高三数学集合单元练习题
高三数学集合的运算试题

高三数学集合的运算试题1.已知集合,,若,则()A.B.C.或D.或【答案】C【解析】∵,,若,则或,则,又当时,集合出现重复元素,因此或.故选C.【考点】集合中子集的概念与集合中元素的互异性.M)=()2. [2014·惠州模拟]已知R是实数集,M=,N={y|y=},则N∩(∁RA.(1,2)B.[0,2]C.∅D.[1,2]【答案】BM=[0,2],N={y|y=}=[0,+∞),故【解析】因为M=={x|x>2或x<0},∁RN∩(∁M)=[0,2],选B.R3.设集合,,为虚数单位,R,则为()A.(0,1)B.,C.,D.,【答案】C【解析】确定出集合的元素是关键。
本题综合了三角函数、复数的模,不等式等知识点。
,所以;因为,所以,即,又因为R,所以,即;所以,故选C.4.已知,,则的元素个数为()A.1B.2C.3D.4【答案】C【解析】因为,所以,,则,故,即元素个数有3个.【考点】分式不等式的解法;集合的运算.5.表示实数集,集合,,则下列结论正确的是()A.B.C.D.【答案】B【解析】由题意,或,,则,所以,故选B.【考点】1.补集的运算;2.集合之间的关系.6.已知集合,,则( )A.B.C.D.【答案】C【解析】因为所以因为所以因此【考点】集合的运算7.已知全集,集合,,则( )A.B.C.D.【答案】A【解析】因为所以,选.【考点】集合的运算,一元二次不等式解法,对数函数的性质.8.设集合A={x|x=5-4a+a2,a∈R},B={y|y=4b2+4b+2,b∈R},则A、B的关系是________.【答案】A=B【解析】化简得A={x|x≥1},B={y|y≥1},所以A=B.9.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4B.3C.2D.1【答案】C【解析】法一由题得∴或A∩B={(1,0),(0,1)}.故选C.法二显然圆x2+y2=1上两点(1,0),(0,1)在直线x+y=1上,即直线与圆相交.故选C.10.已知集合,,则()A.B.C.D.【答案】C【解析】因为,所以,即,所以。
高三数学集合的运算试题

高三数学集合的运算试题1. 设全集U =R ,集合A =(-∞,-1)∪(1,+∞),B =[-1,+∞),则下列关系正确的是( ) A .B ⊆A B .A ⊆∁U BC .(∁U A)∪B =BD .A∩B =∅ 【答案】C【解析】借助数轴逐一判断.画出数轴易知A ,B 错误;因为∁U A ⊆B ,所以(∁U A)∪B =B ,故C 正确;又A∩B =(1,+∞),所以D 错误,故选C.2. 已知集合A={},B={},则=( ) A .{1,2,3} B .{0,1,2,3} C .{0,1,2,3,4} D .{1,2,3,4}【答案】 【解析】因为, 所以,.故选 【考点】绝对值不等式的解法,集合的运算3. 已知集合, ,则( ) A .B .C .D .【答案】B 【解析】,即。
,即,所以。
故B 正确。
【考点】1一元二次不等式;2集合的运算。
4. 已知全集,集合,则= .【答案】 【解析】,所以.【考点】集合的运算.5. 已知集合,,则A .B .C .D .【答案】B【解析】集合A 中的元素-1和0是集合B 中的元素,所以选B.6. 设全集为R,函数f(x)=的定义域为M,则为A .B .(0,1)C .(-∞,0)∪[1,+∞)D .(1,+∞)【答案】A【解析】(x-1)x≥0x≥1或x<0f(x)的定义域为M=(-∞,0)∪[1,+∞),故CRM=7.若全集,且,则集合的真子集共有()A.3个B.4个C.7个D.8个【答案】C【解析】由题意,,,则,所以集合A的真子集共有个,故选C.【考点】1.补集的运算;2.集合真子集个数的确定.8.定义集合运算:A·B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A·B的所有元素之和为________.【解析】依题意知α≠kπ+,k∈Z.①α=kπ+(k∈Z)时,B=,A·B=;②α=2kπ或α=2kπ+(k∈Z)时,B={0,1},A·B={0,1,-1};③α=2kπ+π或α=2kπ-(k∈Z)时,B={0,-1},A·B={0,1,-1};④α≠且α≠kπ+(k∈Z)时,B={sinα,cosα},A·B={0,sinα,cosα,-sinα,-cosα}.综上可知A·B中的所有元素之和为0.9.设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数为________.【答案】8【解析】(1) ∵ P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q={1,2,6},∴当a=0时,a +b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11,∴ P+Q={1,2,3,4,6,7,8,11},∴ P+Q中有8个元素.10.设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁RS)∪T等于().A.(-2,1]B.(-∞,-4]C.(-∞,1]D.[1,+∞)【答案】C【解析】T={x|x2+3x-4≤0}={x|-4≤x≤1}.S={x|x>-2},∁R S={x|x≤-2},∴(∁RS)∪T={x|x≤1}=(-∞,1].11.已知全集,,则()A.B.C.D.【答案】B【解析】,选D.【考点】集合基本运算.12.已知集合,,那么()A.B.C.D.【答案】D【解析】,所以,画数轴分析可知,。
高三数学集合练习题

高三数学集合练习题1. 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},求:a) A∪Bb) A∩Bc) A-Bd) B-A2. 已知集合A={x | x是三位数},集合B={y | y是偶数},求:a) A∩Bb) A-Bc) A∪B3. 集合A={x | x是正整数,且x ≤ 10},集合B={y | y是奇数},求:a) A∩Bb) A-Bc) A∪B4. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={x | x是正整数,且x < 6},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B5. 设全集为U={-3,-2,-1,0,1,2,3,4,5},集合A={x | x是整数,-2 ≤ x ≤ 2},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B6. 设全集为U={a,b,c,d,e,f,g,h},集合A={a,b,c},集合B={c,d,e},集合C={b,c,f,g},求:a) (A∩B)∪Cb) (A-B)∩C7. 设全集为U={1,2,3,4,5,6,7,8},集合A={x | x是偶数},集合B={x | x是奇数},集合C={x | x能被3整除},求:a) A∩Bb) A∪Bc) (A∪B)-C8. 设全集为U={a,b,c,d,e,f,g,h,i,j,k,l,m,n},集合A={a,b,c,d,e},集合B={d,e,f,g,h},集合C={a,d,g,j,m},求:a) (A∩B)∪Cb) (A-B)∩Cc) (A∩B)-C9. 设全集为U={x | x是大写英文字母},集合A={x | x是元音字母},集合B={x | x是辅音字母},求:a) A∩Bb) A∪Bc) (A∪B)-U10. 设全集为U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},求:a) (A-B)∩(B-A)以上是高三数学集合练习题的内容,请按照题目要求计算并得出答案。
高三数学集合试题

高三数学集合试题1.设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R},若A∩B=∅,则实数a的取值范围是()A.{a|0≤a≤6}B.{a|a≤2,或a≥4}C.{a|a≤0,或a≥6}D.{a|2≤a≤4}【答案】C【解析】A={x||x-a|<1,x∈R}={x|a-1<x<1+a},因为A∩B=∅,所以有a-1≥5或1+a≤1,即a≥6或a≤0,选C.2.若集合,则=()A.{4}B.{1,2,3,4,5}C.D.【答案】B【解析】由题意可知,所以【考点】本小题主要考查集合的运算.点评:解决此类问题,关键是看清集合中的元素是什么.3.设集合M={-1,0,1},N={x|x2x},则M∩N=()A.{0}B.{0,1}C.{-1,1}D.{-1,0,1}【答案】B【解析】N={x|x2x},所以M∩N={0,1}.【考点】本小题主要考查集合的运算.点评:解决集合的问题,要注意看清集合中的元素是什么.4. A=,B=,若,则的值的集合为()A.B.C.D.【答案】D【解析】集合A=表示的是直线(去掉点),集合B=表示直线,斜率为,要使,需要两直线平行,或第二条直线过点,可以求得的值的集合为.【考点】本小题主要考查两条直线的位置关系的应用,考查学生的运算能力和数形结合思想的应用.点评:解决本题的关键在于将集合A中的曲线转化为去掉一个点的直线,从而将问题转化为两条直线的位置关系.5.已知集合,集合,则()A.B.C.D.【答案】D【解析】由题意可知集合A表示的三个实数0,1,2,而集合B表示的是大于2的所有实数,所以两个集合的交集为空集.【考点】本小题主要考查集合的运算.点评:集合的关系和运算是每年高考必考的题目,难度较低,要注意分清集合元素到底是什么.6.已知集合,,若,则实数的取值范围是 ( ) A.B.C.D.R【答案】C【解析】由题意知,所以要使,显然有,所以,根据集合的关系可知.【考点】本小题主要考查已知集合的关系求参数的取值范围,考查学生分类讨论思想的应用.点评:解决本题的关键在于根据,推断出,另外集合的运算常常借助于数轴解决.7.(本小题满分13分)已知全集.(Ⅰ)求集合U的非空子集的个数;(Ⅱ)若集合M={2,3},集合N满足,记集合N元素的个数为,求的分布列数学期望E.【答案】(Ⅰ)集合的非空子集的个数为个.(Ⅱ).【解析】(I)若集合A中元素的个数为n,则其子集个数为个,真子集的个数为.(II)的所有取值为.并且满足条件的集合所有可能的结果总数为:.然后再求出对应每个值的概率,列出分布列,利用期望公式求出期望值.(Ⅰ)集合的非空子集的个数为个.……5分(Ⅱ)的所有取值为.满足条件的集合所有可能的结果总数为:.……7分则每个随机变量的概率分别为:,==,=,,=.……11分所以的分布列为:.……13分8.满足条件的所有集合B的个数是______。
全国100所名校单元测试示范卷高三数学

全国100所名校单元测试示范卷高三数学一、选择题(每题4分,共40分)1. 下列函数中,不是周期函数的是:A. y = sin(x)B. y = cos(x)C. y = tan(x)D. y = e^x2. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 4}3. 若f(x) = 2x - 1,求f(3):A. 5B. 4C. 3D. 24. 已知a > 0,b > 0,且a + b = 1,求ab的最大值:A. 1/4B. 1/2C. 1/3D. 1/65. 直线y = 2x + 3与x轴的交点坐标是:A. (-1, 0)B. (3/2, 0)C. (0, 3)D. (1, 0)6. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值:A. 0B. -4C. -3D. 47. 根据题目所给的三角函数关系,求cos(α + β)的值:A. cosαcosβB. sinαsinβC. cosαsinβ - sinαcosβD. sinαcosβ + cosαsinβ8. 若a, b, c ∈ R,且a^2 + b^2 + c^2 = 1,求(a + b + c)^2的最大值:A. 1B. 3/2C. 2D. 9/49. 已知等差数列{an}的首项a1=2,公差d=3,求第10项a10:A. 29B. 32C. 35D. 3810. 已知函数f(x) = |x - 1| + |x - 3|,求f(2):A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值。
答案:__________12. 若sinθ = 1/3,且θ为锐角,求cosθ的值。
答案:__________13. 已知等比数列{bn}的首项b1=8,公比q=1/2,求第5项b5。
2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用

2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用第一章集合与常用逻辑用语单元能力测试一、选择题(本大题共12小题,每小题5分,共60分)1、(2020山东理)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()UC A B 为( ) A .{}1,2,4B .{}2,3,4C .{}0,2,4 D .{}0,2,3,42 .(2020浙江理)设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3、【2020韶关第一次调研理】若集合M 是函数lg y x =的定义域,N 是函数y =的定义域,则M ∩N 等于( )A .(0,1]B .(0,)+∞C .φD .[1,)+∞ 4、【2020厦门期末质检理2】“φ=2π”是“函数y=sin(x +φ)为偶函数的”A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5.(2020湖南理)命题“若α=4π,则tanα=1”的逆否命题是( )A .若α≠4π,则tanα≠1B .若α=4π,则tan α≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π6、【2020泉州四校二次联考理】命题:R p x ∀∈,函数2()2cos 23f x x x =+≤,则( )A .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤B .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> C .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤ D .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> 7、(2020湖北理)命题“0x ∃∈R Q ,30x ∈Q ”的否定是( )A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉RQ ,3x ∈Q D .x ∀∈RQ ,3x ∉Q8、【2020深圳中学期末理】设集合A={-1, 0, 1},集合B={0, 1, 2, 3},定义A *B={(x, y)| x ∈A ∩B, y ∈A ∪B},则A *B 中元素个数是()A.7B.10C.25D.529、【2020粤西北九校联考理3】下列命题错误..的是( ) A. 2"2""320"x x x >-+>是的充分不必要条件;B. 命题“2320,1x x x -+==若则”的逆否命题为“21,320若则x x x =-+≠”;C.对命题:“对0,k >方程20x x k +-=有实根”的否定是:“ ∃k >0,方程20x x k +-=无实根”;D. 若命题:,p x A B p ∈⋃⌝则是x A x B ∉∉且;10、【江西省新钢中学2020届高三第一次考试】在△ABC 中,设命题,sin sin sin :Ac C b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件11、(2020浙江宁波市期末)已知()f x 是定义在实数集R 上的增函数,且(1)0f =,函数()g x 在(,1]-∞上为增函数,在[1,)+∞上为减函数,且(4)(0)0g g ==,则集合{|()()0}x f x g x ≥= ( )(A ) {|014}x x x ≤≤≤或(B ){|04}x x ≤≤(C ){|4}x x ≤ (D ) {|014}x x x ≤≤≥或 12.定义:设A 是非空实数集,若∃a ∈A ,使得关于∀x ∈A ,都有x ≤a (x ≥a ),则称a 是A 的最大(小)值 .若B 是一个不含零的非空实数集,且a 0是B 的最大值,则( )A .当a 0>0时,a -10是集合{x -1|x ∈B }的最小值B .当a 0>0时,a -10是集合{x -1|x ∈B }的最大值C .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最小值D .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最大值二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13、(2020上海理)若集合}012|{>+=x x A ,}21|{<-=x x B ,则A ∩B=_________ .14、【2020江西师大附中高三下学期开学考卷】若自然数n 使得作加法(1)(2)n n n ++++运算均不产生进位现象,则称n 为“给力数”,例如:32是“给力数”,因323334++不产生进位现象;23不是“给力数”,因232425++产生进位现象.设小于1000的所有“给力数”的各个数位上的数字组成集合A ,则集合A 中的数字和为__________ 15、【2020三明市一般高中高三上学期联考】下列选项叙述:①.命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =” ②.若命题p :2,10x R x x ∀∈++≠,则p ⌝:2,10x R x x ∃∈++= ③.若p q ∨为真命题,则p ,q 均为真命题④.“2x >”是“2320x x -+>”的充分不必要条件 其中正确命题的序号有_______ 16、【2020泉州四校二次联考理】已知集合22{(,)||||1|1},{(,)|(1)(1)1}A x y x a y B x y x y =-+-≤=-+-≤,若A B φ⋂≠,则实数a 的取值范畴为 .三、解答题(本大题共6小题,共70分,解承诺写出文字说明、证明过程或演算步骤)17.(本小题满分12分) (2011年朝阳区高三上学期期中)设关于x 的不等式(1)0()x x a a --<∈R 的解集为M ,不等式2230x x --≤的解集为N .(Ⅰ)当1a =时,求集合M ;(Ⅱ)若M N ⊆,求实数a 的取值范畴.18、(本小题满分12分) 【山东省潍坊一中2020届高三时期测试理】已知集合{}}0)1(2|{,0)13(2)1(3|22<+--=<+++-=a x a x x B a x a x x A ,(Ⅰ)当a=2时,求B A ⋂;(Ⅱ)求使A B ⊆的实数a 的取值范畴19.(本小题满分10分) 【2020北京海淀区期末】若集合A 具有以下性质: ①A ∈0,A ∈1;②若A y x ∈,,则A y x ∈-,且0≠x 时,Ax∈1.则称集合A 是“好集”. (Ⅰ)分别判定集合{1,0,1}B,有理数集Q 是否是“好集”,并说明理由; (Ⅱ)设集合A 是“好集”,求证:若A y x ∈,,则A y x ∈+; (Ⅲ)对任意的一个“好集”A ,分别判定下面命题的真假,并说明理由. 命题p :若A y x ∈,,则必有A xy ∈; 命题q :若A y x ∈,,且0≠x ,则必有Axy∈;20、(本小题满分12分)(山东省潍坊市2020届高三上学期期中四县一校联考) 已知集合{}{}R x x B x x x R x A x x ∈<=++≥+∈=-,42|,)23(log )126(log |32222.求⋂A (C R B ).21.(本小题满分12分)已知c >0,设命题p :函数y =c x为减函数,命题q :当x ∈[12,2]时,函数f (x )=x +1x >1c 恒成立.假如p 或q 为真命题,p 且q 为假命题,求c 的取值范畴.22.(本小题满分12分) 【山东省微山一中2020届高三10月月考理】设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集. (1)求A ∩B ; (2)若C ⊆∁R A ,求a 的取值范畴.祥细答案 一、选择题 1、【答案】C【解析】}4,0{=A C U,因此{0,24}U C A B =() ,,选C.2. 【答案】B【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B 3、【答案】A【解析】因为集合M 是函数lg y x =的定义域,;0>x N 是函数y = 因此01≥-x ,(](](0,),,1,0,1M N M N =+∞=-∞⋂=4、【答案】A【解析】φ=2π时,y=sin(x +φ)=x cos 为偶函数;若y=sin(x +φ)为偶函数,则k=ϕZk ∈+,2ππ;选A;5、【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,因此 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”.6、【答案】D【解析】3)62sin(212sin 32cos 12sin 3cos 2)(2≤++=++=+=πx x x x x x f ;P 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+>;7、【答案】D解析:依照对命题的否定知,是把谓词取否定,然后把结论否定.因此选D 8、【答案】B【解析】解:A ∩B ={ 0, 1},A ∪B {-1, 0, 1, 2, 3},x 有2种取法, y 有5种取法由乘法原理得2×5=10,故选B 。
高三数学集合测试卷及答案

一、选择题(每题5分,共50分)1. 下列集合中,属于空集的是()A. {x | x > 0}B. {x | x = 0}C. {x | x ∈ N}D. ∅2. 集合M = {x | x 是正整数},集合N = {x | x 是偶数},则M∩N=()A. {x | x 是正偶数}B. {x | x 是正整数}C. {x | x 是偶数}D. {x | x 是整数}3. 集合A = {1, 2, 3, 4},集合B = {2, 4, 6, 8},则A∪B=()A. {1, 2, 3, 4, 6, 8}B. {1, 2, 3, 4, 5, 6, 8}C. {1, 2, 3, 4, 6, 8}D. {1, 2, 3, 4, 5, 6, 7, 8}4. 集合A = {x | x² - 4x + 3 = 0},集合B = {x | x² - 3x - 4 = 0},则A∩B=()A. {1, 3}B. {1}C. {3}D. {1, 2}5. 集合A = {x | x 是实数},集合B = {x | x 是有理数},则A∩B=()A. {x | x 是有理数}B. {x | x 是实数}C. {x | x 是整数}D. {x | x 是无理数}6. 集合A = {x | x² < 4},集合B = {x | x > 0},则A∪B=()A. {x | x < 0}B. {x | x > 0}C. {x | -2 < x < 2}D. {x | x ≠ 0}7. 集合A = {x | x ∈ R 且x² - 5x + 6 = 0},集合B = {x | x ∈ R 且x² - 4x + 3 = 0},则A-B=()A. {3}B. {2}C. {2, 3}D. ∅8. 集合A = {x | x 是正偶数},集合B = {x | x 是正奇数},则A∪B=()A. {x | x 是正整数}B. {x | x 是整数}C. {x | x 是自然数}D. {x | x 是正数}9. 集合A = {x | x 是等差数列的第n项,首项为1,公差为2},集合B = {x | x 是等比数列的第n项,首项为2,公比为2},则A∩B=()A. {4}B. {2, 4}C. {2}D. ∅10. 集合A = {x | x 是实数且x² - 2x + 1 = 0},集合B = {x | x 是实数且x² - 4x + 4 = 0},则A∩B=()A. {1}B. {2}C. {1, 2}D. {1, 3}二、填空题(每题5分,共25分)1. 集合A = {x | x 是正整数},集合B = {x | x 是2的倍数},则A∩B=_________。
高三数学一轮复习 专题1 集合、常用逻辑用语、不等式、函数与导数综合测试(一)

专题一:集合、常用逻辑用语、不等式、函数与导数阶段质量评估(一)一、选择题(本大题共12小题,每小题5分,总分60分)1.已知全集U =R ,集合2{|1}M x x =<,2{|0}N x x x =-<,则集合M ,N 的关系用韦恩(Venn )图可以表示为 ( )2.已知函数①()ln f x x =;②cos ()xf x e =;③()xf x e =;④()cos f x x =.其中对于()f x 定义域内的任意一个自变量1x ,都存在定义域内的唯一一个自变量2x ,使得12()()1f x f x •=成立的函数是( )A .①②④B .②③C .③D .④3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是( )A ()sin f x x = B.()1f x x =-+ C.()1()2x xf x a a -=+ D.2()ln 2x f x x -=+ 4.下列结论①命题“0,2>-∈∀x x R x ”的否定是“0,2≤-∈∃x x R x ”;②当),1(+∞∈x 时,函数221,x y x y ==的图象都在直线x y =的上方;③定义在R 上的奇函数()x f ,满足()()x f x f -=+2,则()6f 的值为0. ④若函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为12m ≥.其中,正确结论的个数是( )A .1B . 2C . 3D . 4 5.命题“x R ∀∈,2240x x -+≤”的否定为 ( )A .x R ∀∈,2240x x -+≥ B .2,240x R x x ∀∉-+≤C .x R ∃∈,2240x x -+>D .x R ∃∉,2240x x -+>6.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .4x y -B .450x y +-=C .430x y -+=D .430x y ++=7.函数2()ln f x x x =-的零点所在的大致区间是( )A .(1,2)B .(e ,3)C .(2,e )D .(e,+∞)8.函数2()(0)f x ax bx c a =++≠的图像关于直线2bx a =-对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学单元练习题:集合与简易逻辑(1)一、选择题:1、下列四个集合中,是空集的是 A . B. C. { D. }33|{=+x x }01|{2=+-x x x }|2x x x <},,|),{(22R y x x y y x ∈-=2、集合M =,N =, 则 },412|{Z k k x x ∈+=},214|{Z k k x x ∈+=A.M=NB.M NC.M ND.M N=⊂⊃ Φ3、命题:“若,则”的逆否命题是12<x 11<<-x A.若,则 B.若,则12≥x 11-≤≥x x ,或11<<-x 12<x C.若,则 D.若,则11-<>x x,或12>x 11-≤≥x x ,或12≥x 4、一元二次方程有一个正根和一个负根的充分不必要条件是:2210,(0)axx a ++=≠A . B . C . D .0a <0a >1a <-1a >5、若函数的定义域为,的定义域为,则xx f -=11)(M )1ln()(x x g +=N =⋂N M A. B. C. D. {}1>x x {}1<x x {}11<<-x x φ6、对任意实数, 若不等式恒成立, 则实数的取值范围是x k x x >+++|1||2|k A k ≥1 B k >1 C k ≤1 D k <17、若不等式的解集为 312≥-xx A. B. C. D.)0,1[-),1[∞+-]1,(--∞),0(]1,(∞+--∞ 8、若对任意R,不等式≥ax 恒成立,则实数a 的取值范围是∈x x A. a <-1 B.≤1 C.<1 D.a ≥1a a 9、设I 为全集,是I 的三个非空子集,且,则下面论断正确的是321S S S 、、IS S S =⋃⋃321A .B .C .D .123I S S S ⋂⋃=Φ()ð123I I S S S ⊆⋂()ðð123(I I I S S S ⋂⋂=Φ)ððð123I I S S S ⊆⋃()ðð10、若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为 A .9 B .6 C .4 D .2 二、填空题: 11、.已知函数,则集合中含有元素的个数为))((b x a x f y ≤≤=}2|),{(}),(|),{(=⋂≤≤=x y x b x a x f y y x ;12、已知全集U ,A ,B ,那么 __;{}5,4,3,2,1={}3,1={}4,3,2==⋃)(B C A U 13、集合,,若,则实数的取值范围是 ;{}1≤-=a x x A {}0452≥+-=x x x B φ=B A a 14、已知是的充分条件而不是必要条件,是的必要条件,是的充分条件, 是的必要条件。
现有下列命题:p r s r q r q s ①是的充要条件; ②是的充分条件而不是必要条件;s q p q ③是的必要条件而不是充分条件; ④的必要条件而不是充分条件;r q s p ⌝⌝是⑤是的充分条件而不是必要条件; 则正确命题序号是 ;r s 15、设集合若B 是非空集合,且则实数a 的取值范围是{|29},{|123}A x x B x a x a =<<=+<<-()B A B ⊆16. 已知全集为R ,.125|log (3)2,|1,2R A x x B x A B x ⎧⎫⎧⎫=-≥-=≥⎨⎬⎨⎬+⎩⎭⎩⎭求ð17.已知p :方程x 2+m x +1=0有两个不等的负实根,q :方程4x 2+4(m -2)x +1=0无实根。
若p 或q 为真,p 且q 为假。
求实数m的取值范围。
18.已知集合A =,B =.{|(2)[(31)]0}x x x a --+<22{|0}(1)x ax x a -<-+⑴当a =2时,求A B ; ⑵求使B A 的实数a 的取值范围.⊆19. 已知不等式221(1)x m x ->- ⑴若对于所有实数,不等式恒成立,求的取值范围x m ⑵若对于[-2,2]不等式恒成立,求的取值范围m∈x 20.已知集合,,若,求实数的取值范{}2(,)|20,A x y x mx y x R =+-+=∈{}(,)|10,02B x y x y x =-+=≤≤A B φ≠ m 围.e1. 设集合,,则集合间的关系为( ){21,}A x x k k Z ==+∈{21,}B x x k k Z ==-∈A B 、A. B. C. D.以上都不对A B =A B ØB A Ø2. 如果,那么( ){}3P x x =≤A. B. C. D.1P ⊆-{}1P ∈-P ∈∅{}1P ⊆-3. 命题“若,则”的逆命题.否命题.逆否命题中,真命题的个数是( )0a >1a >A.0 B.1 C.2 D.34. 已知, 则是的( )条件.:1231,:(3)0p x q x x -<-<-<p q A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要5. 已知集合, , 且, 则的取值范围是( ).{}121A x a x a =+≤≤-{}25B x x =-≤≤A B ⊆a A. B. C. D.2a<3a <23a ≤≤3a ≤二、填空题:6. 已知集合(填、).{,}A x R x a a Z b Z =∈=+∈∈A ∈∉7. 写出命题“,使得”的否定 .x A ∃∈2230x x --=8.设集合,,则集合{}533x A x =<{}2430B x x x =-+≥{|P x x A x =∈且∉A }B ⋂= .三、解答题:本大题共3小题,满分40分,第9小题12分,第10.11小题各14分. 解答须写出文字说明.证明过程或演算步骤.9. 已知集合,集合,且,求的值.2{|30}A x xpx =+-=2{|0}B x x qx p =--={1}A B ⋂=-2p q +10.设全集,若,,{010,}Ux x x N +=<<∈{3}A B ⋂={1,5,7}U A C B ⋂=()U C A ⋂()U C B ,求、.{9}=A B 11. 已知,,且是的必要不充分条件,求实数的取值范围. 1:2123x p --≤-≤22:210(0)q x x m m -+-≤>p ⌝q ⌝m一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设P ,Q 为两个非空实数集合,定义集合P+Q={a+b|, a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q 中元素的个数是( )A.9 B.8 C.7 D.62、若集合M={y | y =},P={y | y =},则M∩P= ( )x-333-x A {y | y >1} B {y | y ≥1} C {y | y >0} D {y | y ≥0}3、下列四个集合中,是空集的是 ( )A . B . C. { D ..}33|{=+x x },,|),{(22R y x x y y x ∈-=}|2x x x <}01|{2=+-x x x 4、若关于x 的不等式<1的解集为{x|x <1或x > 2},则实数a 的值为( )1-x axA.1B.0C.2D.215、已知集合M={a 2, a+1,-3}, N={a-3, 2a-1, a 2+1}, 若M∩N={-3}, 则a 的值是 ( )A -1 B 0 C 1 D 26、设集合A={x| < 0},B={x||x-1|<a},则“a=1”是“A∩B≠”的( )11+-x x ∅A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件7、50名学生参加跳远和铅球两项测试,跳远、铅球测试及格的分别有40人和31人,两项测试均不及格的有4人,两项测试全都及格的人数是( )A.35B.25C.28D.158、一元二次方程有一个正根和一个负根的充分不必要条件是:2210,(0)ax x a ++=≠( )A .B .C .D .0a<0a>1a <-1a >9、若二次不等式ax 2+bx+c > 0的解集是{x| < x <},那么不等式2cx 2-2bx-a < 0的解集是( )5141A.{x|x< -10或x > 1}B.{x|-< x <}C.{x|4< x <5}D.{x|-5< x < -4}415110、已知函数f(x)在(-∞,+∞)上为增函数,a,b∈R,对于命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”有下列结论:①此命题的逆命题为真命题 ②此命题的否命题为真命题③此命题的逆否命题为真命题 ④此命题的逆命题和否命题有且只有一个真命题其中正确结论的个数为( )A.1个B.2个C.3个D.4个11、对任意实数, 若不等式恒成立, 则实数的取值范围是 ( )x k x x >+++|1||2|k A k ≥1 B k <1 C k ≤1 D k >112、若集合A B, A C, B={0,1,2,3,4,7,8}, C={0,3,4,7,8}, 则满足条件的集合A 的个数为( )⊆⊆A. 16 B 15 C 32 D 31二、填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上。
13、已知全集U ,A ,B ,那么 ___{}5,4,3,2,1={}3,1={}4,3,2==⋃)(B C A U 14、若集合A={x∈R|ax 2+x+2=0,a∈R}至多含有一个元素,则a 的取值范围是 。
15、有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”,乙说:“甲、丙未获奖”,丙说:“是甲或乙获奖”,丁说:“是乙获奖”。
四位歌手的话有两句是对的,则是 歌手获奖三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或推演步骤。
17、设全集U=R, 集合A={x | x 2- x -6<0}, B={x || x |= y +2, y ∈A}, 求C U B 、A∩B、A∪B、C U (A∪B), (C U A)∩(C U B).。