中学数学平面几何辅助线万能口诀
中考数学:辅助线助记忆口诀

中考数学:辅助线助记忆口诀
2019年中考数学:辅助线助记忆口诀
人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径
条件须挖掘;
全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;
四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;
两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;
特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;
圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;
切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;
切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;。
初中几何辅助线大全及口诀

初中几何辅助线大全及口诀
初中几何辅助线有很多种,常见的有以下几种:
1. 中位线:连接一个三角形的一个顶点和对面边中点的线段。
2. 垂线:从一个点出发,与一条直线垂直相交的线段。
3. 角平分线:从一个角的顶点开始,把这个角平分成两个角的线段。
4. 高线:从一个三角形的一个顶点开始,与对面边垂直相交的线段。
5. 中心连线:连接一个圆的圆心和任意一点的线段。
6. 对称轴:将一个图形分为两个完全相同的部分的轴线。
常见的几何口诀也有很多,以下是一些常用的:
1. 三角形中位线,二等分线又平分线。
2. 三角形内心到三边距离相等,外心到三点距离相等,垂心到底边距离相等。
3. 圆上弧所对圆心角,平分弧则平分角。
4. 矩形对角线相等,正方形更要如此。
5. 相似三角形边比相等,对应角必全等。
希望这些口诀和辅助线能帮助你更好地理解几何学知识。
初中几何辅助线秘籍:常见辅助线作法口诀

初中几何辅助线秘籍:常见辅助线作法口诀三角形 图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形 平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆 半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆 如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
初中几何辅助线秘籍:常见辅助线作法口诀

初中几何辅助线秘籍:罕见辅助线作法口诀之蔡仲巾千创作三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形罕见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,中线加倍全等现。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
常见基本图形:8字形,平行8字形,平行等8字形,领子,射影,类射影1.平行、平分、等腰,知二推一。
2.中线加倍3.补形4.旋转、平移、轴对称5.遇角分线截长补短或作双垂直,构成一对全等三角形。
6.遇两个等边三角形有公共顶点,用一长一短和长短间的夹角证全等7.遇2倍角常变作等腰三角形顶角的外角8.证线段的1/2时,常变作中位线,直角三角形斜边中线或30°Rt△9.等边三角形面积:10.30°底角等腰三角形,腰是a,底是a,面积是11.图中见120°角,想60°角;见15°角,想30°角;12.梯形常用辅助线:延两腰,作双高,平行于一腰,平行于对角线。
中考数学:辅助线助记歌诀

中考数学:辅助线助记歌诀人说几何专门困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭体会。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形显现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成适应。
等积式子比例换,查找线段专门关键。
直截了当证明有困难,等量代换少苦恼。
斜边上面作高线,比例中项一大片。
半径与弦长运算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的运算,勾股定理最方便。
要想证明是切线,半径垂线认真辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆假如遇到相交圆,不要忘作公共弦。
内外相切的两圆,通过切点公切线。
若是添上连心线,切点确信在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
差不多作图专门关键,平常把握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,显现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;专门角、专门边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
40句几何辅助线顺口溜!

40句几何辅助线顺口溜!人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
▽三角形▽图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
□四边形□平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
☉圆☉半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
【初中数学】几何几何,挤破脑壳:只需牢记4个口诀,学会添加辅助线!

【初中数学】几何几何,挤破脑壳:只需牢记4个口诀,学会添加辅助线!【初中数学】几何几何,挤破脑壳:只需牢记4个口诀,学会添加辅助线!其实初中几何题,首先需要记住定理,然后就是学会添加辅助线。
很多学生都说几何很困难,难点就在辅助线。
那么,辅助线到底如何添?首先需要把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
下面分享4个应对常见几何题型添加辅助线的口诀:第一个:注意点辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
第二个:三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
第三个:四边形平行四边形出现,对称中心等分点。
梯形问题巧转换,变为△和□。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
第四个:圆形半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学数学平面几何辅助线万能
口诀(总2页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
中学数学平面几何辅助线万能口诀图中有角平分线,可向两边作垂线。
角平分线平行线,等腰三角形来添。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线加一倍。
梯形里面作高线,平移一腰试试看。
等积式子比例换,寻找相似很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,射影定理是关键。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
要想作个外接圆,各边作出中垂线。
还要作个内切圆,内角平分线梦园。
如果遇到相交圆,不要忘作公共弦。
若是添上连心线,切点肯定在上面。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
分析综合方法选,困难再多也会减。
2。