求数列的通项公式学案(二)

合集下载

高中数学 第二章 数列习题课教案 新人教B版必修5-新人教B版高二必修5数学教案

高中数学 第二章 数列习题课教案 新人教B版必修5-新人教B版高二必修5数学教案
2分钟
7
板书设 计
数列
学习目标: 例题: 练习:
8
课 后反 思
本节课,重点在于对数列通项公式的理解与应用上,唯一干扰学生思绪的地方在于函数的概念和性质的应用上;所以只有充分的理解了函数,才能真正明确通项公式的意义。
数列
课题
数列
课时
第二课时
课型
习题
教学
重点
1、数列的概念
2、数列通项公式的内容、含义、应用
依据:2018年高考大纲分析;
《优化学案》点播。
教学
难点
1、求数列的通项公式
2、利用通项公式,研究该数列的性质
依据:教材、教参和教辅
自主
学习
目标
一、知识目标:
1.能够用自己是语言描述出数列、数列的项、数列的首项、通项、项数的概念;
1、巡视学生完成情况,让学生更准确的认识计算(化简)的方法。
2、抽查记忆ቤተ መጻሕፍቲ ባይዱ况。
1、独立完成练习册习题。
2、归纳出计算(化简)的方法。

通过具体例题,总结出计算(化简)的方法。
10分钟
思考1:数列通项公式的含义和谁密不可分?
思考2:研究数列的项,本质是在研究什么?
思考3:面对一个数列,最在意的应该是什么?
思考4:如何利用通项看其单调性?
1、巡视学生的完成情况。
2、对学生的展示和评价要给予及时的反馈。
3.要对学生不同的解题过程和答案给出准确的评价,总结。
1、学生先独立完成教辅习题,然后以小组为单位统一答案。
2、小组讨论并展示自己组所写的答案。
3、其他组给予评价(主要是找错,纠错)
在具体问题中,探索、挖掘内在规律、发现数学的本质。

新教材高考数学第一课时等比数列的概念与通项公式练习含解析选修2

新教材高考数学第一课时等比数列的概念与通项公式练习含解析选修2

第一课时等比数列的概念与通项公式课标要求素养要求1.通过生活中的实例,理解等比数列的概念和通项公式的意义.2.体会等比数列与指数函数的关系. 在根据实例抽象出等比数列的概念并归纳出等比数列的通项公式的过程中,发展学生的数学抽象和逻辑推理素养.新知探究我国古代数学名著《孙子算经》中有一个有趣的问题叫“出门望九堤”:“今有出门望九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各有几何?”问题1 你能写出“出门望九堤”问题构成的数列吗?提示构成数列:9,92,93,94,95,96,97,98.问题2 根据数列相邻两项的关系,上述数列有什么特点?提示上述数列中,从第2项起,每一项与前一项的比都是9,这种数列称为等比数列.1.等比数列的定义及通项公式等比数列定义中的关键词:从第2项起,同一个常数(1)等比数列的定义和通项公式(2)通项公式的拓展:a n =a m qn -m(n ,m ∈N *,q ≠0).(3)等比数列的通项公式与指数型函数的关系①当q >0且q ≠1时,等比数列{a n }的第n 项a n 是指数型函数f (x )=a 1q·q x(x ∈R )当x =n 时的函数值,即a n =f (n ).②任给指数型函数f (x )=ka x(k ,a 是常数,k ≠0,a >0且a ≠1),则f (1)=ka ,f (2)=ka 2,…,f (n )=ka n ,…构成一个等比数列{ka n},其首项为ka ,公比为a . 2.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时G 2=ab .拓展深化[微判断]1.等比数列的公比可以为任意实数.(×) 提示 公比不可以为0.2.若一个数列从第2项开始每一项与前一项的比是常数,则这个数列是等比数列.(×) 提示 应为同一个常数.3.常数列既是等差数列又是等比数列.(×) 提示 0数列除外. [微训练]1.等比数列{a n }中,a 1=3,公比q =2,则a 5=( ) A.32 B.-48 C.48D.96解析 a 5=a 1q 4=3×24=48. 答案 C2. 等比数列x ,3x +3,6x +6,…的第4项等于( ) A.-24 B.0 C.12D.24解析 由x ,3x +3,6x +6成等比数列得, (3x +3)2=x (6x +6),解得x 1=-3或x 2=-1(不合题意,舍去),第2项为-6. 第3项为-12,公比为-12-6=2,故数列的第4项为-24. 答案 A3.4与16的等比中项是________. 解析 由G 2=4×16=64得G =±8. 答案 ±8 [微思考]1.等比中项与等差中项有什么区别?提示 (1)任意两数都存在等差中项,但不是任意两数都存在等比中项,当且仅当两数同号且均不为0时,才存在等比中项.(2)任意两数的等差中项是唯一的,而如果两数有等比中项,则这两数的等比中项有两个,且互为相反数.2.设等比数列{a n }的首项为a 1,公比为q ,当a 1与q 分别满足什么条件时,{a n }是递增数列,{a n }是递减数列?提示 (1)⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1⇔{a n }为递增数列, (2)⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1⇔{a n }为递减数列.题型一 等比数列通项公式的应用 【例1】 在等比数列{a n }中:(1)已知a 3+a 6=36,a 4+a 7=18,a n =12,求n ;(2)已知a 5=8,a 7=2,a n >0,求a n . 解 设等比数列{a n }的公比为q . (1)由⎩⎪⎨⎪⎧a 4+a 7=q (a 3+a 6)=18,a 3+a 6=36,得q =12.再由a 3+a 6=a 3·(1+q 3)=36得a 3=32,则a n =a 3·q n -3=32×⎝ ⎛⎭⎪⎫12n -3=⎝ ⎛⎭⎪⎫12n -8=12,所以n -8=1,所以n =9. (2)由a 7=a 5·q 2得q 2=14.因为a n >0,所以q =12,所以a n =a 5·q n -5=8×⎝ ⎛⎭⎪⎫12n -5=⎝ ⎛⎭⎪⎫12n -8.规律方法 等比数列的通项公式及变形的应用1.在已知等比数列的首项和公比的前提下,利用通项公式a n =a 1q n -1(a 1q ≠0)可求出等比数列中的任意一项.2.在已知等比数列中任意两项的前提下,利用a n =a m q n -m(q ≠0)也可求出等比数列中的任意一项.【训练1】 (1)在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为( ) A.2 B.12 C.2或12D.-2或12(2)已知等比数列{a n }中,a 3=2,a 4a 6=16,则a 9-a 10a 5-a 6=( ) A.16 B.8 C.4D.2解析 (1)设等比数列{a n }的公比为q (q ≠0),∵a 1+a 4=18,a 2+a 3=12,∴a 1(1+q 3)=18,a 1(q +q 2)=12,q ≠-1,化为2q 2-5q +2=0,解得q =2或12.故选C.(2)等比数列{a n }中,设其公比为q (q ≠0),a 3=2,a 4a 6=16,∴⎩⎪⎨⎪⎧a 1q 2=2,a 21q 8=16,解得⎩⎪⎨⎪⎧q 2=2,a 1=1.∴a 9-a 10a 5-a 6=a 1q 8-a 1q 9a 1q 4-a 1q 5=q 4=4,故选C. 答案 (1)C (2)C 题型二 等比中项及其应用【例2】 已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项. 解 设该等比数列的公比为q ,首项为a 1,∵⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168,a 1q -a 1q 4=42, ∴⎩⎪⎨⎪⎧a 1(1+q +q 2)=168,a 1q (1-q 3)=42. ∵1-q 3=(1-q )(1+q +q 2),上述两式相除,得q (1-q )=14,∴q =12.∴a 1=42q -q 4=4212-⎝ ⎛⎭⎪⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5·a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝ ⎛⎭⎪⎫1210=9.∴a 5,a 7的等比中项是±3.规律方法 (1)首项a 1和公比q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法.(2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项.【训练2】 (1)三个数成等比数列,它们的和等于14,它们的积等于64,则这三个数是________.(2)在等差数列{a n }中,a 3=0.如果a k 是a 6与a k +6的等比中项,那么k =________.解析 (1)设这三个数所成等比数列中的项依次为aq ,a ,aq (aq ≠0),则a q+a +aq =14,a q ·a ·aq =64,即a ⎝ ⎛⎭⎪⎫1+q +1q =14,a 3=64,解得a =4,q =12或2.故这三个数所成的等比数列为8,4,2或2,4,8.(2)设等差数列{a n }的公差为d ,由题意得a 3=a 1+2d =0,∴a 1=-2d .又∵a k 是a 6与a k +6的等比中项,∴a 2k =a 6a k +6,即[a 1+(k -1)d ]2=(a 1+5d )·[a 1+(k +5)d ],[(k -3)d ]2=3d ·(k +3)d ,解得k =9或k =0(舍去). 答案 (1)2,4,8或8,4,2 (2)9 题型三 等比数列的判定【例3】 已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *).(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.(1)解 由S 1=13(a 1-1),得a 1=13(a 1-1),∴a 1=-12.又S 2=13(a 2-1),即a 1+a 2=13(a 2-1),得a 2=14.(2)证明 当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12, 所以{a n }是首项为-12,公比为-12的等比数列.【迁移1】 已知数列{a n }满足a 1=1,a n +1=2a n +1,b n =a n +1(n ∈N *). (1)求证:{b n }是等比数列; (2)求{a n }的通项公式.(1)证明 ∵a n +1=2a n +1,b n =a n +1,∴b n +1=a n +1+1=2a n +2=2(a n +1)=2b n ,又∵b 1=a 1+1=2,∴数列{b n }是以2为首项,2为公比的等比数列. (2)解 由(1)知,a n +1=2×2n -1,∴a n =2n-1.【迁移2】 已知数列{a n }中,a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1,求a n .解 令a n +1-A ·⎝ ⎛⎭⎪⎫12n +1=13⎣⎢⎡⎦⎥⎤a n -A ·⎝ ⎛⎭⎪⎫12n ,则a n +1=13a n +A 3·⎝ ⎛⎭⎪⎫12n +1.由已知条件知A3=1,得A =3,所以a n +1-3×⎝ ⎛⎭⎪⎫12n +1=13⎣⎢⎡⎦⎥⎤a n -3×⎝ ⎛⎭⎪⎫12n .又a 1-3×⎝ ⎛⎭⎪⎫121=-23≠0, 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -3×⎝ ⎛⎭⎪⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝ ⎛⎭⎪⎫12n =-23×⎝ ⎛⎭⎪⎫13n -1,故a n =3×⎝ ⎛⎭⎪⎫12n -2×⎝ ⎛⎭⎪⎫13n.规律方法 判断..一个数列是否是等比数列的常用方法 (1)定义法:若数列{a n }满足a n +1a n =q (n ∈N *,q 为常数且不为零)或a n a n -1=q (n ≥2,n ∈N *,q 为常数且不为零),则数列{a n }是等比数列. (2)通项公式法:若数列{a n }的通项公式为a n =a 1qn -1(a 1≠0,q ≠0),则数列{a n }是等比数列.(3)等比中项法:若a 2n +1=a n a n +2(n ∈N *且a n ≠0),则数列{a n }为等比数列.(4)构造法:在条件中出现a n +1=ka n +b ,kb (k -1)≠0关系时,往往构造数列,方法是把a n+1+x =k (a n +x )与a n +1=ka n +b 对照,求出x 即可.注:第(1)、(3)也可作为等比数列的证明方法.【训练3】 已知数列{a n }满足a 1=-2,a n +1=2a n +4.证明:数列{a n +4}是等比数列. 证明 ∵a 1=-2,∴a 1+4=2.∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列.一、素养落地1.通过学习等比数列的概念及判断方法提升数学抽象及逻辑推理素养,通过运用等比数列的通项公式求项或公比、项数,提升数学运算素养.2.等比数列的证明 (1)利用定义:a n +1a n=q (与n 无关的常数). (2)利用等比中项:a 2n +1=a n a n +2(n ∈N *).3.两个同号的实数a ,b 才有等比中项,而且它们的等比中项有两个(±ab ),而不是一个(ab ),这是容易忽视的地方.4.等比数列的通项公式a n =a 1q n -1共涉及a 1,q ,n ,a n 四个量,已知其中三个量可求得第四个量.二、素养训练1.(多选题)下列说法正确的有( ) A.等比数列中的项不能为0 B.等比数列的公比的取值范围是R C.若一个常数列是等比数列,则公比为1 D.22,42,62,82,…成等比数列解析 A 显然正确;等比数列的公比不能为0,故B 错;C 显然正确;由于4222≠6242,故不是等比数列,D 错. 答案 AC2.在等比数列{a n }中,a 1=8,a 4=64,则a 3等于( ) A.16 B.16或-16 C.32D.32或-32解析 由a 4=a 1q 3,得q 3=8,即q =2,所以a 3=a 4q=32. 答案 C3.已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( ) A.6 B.-6 C.±6D.±12解析 ∵a =1+22=32,b 2=(-1)(-16)=16,b =±4,∴ab =±6. 答案 C4.45和80的等比中项为________. 解析 设45和80的等比中项为G ,则G 2=45×80,∴G =±60.答案 -60或605.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列. 证明 由a n +1=2a n -5得a n +1-5=2(a n -5).又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.基础达标一、选择题1.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( ) A.16 B.27 C.36D.81解析 由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9. ∴q =3(q =-3舍去),∴a 4+a 5=(a 3+a 4)q =27. 答案 B2.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为( ) A.4 B.8 C.6D.32解析 设a 1=4,a n =128,q =2,则a n =a 1q n -1,即128=4×2n -1=2n +1,故n +1=7,得n =6. 答案 C3.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0(a n ≠0),则2a 1+a 22a 3+a 4=( )A.1B.12C.13D.14解析 由a n +1-2a n =0知a n +1=2a n ,故{a n }是等比数列,且q =2,则2a 1+a 22a 3+a 4=a 1(2+q )a 1q 2(2+q )=1q 2=14. 答案 D4.等比数列{a n }的公比|q |>1,{a n }中有连续四项在集合{-54,-24,-18,36,81}中,则q 等于( ) A.-12B.12C.-32D.32解析 ∵{a n }中的项必然有正有负, ∴q <0.又|q |>1,∴{|a n |}递增或递减.由此可得{a n }的连续四项为-24,36,-54,81. ∴q =-32.答案 C5.在公差不为0的等差数列{a n }中,a 1=1,且a 3,a 7,a 16成等比数列,则公差为( ) A.34 B.-15C.56D.1 解析 设等差数列{a n }的公差为d (d ≠0),由a 1=1,a 3,a 7,a 16成等比数列,得a 27=a 3·a 16,即(1+6d )2=(1+2d )·(1+15d ),整理得6d 2-5d =0,解得d =56或d =0(舍去),即数列{a n }的公差d =56,故选C.答案 C 二、填空题6.等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为________.解析 a 4=a 1q 3=18×23=1,a 8=a 1q 7=18×27=16,∴a 4与a 8的等比中项为±16=±4. 答案 ±47.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为________. 解析 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12.∴这4个数依次为80,40,20,10. 答案 80,40,20,108.在正项等比数列{a n }中,若3a 1,12a 3,2a 2成等差数列,则a 2 021-a 2 020a 2 023-a 2 022=________.解析 设正项等比数列{a n }的公比q >0, ∵3a 1,12a 3,2a 2成等差数列,∴2×12a 3=3a 1+2a 2,即a 1q 2=3a 1+2a 1q ,∴q 2-2q -3=0,q >0,解得q =3. 则原式=a 2 021-a 2 020q 2(a 2 021-a 2 020)=1q 2=19.答案 19三、解答题9.在等比数列{a n }中.(1)已知a n =128,a 1=4,q =2,求n ; (2)已知a n =625,n =4,q =5,求a 1; (3)已知a 1=2,a 3=8,求公比q 和通项公式. 解 (1)∵a n =a 1·q n -1, ∴4×2n -1=128,∴2n -1=32,∴n -1=5,n =6. (2)∵a n =a 1·qn -1,∴a 1=a n q n -1=62554-1=5,故a 1=5. (3)∵a 3=a 1·q 2,即8=2q 2, ∴q 2=4,∴q =±2. 当q =2时,a n =a 1qn -1=2×2n -1=2n,当q =-2时, a n =a 1q n -1=2(-2)n -1=(-1)n -12n,∴数列{a n }的公比为2或-2,对应的通项公式分别为a n =2n 或a n =(-1)n -12n .10.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n =1,2,3,…).证明:数列⎩⎨⎧⎭⎬⎫S n n 是等比数列.证明 由a 1=1,a n +1=n +2n S n ,得a n >0,S n >0. 由a n +1=n +2nS n ,a n +1=S n +1-S n , 得(n +2)S n =n (S n +1-S n ),整理,得nS n +1=2(n +1)S n ,所以S n +1n +1=2·S n n ,则S n +1n +1S n n=2. 因为S 11=a 11=1,所以数列⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列. 能力提升11.如图给出了一个“三角形数阵”,已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为a ij (i ,j ∈N *),则a 53的值为( )1412,1434,38,316…A.116B.18C.516D.54 解析 第一列构成首项为14,公差为14的等差数列,所以a 51=14+(5-1)×14=54.又因为从第三行起每一行数成等比数列,而且每一行的公比都相等,所以第5行构成首项为54,公比为12的等比数列,所以a 53=54×⎝ ⎛⎭⎪⎫122=516. 答案 C12.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两实根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式.(1)解 根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=a n +1a n ,αβ=1a n.代入题设条件6(α+β)-2αβ=3,得6a n +1a n -2a n =3.所以a n +1=12a n +13.(2)证明 因为a n +1=12a n +13,所以a n +1-23=12⎝ ⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0,可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0,所以a n ≠23,即a n -23≠0.所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列.(3)解 当a 1=76时, a 1-23=12,所以数列⎩⎨⎧⎭⎬⎫a n -23是首项为12,公比为12的等比数列.所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n,所以a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,…,即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,….创新猜想13.(多选题)已知三角形的三边构成等比数列,它们的公比为q ,则q 可能的一个值是( ) A.52B.32C.34D.12解析 由题意可设三角形的三边分别为a q ,a ,aq (aq ≠0).因为三角形的两边之和大于第三边,所以①当q >1时,a q +a >aq ,即q 2-q -1<0,解得1<q <1+52;②当0<q <1时,a +aq >a q ,即q 2+q -1>0,解得-1+52<q <1. 综上,q 的取值范围是⎝⎛⎭⎪⎫-1+52,1∪⎝ ⎛⎭⎪⎫1,1+52,则可能的值是32与34. 答案 BC14.(多空题)若等差数列{a n }满足a 1+a 2=10,a 4-a 3=2,则a n =________;若{b n }是等比数列,且b 2=a 3,b 3=a 7,b 6=a k ,则k =________.解析 由a 4-a 3=2知等差数列{a n }的公差d =2,又a 1+a 2=2a 1+d =10,故a 1=4,则a n =2n +2,所以b 2=8,b 3=16,得等比数列{b n }的公比q =2,b 1=4.又b 6=a k ,故2k +2=4×26-1,解得k =63.答案 2n +2 63。

数列的通项公式及前n项和的求法(自己整理的学案)

数列的通项公式及前n项和的求法(自己整理的学案)

数列:通项公式的求法一 、公式法(定义法):适用于等差或等比数列等差数列的通项公式: 1(1)n a a n d =+-;等比数列的通项公式: 11n n a a q -= 等差数列的定义: 1n n a a d --=;变式:112n n n a a a +-=+,1n n a a d -=+; 等比数列的定义:1n n a q a -=;变式:211n n n a a a +-=,1n n a qa -=; 二 、利用n S 求n a (知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n ; 利用n S 求n a 一般为三步:(1)当n=1时利用S 1=a 1求出a 1 (2)当2n ≥时,利用1n n n S S a --=求出n a ; (3)检验a 1的值合不合由第二步求出的n a 的表达式; 例一:数列{a n }中,S n 是其前n 项和,若S n =2a n -1, ((1)求1a 的值(2)求数列的通项公式a n解:(1)当n=1时,有S 1=2a 1-1即a 1=2a 1-1求得a 1=1;(2)当2n ≥时,S n =2a n -1① S n-1=2a n-1-1②; ①—②有a n =2a n —2a n-1 得1122n n n n a a a a --=⇒=,所以{a n }为一以2为公比1为首项的等比数列,所以11122n n n a --=⨯= (3)经检验,11a =也合12n n a -=,所以数列{a n }的通项公式为12n n a -=。

练习1、数列{a n }的各项为正数, 11a =且有2211230n n n n a a a a ++--=,则{a n }的通项公式是__________.2、已知数列{a n }的前n 项和为S n ,且S n =3n +n ,则数列的通项公式a n =________.3、各项都为正数的数列{a n }中,有11a =且331log 3log n n a a --=,则通项公式a n =________.4、数列{a n }中,11a =,且当1n >时有13n n a a -=,求数列的通项公式a n ________.5、数列{a n }中,11a =且点1(,)n n a a +在直线2y x =-上,通{a n }的通项公式为________.6、数列{a n }中,S n 是其前n 项和,若2S n =3a n —3,(1)求1a 的值(2)求数列的通项公式a n三、形如sra pa a n n n +=--11型(取倒数法)例3. 已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a解:取倒数:⇔+=-2111n n a a 2111=--n n a a 1113(1)222n n n a a ∴=+-⋅=- 2.43n a n ∴=- 练习1。

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。

2020版新高考复习理科数学教学案:数列含答案 (2)

2020版新高考复习理科数学教学案:数列含答案 (2)
答案:C
6.[20xx·惠州调研]已知各项均为正数的等比数列{an}中.a1=1,2a3.a5,3a4成等差数列.则数列{an}的前n项和Sn=( )
A.2n-1B.2n-1-1
C.2n-1D.2n
解析:通解:设{an}的公比为q(q>0).由题意知2a5=2a3+3a4.∴2a3q2=2a3+3a3q.∴2q2=2+3q.∴q=2或q=- (舍去).所以an=2n-1.
■备考工具——————————————
1.求数列的前n项和的方法
(1)公式法
①等差数列的前n项和公式
Sn= =na1+ .
②等比数列的前n项和公式
a.当q=1时.Sn=na1;
b.当q≠1时.Sn= = .
(2)分组求和:把一个数列分成几个可以直接求和的数列.
(3)裂项相消:把一个数列的通项分成两项差的形式.相加过程中消去中间项.只剩有限项再求和.
通项公式的推广
an=a1qn-1
(揭示首末两项的关系)
an=amqn-m
(揭示任意两项之间的关系)
(2)前n项和公式
Sn= 或Sn=
7.等比数列的性质
若{an}为等比数列.则
(1){a }. .{c·an}(c≠0)都是等比数列.
(2)各项及公比都不为0.
8.等比数列项的运算性质
若m+n=p+q(m.n.p.q∈N*).则am·an=ap·aq.
令n=101.则S101+a101=2×101-6+ .所以S101+(S101-S100)=196+ .得2S101-S100=196+ ②.
将①代入②得S100=2× -196- =396+ -196- =200.选B.
答Байду номын сангаас:B

第2课时 数列的通项公式与递推公式

第2课时 数列的通项公式与递推公式

1)可得
n
an+1-an=ln(1+ n1),利用累加法求通项.
【解析】因为a1=2,an+1=an+lnn1(1+ ), 所以a2=a1+ln(1+1)=2+ln2, a3=a2+ln(1+12 )=2+ln2+32ln =2+ln3, a4=a3+ln(1+13 )=2+ln3+43ln =2+ln4. 可猜想an=2+lnn(n∈N*).
圆学子梦想 铸金字品牌
4.数列{an}满足
an+1=
1
1 an
,a8=2,则
a1=
1 2
.
【解析】由
an+1=
1
1 an
,可得
an=1-
1 an +1
,又
a8=2, 故
a7= 1 ,……依次下去得 a1= 1 .
2
2
5.根据下面数列的前几项的值,写出数列的一个通项公式:
(1)3,5,7,9,11,….
=
1+
3 5
=
8 5
【即时练习】
在数列{an}中,已知a1=2,a2=3,an+2=3an+1-2an(n≥1) 写出此数列的前六项.
【解题关键】通过观察,此题的递推公式是数列中相
邻三项的关系式,知道前两项就可以求出后一项.
【解析】a1=2,a2=3, a3=3a2-2a1=3×3-2×2=5, a4=3a3-2a2=3×5-2×3=9, a5=3a4-2a3=3×9-2×5=17, a6=3a5-2a4=3×17-2×9=33.

专题05 构造法求数列通项的八种技巧(二)(解析版)

专题05 构造法求数列通项的八种技巧(二)(解析版)

专题05构造法求数列通项的八种技巧(二)【必备知识点】◆构造四:同型构造法所谓同型构造法,就是将找因式中的因子和数列项数相同或者相近的部分通过同除或同乘化归成结构相同的形式,形成新的数列,如常数列,等差数列或等比数列.下面让我们来看看有哪些模型结构吧.模型一:111(1)1n n n n n n a a n a n a n +++−=−−−−→⋅+=⋅+左右同乘,构造n n b n a =⋅,则1n n b b +=,{}n b 为常数数列.模型二:11111n n n n n a a n a a n n n +++−−−−−⋅→+==+左右同除,构造n n a b n=,则1n n b b +=,{}n b 为常数数列.模型三:()()21112(1)(2)(1)n n n n n n a a n a a n n n n n ++++−−−−+=⋅=+−→++−左右同除,构造(1)n n a b n n =+,则1n n b b +=,{}n b 为常数数列.模型四:()111(1)221n n n n n n n a a na n a n +++−−−−−→=+=+左右同除,构造n n ab n=,则12n n b b +=,{}n b 为等比数列.模型五:11111222212n n n n n n n n n n n n n a S S S S S n n S S S nn n ++++++++=⋅=⋅=⇒-⇒−−−−−→+⋅=左右同除,构造nn S b n=,则12n n b b +=,{}n b 为等比数列.模型六:1111111n n n n n a a n a a n n n n ++++=⋅=+++−−−+−−→左右同除,构造n n a b n=,则11n n b b +=+,{}n b 为等差数列.模型七:12111122122n n n n n n n n a a a a +++++−=+=−−−→+−左右同除,构造2n nna b =,则11n n b b +=+,{}n b 为等差数列.模型八:1111111n n a an n n n n n a a a a a a ++++-−−=-=−−−→左右同除,构造1n nb a=,则11n n b b +-=,{}n b 为等差数列.看了这么多模型,是不是觉得很多,很难记住呢,其实向大家展示这么多,只是想向大家展示,当看到这类式子,尽量将1n +和1n a +,n 和n a 等因子和数列项数相同的部分划归成结构相同的形式,构造成新数列.【经典例题1】已知数列{}n a 满足112,31n n na a a n +==⋅+,求n a .【解析】因为11n n na a n +=+,所以1(1).n n n a na ++=令n n b na =,则1n n b b +=,即{}n b 是常数数列,所以1n b b =,即221,33n n n na a a n=⨯==.【经典例题2】已知数列{}n a 中,12n n na a n +=+且12a =,求数列{}n a 的通项公式.【解析】因为12n n na a n +=+,所以11(2),(1)(2)(1).n n n n n a na n n a n n a +++=++=+令(1)n n b n n a =+,则1n n b b +=,即{}n b 是常数数列,所以1.n b b =因此(1)1n n n a +=⨯422,(1)n a n n ⨯=+【经典例题3】已知数列{}n a 中,12(1(1))n n na n a n n +++=+且11a =,求数列{}n a 的通项公式.【解析】12(1(1))n n na n a n n +++=+,等式两侧同除(1)n n +,形成1121n n a a n n +=++,令n n ab n=,则121n n b b +=+,这又回到了构造一的形式,所以12(1)1n n b b +=++,{}1n b +是以2为首项,2为公比的等差数列,即12212n n n b -⨯+==,21n n b =-,所以21n na n=-,(21)n n a n =-.【经典例题4】已知11a =,且1(2)n n na n n a +=++,求数列{}n a 的通项公式.【解析】等式两侧同除(1)(2)n n n ++,得1(1)(2)(1)(1)(2)1n n a a n n n n n n +=++++++,即1(1)(2)(1)(1)(2)1n n a a n n n n n n +-=+++++,1(1)(2)(1)(111)(2)n n a a n n n n n n +=-++++-+,另(1)n n a b n n =+,所以1(12)1)(1n n b b n n +--=++,接下来就是叠加法发挥作用的时候了212311b b -=-323411b b -=-434511b b -=-111(1)n n b b n n ---=+叠加得1112(1)n b b n --=+,11122a b ==,所以1(1)11n b n n n =+=+-,即(1)1n a n n n n =++,2n a n =.【练习1】已知数列{}n a 满足1111,3n n n n a a a a a ++=-=,则10()a =A.28 B.128C.28- D.128-【答案】B 【解析】数列{}n a 满足11a =,113n n n n a a a a ++-=,则:1113n na a +-=(常数)则:数列1n a ⎧⎫⎨⎬⎩⎭是以111a =为首项,3为公差的等差数列。

数列的通项公式与递推公式 第2课时

数列的通项公式与递推公式 第2课时

×…×aa32
×aa21
n-1 ×a1= n
n-2 ×n-1
n-3 ×n-2
2 ×…×3
1 ×2
×1=n1
.
又因为 n=1 时,a1=1,符合上式,所以 an=1n (n∈N*).
由递推公式求通项公式的方法 1.累差法:形如 an+1-an=f(n)的递推公式,可以利用 a1+(a2-a1)+(a3-a2)+…+(an -an-1)=an(n≥2,n∈N*)求通项公式;
所以a1n =a11 +a12-a11 +a13-a12 +…+a1n-an1-1
=2+
111
n 1个1
=n+1.所以a1n =n+1(n≥2),
又 a1=12 也适合上式,所以 an=n+1 1 .
角度 2 累乘法
【典例】设数列{an}中,a1=1,an=1-n1 an-1(n≥2),求通项公式 an.
n,0
an
1, 2
n-1,12 an 1,
若 a1=67 ,则 a2 021=________.
【解析】计算得 a2=2a1-1=57 ,a3=2a2-1=37 ,a4=2a3=76 .
故数列{an}是以 3 为周期的周期数列, 又因为 2 021=673×3+2,所以 a2 021=a2=57 .
2.符合递推关系式 an= 2 an-1(n≥2)的数列是( )
A.1,2,3,4,…
B.1, 2 ,2,2 2 ,…
C. 2 ,2, 2 ,2,…
D.0, 2 ,2,2 2 ,…
【解析】选 B.B 中从第二项起,后一项是前一项的 2 倍,符合递推公式 an=
2 an-1.
3.数列{an}中,an+1=an+2-an,a1=2,a2=5,则 a5=( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档