究向量奠定了一定的基础。
《标准》中要求让学生经历向量及其运算由平面向空间推广的过程,目的是让学生体会数学的思想方法(类比与归纳),体验数学在结构上的和谐性与在推广过程中的问题,并尝试如何解决这些问题。
同时在这一过程中,也让学生见识一个数学概念的推广可能带来很多更好的性质。
掌握空间向量的基本概念及其性质是基本要求,是后续学习的前提。
利用向量来解决立体几何问题是学习这部分内容的重点,要让学生体会向量的思想方法,以及如何用向量来表示点、线、面及其位置关系。
新老课程相比,该部分减少了大量的综合证明的内容,重在对于图形的把握,发展空间概念,运用向量方法解决计算问题,这样的调整,将使得学生把精力更多地放在理解数学的细想方法和本质方面,更加注意数学与现实世界的联系和应用,重在发展学生的数学思维能力,发展学生的数学应用意识,提高学生自觉运用数学分析问题、解决问题的能力,为学生日后的进一步学习,或工作、生活中应用数学,打下更好的基础。
二、教学中应注意的问题1.作为空间向量的第一课时,应该让学生体会到生活中很多问题用到空间向量,比如课本开始举的李明从学校到住处的位移,求这个位移就用到了我们空间向量,而且三次位移不在同一个平面上,从而进入课题。
数学复习:空间向量及其线性运算

数学复习:空间向量及其线性运算学习目标1.经历由平面向量推广到空间向量的过程,了解空间向量的概念.2.经历由平面向量的运算及其运算律推广到空间向量的过程.3.掌握空间向量的线性运算.导语国庆期间,某游客从上海世博园(O )游览结束后乘车到外滩(A )观赏黄浦江,然后抵达东方明珠(B )游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?如果游客还要登上东方明珠顶端(D )俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?一、空间向量的有关概念知识梳理1.在空间,把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模.空间向量用字母a ,b ,c ,…表示,也用有向线段表示,有向线段的长度表示空间向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB →,其模记为|a |或|AB →|.2.几类特殊的空间向量名称定义及表示零向量规定长度为0的向量叫做零向量,记为0单位向量模为1的向量叫做单位向量相反向量与向量a 长度相等而方向相反的向量,叫做a 的相反向量,记为-a 共线向量如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:零向量与任意向量平行,即对于任意向量a ,都有0∥a相等向量方向相同且模相等的向量叫做相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量注意点:(1)平面向量是一种特殊的空间向量.(2)两个向量相等的充要条件为长度相等,方向相同.(3)向量不能比较大小.(4)向量共线不具备传递性(非零向量除外).例1下列关于空间向量的说法中正确的是()A .单位向量都相等B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反C .若向量AB →,CD →满足|AB →|>|CD →|,则AB →>CD →D .相等向量其方向必相同答案D解析A 中,单位向量长度相等,方向不确定;B 中,|a |=|b |只能说明a ,b 的长度相等而方向不确定;C 中,向量不能比较大小.反思感悟空间向量的概念与平面向量的概念相类似,平面向量的其他相关概念,如向量的模、相等向量、平行向量、相反向量、单位向量等都可以拓展为空间向量的相关概念.跟踪训练1(多选)下列说法错误的是()A .任意两个空间向量的模能比较大小B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等答案BCD解析对于选项A ,向量的模即向量的长度,是一个数量,所以任意两个向量的模可以比较大小;对于选项B ,其终点构成一个球面;对于选项C ,零向量不能用有向线段表示;对于选项D ,两个向量不相等,它们的模可以相等.二、空间向量的加减运算问题空间中的任意两个向量是否共面?为什么?提示共面,任意两个空间向量都可以平移到同一个平面内,因此空间中向量的加减运算与平面中一致.知识梳理加法运算三角形法则语言叙述首尾顺次相接,首指向尾为和图形叙述平行四边形法则语言叙述共起点的两边为邻边作平行四边形,共起点对角线为和图形叙述减法运算三角形法则语言叙述共起点,连终点,方向指向被减向量图形叙述加法运算交换律a +b =b +a 结合律(a +b )+c =a+(b +c )注意点:(1)求向量和时,可以首尾相接,也可共起点;求向量差时,可以共起点.(2)三角形法则、平行四边形法则在空间向量中也适用.例2(1)(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,下列各式运算结果为BD 1—→的是()A.A 1D 1——→-A 1A —→-AB →B.BC →+BB 1—→-D 1C 1——→C.AD →-AB →-DD 1—→D.B 1D 1——→-A 1A —→+DD 1—→答案AB解析A 中,A 1D 1——→-A 1A —→-AB →=AD 1—→-AB →=BD 1—→;B 中,BC →+BB 1—→-D 1C 1——→=BC 1—→+C 1D 1——→=BD 1—→;C 中,AD →-AB →-DD 1—→=BD →-DD 1—→=BD →-BB 1—→=B 1D —→≠BD 1—→;D 中,B 1D 1——→-A 1A —→+DD 1—→=BD →+AA 1—→+DD 1—→=BD 1—→+AA 1—→≠BD 1—→.(2)对于空间中的非零向量AB →,BC →,AC →,其中一定不成立的是()A.AB →+BC →=AC →B.AB →-AC →=BC→C .|AB →|+|BC →|=|AC →|D .|AB →|-|AC →|=|BC →|答案B解析根据空间向量的加减法运算,对于A ,AB →+BC →=AC →恒成立;对于C ,当AB →,BC →方向相同时,有|AB →|+|BC →|=|AC →|;对于D ,当AB →,AC →方向相同且|AB →|≥|AC →|时,有|AB →|-|AC →|=|BC →|;对于B ,由向量减法可知AB →-AC →=CB →,所以B 一定不成立.反思感悟空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加法、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.跟踪训练2如图,已知空间四边形ABCD ,连接AC ,BD ,E ,F ,G 分别是BC ,CD ,DB的中点,请化简以下式子,并在图中标出化简结果.(1)AB →+BC →-DC →;(2)AB →-DG →-CE →.解(1)AB →+BC →-DC →=AB →+BC →+CD →=AC →+CD →=AD →,如图中向量AD →.(2)如图,连接GF ,GF =12BC ,AB →-DG →-CE →=AB →+BG →+EC →=AG →+GF →=AF →,如图中向量AF →.三、空间向量的数乘运算知识梳理定义与平面向量一样,实数λ与空间向量a 的乘积λa 仍然是一个向量,称为空间向量的数乘几何意义λ>0λa 与向量a 的方向相同λa 的长度是a 的长度的|λ|倍λ<0λa 与向量a 的方向相反λ=0λa =0,其方向是任意的运算律结合律λ(μa )=(λμ)a 分配律(λ+μ)a =λa +μa ,λ(a +b )=λa +λb注意点:(1)当λ=0或a =0时,λa =0.(2)λ的正负影响着向量λa 的方向,λ的绝对值的大小影响着λa 的长度.(3)向量λa 与向量a 一定是共线向量.例3如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →.解(1)∵P 是C 1D 1的中点,∴AP →=AA 1—→+A 1D 1——→+D 1P —→=a +AD →+12D 1C 1——→=a +c +12AB →=a +12b +c .(2)∵N 是BC 的中点,∴A 1N —→=A 1A —→+AB →+BN →=-a +b +12BC→=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点,∴MP →=MA →+AP →=12A 1A —→+AP→=-12a +c +12b =12a +12b +c .延伸探究1.例3的条件不变,试用a ,b ,c 表示向量PN →.解因为P ,N 分别是D 1C 1,BC 的中点,所以PN →=PC 1—→+C 1C —→+CN →=12AB →+(-AA 1—→)-12AD a +12b -12c .2.若把例3中“P 是C 1D 1的中点”改为“P 在线段C 1D 1上,且C 1P PD 1=12,其他条件不变,如何表示AP →?解AP →=AD 1——→+D 1P —→=AA 1—→+AD →+23AB →=a +c +23b .反思感悟利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.跟踪训练3已知四边形ABCD 为正方形,P 是四边形ABCD 所在平面外一点,P 在平面ABCD上的射影恰好是正方形的中心O ,Q 是CD 的中点,求下列各题中x ,y 的值.(1)OQ →=PQ →+xPC →+yPA →;(2)PA →=xPO →+yPQ →+PD →.解(1)由图可知,OQ →=PQ →-PO→=PQ →-12(PA →+PC →)=PQ →-12PA →-12PC →,∴x =y =-12.(2)∵PA →+PC →=2PO →,∴PA →=2PO →-PC →.∵PC →+PD →=2PQ →,∴PC →=2PQ →-PD →,∴PA →=2PO →-(2PQ →-PD →)=2PO →-2PQ →+PD →.∴x =2,y =-2.1.知识清单:(1)向量的相关概念.(2)向量的线性运算(加法、减法和数乘).(3)向量的线性运算的运算律.2.方法归纳:类比、三角形法则、平行四边形法则、数形结合思想.3.常见误区:应抓住向量的“大小”和“方向”两个要素,并注意它是一个“量”,而不是一个数.1.(多选)下列命题中,真命题是()A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等答案ABC解析容易判断D 是假命题,共线的单位向量是相等向量或相反向量.2.化简PM →-PN →+MN →所得的结果是()A .PM →B .NP→C .0D .MN→答案C解析PM →-PN →+MN →=NM →+MN →=NM →-NM →=0.3.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是()A .平行四边形B .空间四边形C .等腰梯形D .矩形答案A解析∵AO →+OB →=DO →+OC →,∴AB →=DC →.∴AB →∥DC →且|AB →|=|DC →|.∴四边形ABCD 为平行四边形.4.在四棱锥P -ABCD 中,底面ABCD 是正方形,E 为PD 的中点,若PA →=a ,PB →=b ,PC →=c ,则BE →=________.答案12a -32b +12c 解析BE →=12(BP →+BD →)=12(-b +BA →+BC →)=-12b +12(PA →-PB →+PC →-PB →)=-12b +12(a +c -2b )=12a -32b +12c .练习1.下列说法中正确的是()A .空间中共线的向量必在同一条直线上B .AB →=CD →的充要条件是A 与C 重合,B 与D 重合C .数乘运算中,λ既决定大小,又决定方向D .在四边形ABCD 中,一定有AB →+AD →=AC →答案C解析对于A ,向量共线是指表示向量的有向线段所在直线平行或重合,所以A 错误;对于B ,AB →=CD →的充要条件是|AB →|=|CD →|,且AB →,CD →同向.但A 与C ,B 与D 不一定重合,所以B 错误;对于C ,λ既决定大小又决定方向,所以C 正确;对于D ,满足AB →+AD →=AC →的一定是平行四边形,一般四边形是不满足的,因而D 错误.2.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是()A .a =bB .a +b 为实数0C .a 与b 方向相同D .|a |=3答案D解析向量a ,b 互为相反向量,则a ,b 模相等,方向相反.3.如图,在四棱柱的上底面ABCD 中,AB →=DC →,则下列向量相等的是()A .AD →与CB →B .OA →与OC →C .AC →与DB →D .DO →与OB→答案D解析对于A ,AD →与CB →的方向相反,因而不是相等向量,所以A 错误;对于B ,OA →与OC →的方向相反,因而不是相等向量,所以B 错误;对于C ,AC →与DB →的方向不同,因而不是相等向量,所以C 错误;对于D ,DO →与OB →的方向相同,大小相等,是相等向量,因而D 正确.4.如图,在直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1—→=c ,则A 1B —→等于()A .a +b -cB .a -b +cC .b -a -cD .b -a +c答案C解析A 1B —→=AB →-AA 1—→=(CB →-CA →)-AA 1—→,∵AA 1—→=CC 1—→=c ,∴A 1B —→=b -a -c .5.如图,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M ,N 分别为OA ,BC 的中点,则MN →等于()A .12a -12b +12cB .-12a +12b +12cC .12a +12b -23cD .12a +12b -12c答案B解析MN →=MA →+AB →+BN →=12a +(b -a )+12(c -b )=-12a +12b +12c .6.(多选)已知平行六面体ABCD -A ′B ′C ′D ′,则下列四式中正确的有()A .AB →-CB →=AC →B .AC ′——→=AB →+B ′C ′———→+CC ′——→C .AA ′——→=CC ′——→D .AB →+BB ′——→+BC →+C ′C ——→=AC ′——→答案ABC解析作出平行六面体ABCD -A ′B ′C ′D ′的图象如图,可得AB →-CB →=AB →+BC →=AC →,故A 正确;AB →+B ′C ′———→+CC ′——→=AB →+BC →+CC ′——→=AC ′——→,故B 正确;C 显然正确;AB →+BB ′——→+BC →+C ′C ——→=AB →+BC →=AC →,故D 不正确.7.设A ,B ,C ,D 为空间任意四点,则AC →-BC →+BD →=________.答案AD→解析AC →-BC →+BD →=AC →+CB →+BD →=AD →.8.在正方体ABCD -A 1B 1C 1D 1中,点M 是AA 1的中点,已知AB →=a ,AD →=b ,AA 1—→=c ,用a ,b ,c 表示CM →,则CM →=________.答案-a -b +12c解析∵CM →=CB →+BA →+AM →=-BC →-AB →+AM →,又∵M 是AA 1的中点,∴AM →=12AA 1—→,∴CM →=-BC →-AB →+12AA 1—→,∵AB →=a ,AD →=b ,AA 1—→=c ,∴CM →=-a -b +12c .9.如图,已知正方体ABCD -A 1B 1C 1D 1.(1)化简AB →+CC 1—→+B 1D 1——→;(2)若AA 1—→+x +BC →+C 1D ——→+D 1A 1——→=0,则x 可以是图中有向线段所示向量中的哪一个?(至少写出两个)解(1)AB →+CC 1—→+B 1D 1——→=AB →+BB 1—→+B 1D 1——→=AB 1—→+B 1D 1——→=AD 1—→.(2)因为BC →=B 1C 1——→,D 1A 1—→=DA →,所以AA 1—→+x +BC →+C 1D —→+D 1A 1——→=AA 1—→+x +B 1C 1——→+C 1D —→+DA →=0.所以AA 1—→+x +B 1A —→=0,所以x =A 1B 1——→.又因为A 1B 1——→=AB →=DC →=D 1C 1——→,所以x 可以是A 1B 1——→,AB →,DC →,D 1C 1——→中的任一个.10.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.解∵AE →=AB →+BC →+CE→=OB →-OA →+OC →-OB →-12OC →=-OA →+12OC →=-OA →+12(OD →+DC →)=-OA →+12(OD →+AB →)=-OA →+12OD →+12(OB →-OA →)=12OD →+12OB →-32→,又AE →=12OD →+xOB →+yOA →,∴x =12,y =-32.11.已知空间中任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于()A .DB→B .AB →C .AC →D .BA →答案D 解析方法一DA →+CD →-CB →=(CD →+DA →)-CB →=CA →-CB →=BA →.方法二DA →+CD →-CB →=DA →+(CD →-CB →)=DA →+BD →=BA →.12.如图,在平行六面体ABCD -A ′B ′C ′D ′中,AC 与BD 的交点为O ,点M 在BC ′上,且BM =2MC ′,则OM →等于()A .-12AB →+76AD →+23AA ′——→B .-12AB →+56AD →+13AA ′——→C .12AB →+16AD →+23AA ′——→D .12AB →-16AD →+13AA ′——→答案C 解析因为BM =2MC ′,所以BM →=23BC ′——→,在平行六面体ABCD -A ′B ′C ′D ′中,OM →=OB →+BM →=OB →+23BC ′——→=12DB →+23(AD →+AA ′——→)=12(AB →-AD →)+23(AD →+AA ′——→)=12AB →+16AD →+23AA ′——→.13.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1—→表示OC 1—→,则OC 1—→=________________.答案12AB →+12AD →+AA 1—→解析因为OC →=12AC →=12(AB →+AD →),所以OC 1—→=OC →+CC 1—→=12(AB →+AD →)+AA 1—→=12AB →+12AD →+AA 1—→.14.如图,在四面体ABCD 中,E ,G 分别是CD ,BE 的中点,若记AB →=a ,AD →=b ,AC →=c ,则AG →=________.答案12a +14b +14c 解析在四面体ABCD 中,E ,G 分别是CD ,BE 的中点,则AG →=AB →+BG →=AB →+12BE →=AB →+12×12(BC →+BD →)=AB →+14(AC →-AB →+AD →-AB →)=AB →+14AC →+14AD →-12AB →=12AB →+14AD →+14AC →=12a +14b +14c .15.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′——→=xAB →+y 2BC →+z 3CC ′——→,则x +y +z =________.答案6解析在平行六面体ABCD -A ′B ′C ′D ′中,AC ′——→=AB →+BC →+CC ′——→,又AC ′——→=xAB →+y 2BC →+z 3CC ′——→,x =1,y 2=1,z 3=1,x =1,y =2,z =3,∴x +y +z =6.16.如图,在空间四边形SABC 中,AC ,BS 为其对角线,O 为△ABC 的重心.(1)求证:OA →+OB →+OC →=0;(2)化简:SA →+12AB →-32CO →-SC →.(1)证明OA →=-13(AB →+AC →),①OB →=-13(BA →+BC →),②OC →=-13(CA →+CB →),③由①+②+③得OA →+OB →+OC →=0.(2)解因为CO →=23×12(CA →+CB →)=13(CA →+CB →),所以SA →+12AB →-32CO →-SC→=(SA →-SC →)+12(CB →-CA →)-32×13(CA →+CB →)=CA →+12(CB →-CA →)-12(CA →+CB →)=0.。
新高二暑假讲义 第1讲 空间向量及其运算(解析版)

第1讲空间向量及其运算新课标要求1.经历由平面向量推广到空间向量的过程,了解空间向量的概念。
2.经历由平面向量的运算及其法则推广到空间向量的过程。
3.掌握空间向量的线性运算。
4.掌握空间向量的数量积。
知识梳理1.空间向量的概念与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模,空间向量用字母a,b,c ...表示.2.几个常见的向量零向量长度为0的向量叫做零向量单位向量模为1的向量叫做单位向量相反向量与向量a 长度相等而方向相反的向量,叫做a 的相反向量,记做-a 共线向量如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量。
我们规定:零向量与任意向量平行.相等向量方向相同且模相等的向量叫做相等向量3.向量的线性运算交换律:+=+a b b a ;结合律:()();()()λμλμ+=+=a b +c a +b c a a ;分配律:();()λμλμλλλ+=++=+a a a a b a b .4.共面向量平行于同一平面的向量,叫做共面向量.5.空间向量的数量积||||cos ,⋅=<>a b a b a b 零向量与任意向量的数量积为0.名师导学知识点1空间向量的有关概念【例1-1】(咸阳期末)已知是空间的一个单位向量,则的相反向量的模为A.1B.2C.3D.4【分析】本题考查了向量的基础知识,根据向量模的概念求解即可;【解答】解:因为是空间的一个单位向量,所以的相反向量的模,故选A.【变式训练1-1】(龙岩期末)在平行六面体中,与向量相等的向量共有A.1个B.2个C.3个D.4个【分析】本题考查了相等向量及其平行六面体的性质,考查了推理能力与计算能力,属于基础题.利用相等向量及其平行六面体的性质即可得出.【解答】解:如图所示,与向量的相等的向量有以下3个:故选C.知识点2空间向量的线性运算【例2-1】(泰安期末)如图所示,在长方体中,O为AC的中点.化简:________;用,,表示,则________.【分析】本题考查空间向量的线性运算,属于基础题.利用化简即可;将分解为,继而进行正交分解即可.【解答】解:..【例2-2】(河西区期末)在三棱锥中,,,,D为BC的中点,则A. B.C. D.【分析】本题考查空间向量的加减运算,属于基础题.若D为BC的中点,则,根据向量的减法法则即可得到答案.【解答】解:依题意得,故选A.【变式训练2-1】(东湖区校级一模)在空间四边形ABCD中,M,G分别是BC,CD的中点,则A. B. C. D.【分析】本题考查了空间向量的加减运算及数乘运算,属于基础题.根据题意,将进行转化,即可得解.【解答】解:.【变式训练2-2】(随州期末)如图,已知长方体,化简下列向量表达式,并在图中标出化简结果的向量.;.【解析】解:..向量,如图所示.知识点3共面向量【例3-1】(珠海期末)已知A,B,C三点不共线,点M满足.,,三个向量是否共面点M是否在平面ABC内【解析】解,,,向量,,共面.由知向量,,共面,又它们有共同的起点M,且A,B,C三点不共线,,A,B,C四点共面,即点M在平面ABC内.【变式训练3-1】(日照期末)如图所示,已知矩形ABCD和矩形ADEF所在的平面互相垂直,点M,N分别在对角线BD,AE上,且,.求证:向量,,共面.【解析】证明:因为M在BD上,且,所以.同理.所以.又与不共线,根据向量共面的充要条件可知,,共面.知识点4空间向量的数量积【例4-1】(溧阳市期末)已知长方体中,,,E为侧面的中心,F为的中点试计算:.【解析】解:如图,设,,,则,,....【变式训练4-1】(兴庆区校级期末)如图所示,在棱长为1的正四面体ABCD中,E,F分别是AB,AD的中点,求:.【解析】解,..,.,,.名师导练A组-[应知应会]1.(台江区校级期末)长方体中,若,,,则等于A. B.C. D.【分析】本题考查空间向量的运算,属基础题.根据空间向量的运算法则求解即可.【解答】解:,故选C.2.(秦皇岛期末)若空间四边形OABC的四个面均为等边三角形,则的值为A. B. C. D.0【分析】本题主要考查了空间向量的运算、向量的数量积、向量垂直的判定,属于中档题.先求出向量的数量积,由它们的数量积为0判断,所以向量的夹角为,由此得出结论.【解答】解:,空间四边形OABC的四个面为等边三角形,,,,,,故选D.3.(定远县期末)给出下列几个命题:向量,,共面,则它们所在的直线共面;零向量的方向是任意的;若,则存在唯一的实数,使.其中真命题的个数为A.0B.1C.2D.3【分析】本题主要考查命题的真假判断与应用,比较基础.利用向量共面的条件判断.利用零向量的性质判断.利用向量共线的定理进行判断.【解答】解:假命题.三个向量共面时,它们所在的直线或者在平面内或者与平面平行;真命题.这是关于零向量的方向的规定;假命题.当,则有无数多个使之成立.故选B .4.(葫芦岛期末)在下列条件中,使M 与A 、B 、C 一定共面的是A.;B.;C.D.【分析】本题考查空间向量基本定理,考查学生分析解决问题的能力,属于基础题.利用空间向量基本定理,进行验证,对于C ,可得,,为共面向量,从而可得M 、A 、B 、C四点共面.【解答】解:对于A ,,无法判断M 、A 、B 、C 四点共面;对于B ,,、A 、B 、C 四点不共面;C 中,由,得,则,,为共面向量,即M 、A 、B 、C 四点共面;对于D ,,,系数和不为1,、A 、B 、C四点不共面.故选C .5.(多选)(点军区校级月考)已知1111ABCD A B C D -为正方体,下列说法中正确的是()A .221111111()3()A A A D AB A B ++= B .1111()0A C AB A A -=C .向量1AD 与向量1A B的夹角是60︒D .正方体1111ABCD A B C D -的体积为1||AB AA AD【分析】本题考查的是用向量的知识和方法研究正方体中的线线位置关系及夹角与体积.用到向量的加法、减法、夹角及向量的数量积,研究了正方体中的线线平行、垂直,异面直线的夹角及正方体的对角线的计算、体积的计算.【解答】解:由向量的加法得到:111111A A A D A B A C ++= , 221113AC A B =,∴22111()3()AC A B = ,所以A 正确;1111A B A A AB -= ,11AB A C ⊥,∴110A C AB =,故B 正确;1ACD ∆ 是等边三角形,160AD C ∴∠=︒,又11//A B D C ,∴异面直线1AD 与1A B 所成的夹角为60︒,但是向量1AD 与向量1A B的夹角是120︒,故C 不正确;1AB AA ⊥ ,∴10AB AA = ,故1||0AB AA AD =,因此D 不正确.故选:AB .6.(都匀市校级期中)空间的任意三个向量,,,它们一定是________向量填“共面”或“不共面”.【分析】正确理解共面向量定理是解题的关键.由于可用向量,线性表示,即可判断出空间中的三个向量,,是否是共面向量.【解答】解:可用向量,线性表示,由空间中共面向量定理可知,空间中的三个向量,,一定是共面向量.7.(池州模拟)给出以下结论:两个空间向量相等,则它们的起点和终点分别相同;若空间向量,,满足,则;在正方体中,必有;若空间向量,,满足,,则.其中不正确的命题的序号为________.【分析】本题考查的知识点是空间相等的定义,难度不大,属于基础题.根据相向相等的定义,逐一分析四个结论的真假,可得答案.【解答】解:若两个空间向量相等,则它们方向相同,长度相等,但起点不一定相同,终点也不一定相同,故错误;若空间向量,,满足,但方向不相同,则,故错误;在正方体中,与方向相同,长度相等,故,故正确;若空间向量,,满足,,则,故正确;故答案为.8.(未央区校级期末)O为空间中任意一点,A,B,C三点不共线,且3148OP OA OB tOC=++,若P,A,B,C四点共面,则实数t=.【分析】利用空间向量基本定理,及向量共面的条件,即可得到结论.【解答】解:由题意得,3148OP OA OB tOC=++,且P,A,B,C四点共面,∴31148t++=18t∴=,故答案为:18.9.(天津期末)在正四面体P ABC-中,棱长为2,且E是棱AB中点,则PE BC的值为.【分析】如图所示,由正四面体的性质可得:PA BC⊥,可得:0PA BC=.由E是棱AB中点,可得1()2PE PA PB=+,代入PE BC,利用数量积运算性质即可得出.【解答】解:如图所示,由正四面体的性质可得:PA BC⊥,可得:0PA BC=.E是棱AB中点,∴1()2PE PA PB=+,∴1111()22cos12012222PE BC PA PB BC PA BC PB BC=+=+=⨯⨯⨯︒=-.故答案为:1-.10.(三明期中)如图所示,在正六棱柱中化简,并在图中标出表示化简结果的向量化简,并在图中标出表示化简结果的向量.【解析】解:.,在图中表示如下:.在图中表示如下:11.(都匀市校级期中)如图所示,在四棱锥中,底面ABCD为平行四边形,,,底面求证:.【解析】证明:由底面ABCD为平行四边形,,,知,则.由底面ABCD ,知,则.又,所以,即.12.(西夏区校级月考)如图所示,平行六面体1111ABCD A B C D -中,E 、F 分别在1B B 和1D D 上,且11||||3BE BB =,12||||3DF DD =(1)求证:A 、E 、1C 、F 四点共面;(2)若1EF xAB y AD z AA =++ ,求x y z ++的值.【分析】(1)利用向量三角形法则、向量共线定理、共面向量基本定理即可得出.(2)利用向量三角形法则、向量共线定理、共面向量基本定理即可得出.【解答】(1)证明: 1111111212()()3333AC AB AD AA AB AD AA AA AB AA AD AA AB BE AD DF AE AF =++=+++=+++=+++=+.A ∴、E 、1C 、F 四点共面.(2)解: 111211()333EF AF AE AD DF AB BE AD DD AB BB AB AD AA =-=+-+=+--=-++ ,1x ∴=-,1y =,13z =,13x y z ∴++=.B 组-[素养提升]1.(多选)(三明期中)定义空间两个向量的一种运算||||sin a b a b a =<⊗ ,b > ,则关于空间向量上述运算的以下结论中恒成立的有()A .a b b a=⊗⊗ B .()()a b a b λλ=⊗⊗ C .()()()a b c a c b c +=+⊗⊗⊗ D .若1(a x = ,1)y ,2(b x = ,2)y ,则1221||a b x y x y =-⊗【分析】A 和B 需要根据定义列出左边和右边的式子,再验证两边是否恒成立;C 由定义验证若a b λ= ,且0λ>,结论成立,从而得到原结论不成立;D 根据数量积求出cos a < ,b > ,再由平方关系求出sin a < ,b > 的值,代入定义进行化简验证即可.【解答】解:对于A ,||||sin a b a b a =<⊗ ,b > ,||||sin b a b a b ==<⊗ ,a > ,故a b b a =⊗⊗ 恒成立;对于:()(||||sin B a b a b a λλ=<⊗ ,)b > ,()||||||sin a b a b a λλλ=<⊗ ,b > ,故()()a b a b λλ=⊗⊗ 不会恒成立;对于C ,若a b λ= ,且0λ>,()(1)||||sin a b c b c b λ+=+<⊗ ,c > ,()()||||sin a c b c b c b λ+=<⊗⊗ ,||||sin c b c b >+< ,(1)||||sin c b c b λ>=+< ,c > ,显然()()()a b c a c b c +=+⊗⊗⊗ 不会恒成立;对于D ,cos a < ,1212||||x x y y b a b +>= ,sin a < ,b >= ,即有||||||a b a b a ==⊗=1221||x y x y ===-.则1221||a b x y x y =-⊗ 恒成立.故选:AD .。
空间向量的线性运算

空间向量的线性运算空间向量是三维空间中的有方向和大小的物理量,它可以通过坐标表示。
在线性代数中,我们可以进行多种线性运算来操作空间向量,包括向量的加法、减法、标量乘法和向量的点积、叉积等。
这些线性运算在解决几何问题、物理问题以及计算机图形学等领域中起着重要的作用。
1. 向量的加法向量的加法是指将两个向量的对应分量相加,得到一个新的向量。
设有向量A(a1, a2, a3)和向量B(b1, b2, b3),则它们的和向量C(c1, c2, c3)可以表示为:C = A + B = (a1+b1, a2+b2, a3+b3)2. 向量的减法向量的减法是指将两个向量的对应分量相减,得到一个新的向量。
设有向量A(a1, a2, a3)和向量B(b1, b2, b3),则它们的差向量C(c1, c2, c3)可以表示为:C = A - B = (a1-b1, a2-b2, a3-b3)3. 标量乘法标量乘法是指将一个向量的每个分量都乘以一个标量。
设有一个向量A(a1, a2, a3)和一个标量k,则标量乘积为:kA = (ka1, ka2, ka3)4. 向量的点积向量的点积也称为数量积或内积,它表示两个向量之间的夹角关系。
设有向量A(a1, a2, a3)和向量B(b1, b2, b3),则它们的点积可以表示为:A ·B = a1b1 + a2b2 + a3b3点积的几何意义在于可以通过点积的值判断两个向量之间的夹角大小以及它们是否垂直或平行。
5. 向量的叉积向量的叉积也称为矢量积或外积,它表示两个向量之间的垂直关系。
设有向量A(a1, a2, a3)和向量B(b1, b2, b3),则它们的叉积可以表示为:A ×B = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)叉积的几何意义在于可以通过叉积的结果得到一个新的向量,该向量垂直于原来的两个向量,并遵循右手螺旋定则确定方向。
空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
高考空间向量知识点

高考空间向量知识点空间向量是高考数学中的重要内容之一。
本文将围绕空间向量的定义、向量的共线性与共面性、向量的线性运算以及向量的数量积等知识点展开详细论述。
一、空间向量的定义空间向量是具有大小和方向的有向线段,可以表示为A→。
空间中的向量通常用坐标表示,比如向量A可以表示为(A₀, A₁, A₂),其中A₀、A₁、A₂分别表示向量A在x、y、z轴上的投影。
二、向量的共线性与共面性1. 共线性空间中的三个向量A→、B→、C→共线的条件是存在实数k₁、k₂,使得A→=k₁B→+k₂C→成立。
此时,向量A、B、C共线。
2. 共面性空间中的四个向量A→、B→、C→、D→共面的条件是存在实数k₁、k₂、k₃,使得A→=k₁B→+k₂C→+k₃D→成立。
此时,向量A、B、C、D共面。
三、向量的线性运算1. 向量的加法设有向量A→(A₀, A₁, A₂)和B→(B₀, B₁, B₂),则A→+B→=(A₀+B₀, A₁+B₁, A₂+B₂)。
2. 向量的减法设有向量A→(A₀, A₁, A₂)和B→(B₀, B₁, B₂),则A→-B→=(A₀-B₀, A₁-B₁, A₂-B₂)。
3. 向量的数乘设有向量A→(A₀, A₁, A₂)和实数k,则kA→=(kA₀, kA₁, kA₂)。
四、向量的数量积1. 定义向量A→(A₀, A₁, A₂)和向量B→(B₀, B₁, B₂)的数量积记为A→·B→=A₀B₀+A₁B₁+A₂B₂。
数量积是一种标量。
2. 性质(1) A→·B→=B→·A→;即数量积的交换律成立。
(2) A→·(B→+C→)=A→·B→+A→·C→;即数量积的分配律成立。
(3) k(A→·B→)=(kA→)·B→=A→·(kB→);即数量积的数乘性质成立。
五、空间向量的应用1. 三角关系的解题空间向量可以用于解决三角关系的几何问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量:
→ (1)AP; → → → 解 AP=AD1+D1P
→ → 1→ =(AA1+AD)+2AB
1 =a+c+2b.
→ (2)A1N;
解 → → → A1N=A1A+AN
→ → 1→ =-AA1+AB+2AD
1 =-a+b+2c.
→ → (3)MP+NC1.
→ → → — → → → → 解 MP+NC1=(MA1+A1D1+D1P)+(NC+CC1)
PART TWO
2
题型探究
题型一 空间向量的概念理解
例1 (1)下列关于空间向量的说法中正确的是
A.空间向量不满足加法结合律
B.若|a|=|b|,则a,b的长度相等而方向相同或相反 → → → → → → C.若向量AB,CD满足|AB|>|CD|,则AB>CD 解析 A中,空间向量满足加法结合律; B中,|a|=|b|只能说明a,b的长度相等而方向不确定; C中,向量作为矢量不能比较大小,故选D.
1 → → 1→ 1 → → =2AA1+AD+2AB+2AD+AA1
3 → 3 → 1→ =2AA1+2AD+2AB
3 1 3 =2a+2b+2c.
引申探究 C1P 1 若把本例中“P 是 C1D1 的中点”改为“P 在线段 C1D1 上,且PD =2”,其他 1 → 条件不变,如何表示AP?
2 → → → → → 2→ 解 AP=AD1+D1P=AA1+AD+3AB=a+c+3b.
— → — → — → — → — → B′B,CC′,C′C,DD′,D′D,共 8 个向量都是单位向量,而其他向量的 模均不为 1,故单位向量共有 8 个.
②试写出模为 5的所有向量.
— → 解 由于长方体的左右两侧面的对角线长均为 5,故模为 5的向量有AD′, — → — → — → — → — → — → — → D′A,A′D,DA′,BC′,C′B,B′C,CB′.
核心素养之逻辑推理
HEXINSUYANGZHILUOJITUILI
对空间向量的有关概念理解不清致误
典例 下列说法中,错误的个数为 ①若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同; → → → → → → → → ②若向量AB,CD满足|AB|=|CD|,AB与CD同向,则AB>CD; → → → → → → ③若两个非零向量AB,CD满足AB+CD=0,则AB,CD互为相反向量; → → ④AB=CD的充要条件是 A 与 C 重合,B 与 D 重合. A.1 B.2 C.3 √ D.4
→ → 对于④A1D与B1C长度相等,方向相同.故互为相反向量的有 2 对.
(2)如图,在长方体ABCD-A′B′C′D′中,AB=3, AD = 2 , AA′ = 1 ,则分别以长方体的顶点为起点和终 点的向量中: ①单位向量共有多少个?
解 — → — → — → 由于长方体的高为 1, 所以长方体的四条高所对应的向量AA′, A′A, BB′,
反思感悟 利用数乘运算进行向量表示的技巧
(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、 平行四边形法则,将目标向量转化为已知向量. (2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.
跟踪训练 3
如图,在空间四边形 OABC 中,M,N 分别是对边 OA,BC 的中
— → — — → — — → — → 故AA′+A′B′+B′C′+C′A=0.
反思感悟 空间向量加法、减法运算的两个技巧
(1)巧用相反向量:向量加减法的三角形法则是解决空间向量加法、减法运 算的关键,灵活应用相反向量可使向量间首尾相接. (2)巧用平移:利用三角形法则和平行四边形法则进行向量的加法运算时, 务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得 更准确的结果.
→ —→ 在正方体 ABCD-A1B1C1D1 中,必有AC=A1C1成立,故②正确;
③显然正确.故选B.
反思感悟
在空间中,向量、向量的模、相等向量的概念和平面中向量的相
关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两 向量互为相反向量的充要条件是大小相等,方向相反.
跟踪训练 1
C.a与b方向相同
B.a+b为实数0
D.|a|=3 √
解析 向量a,b互为相反向量,则a,b模相等、方向相反.故D正确.
1
2
3
4
5
4.已知空间四边形 ABCD,连接 AC,BD,设 M,G 分别是 BC,CD 的中点, → → → 则MG-AB+AD等于 3→ A.2DB
√
→ B.3MG
→ C.3GM
2.空间向量加法交换律
a+b= b+a , 空间向量加法结合律 (a+b)+c=a+(b+c).
知识点三 数乘向量运算
1.实数与向量的积 与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数 乘运算,记作λa,其长度和方向规定如下: (1)|λa|= |λ||a| . (2)当λ>0时,λa与向量a方向相同;当λ<0时,λa与向量a方向 相反 ;当λ=0时, λ a =0 .
素养评析 (1)掌握空间向量的相关概念是正确解答本题的关键. (2)准确把握推理的形式和规则,有利于培养学生的合乎逻辑的思维品质.
PART THREE
3
达标检测
1.下列命题中,假命题是 A.同平面向量一样,任意两个空间向量都不能比较大小 B.两个相等的向量,若起点相同,则终点也相同 C.只有零向量的模等于0 D.空间中任意两个单位向量必相等 √
空间向量的加减运算
如图,已知长方体ABCD-A′B′C′D′,化简下列向量表达式,并在
图中标出化简结果的向量.
— → → (1)AA′-CB;
— → → — → → — → → — → 解 AA′-CB=AA′-DA=AA′+AD=AD′.
— → → — — → (2)AA′+AB+B′C′.
— → → — — → — → → — — → — → — — → — → 解 AA′+AB+B′C′=(AA′+AB)+B′C′=AB′+B′C′=AC′.
D.相等向量其方向必相同 √
(2)给出以下结论: ①两个空间向量相等,则它们的起点和终点分别相同; → —→; ②在正方体ABCD-A1B1C1D1中,必有=AC =A1C1 ③若空间向量m,n,p满足m=n,n=p,则m=p.其中不正确的个数是
A.0
B.1 √
C.2
D.3
解析 两个空间向量相等,它们的起点、终点不一定相同,故①不正确;
— → — → 向量AD′,AC′如图所示.
引申探究 — → — — → — — → — → 利用本例题图,化简AA′+A′B′+B′C′+C′A.
解 结合加法运算
— → — — → — → — → — — → — → — → — → AA′+A′B′=AB′,AB′+B′C′=AC′,AC′+C′A=0.
2.几类特殊的空间向量
名称 零向量 单位向量
定义及表示 起点与终点重合的向量叫做 零向量 ,记为0
模为1 的向量称为单位向量
相反向量
相等向量 共线向量或 平行向量
与向量a长度 相等 而方向相反 的向量,称为a的相反向量, 记为-a 方向 相同 且模 相等 的向量称为相等向量, 同向 且 等长 的有
→ D.2MG
→ → → → → → → → → → → 解析 MG-AB+AD=MG-(AB-AD)=MG-DB=MG+2MG=3MG.
1
2
3
4
5
5.在正方体ABCD-A1B1C1D1中,已知下列各式:
→ → → → — → → → → → ①(AB+BC)+CC1;②(AA1+A1D1)+D1C1;③(AB+BB1)+B1C1;④(AA1+ — → — → → A1B1)+B1C1.其中运算的结果为AC1的有_____ 4 个.
第三章
§3.1 空间向量及其运算
3.1.1 空间向量的线性运算
XUEXIMUBIAO
学习目标
1.了解空间向量、向量的模、零向量、相反向量、相等向量、共线向
量等的概念.
2.会用平行四边形法则、三角形法则作出向量的和与差,了解向量加 法的交换律和结合律. 3.掌握数乘向量运算的意义及运算律.
内容索引
→ → → 点,点 G 在 MN 上,且 MG=2GN,如图所示,记OA=a,OB=b,OC=c, → 试用向量 a,b,c 表示向量OG.
→ → → → 2 → 1→ 2 → → → 解 OG=OM+MG=OM+3MN=2OA+3(MO+OC+CN)
1 2 1 1 =2a+3[-2a+c+2(b-c)] 1 1 1 =6a+3b+3c.
2.空间向量数乘运算满足以下运算律 (1)λ(μa)= (λμ)a ; (2)λ(a+b)= λa+λb .
思考辨析 判断正误
SIKAOBIANXIPANDUANZHENGWU
1.若表示两个相等空间向量的有向线段的起点相同,则终点也相同.( √ )
2.零向量没有方向.( × )
3.两个有公共终点的向量,一定是共线向量.( × ) 4.空间向量的数乘中λ只决定向量的大小,不决定向量的方向.( × )
→ — → — → — → 跟踪训练 2 在如图所示的平行六面体中,求证:AC+AB′+AD′=2AC′.
题型三
数乘向量运算
→ → 例3 如图所示,在平行六面体ABCD-A1B1C1D1中,设 AA1=a,AB=b, → AD=c , M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各
解析 根据空间向量的加法运算以及正方体的性质逐一进行判断: → → → → → → ①(AB+BC)+CC1=AC+CC1=AC1; → — → — → → — → → ②(AA1+A1D1)+D1C1=AD1+D1C1=AC1; → → — → → — → → ③(AB+BB1)+B1C1=AB1+B1C1=AC1; → — → — → → — → → ④(AA1+A1B1)+B1C1=AB1+B1C1=AC1. → 所以 4 个式子的运算结果都是AC1.