第九章第5讲 椭 圆

合集下载

椭圆2016新编知识点完美总结重点讲义资料-共10页

椭圆2016新编知识点完美总结重点讲义资料-共10页

第5讲:椭圆一、椭圆及其方程1、椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆。

其中:这两个定点叫做椭圆的焦点;两焦点的距离叫做焦距(记为2c ) 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0) 注意:(1)只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; (2)在椭圆的两种标准方程中,都有0a b >>和222b a c -=;(3)已知方程判断焦点位置的方法是:看2x ,2y 的分母的大小,哪个分母大,焦点就在哪个坐标轴上 (4)当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -3、求椭圆标准方程的常用方法:(1)待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数c b a ,,的值。

即:主要步骤是先定位,再定量;注:焦点所在坐标轴的位置不确定时设椭圆标准方程要分两种情形;为了计算方便,有时也可设方程为mx 2+ny 2=1(m>0,n>0,m ≠n)。

(2)定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。

例2 .已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m = . 分析:把椭圆的方程化为标准方程,由2=c ,根据关系222c b a +=可求出m 的值.解:方程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2262=-m ,5=m 适合.故5=m .例3.已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准方程.y O F 1F 2x Mc cxF 2F 1O y Mcc解:当焦点在x 轴上时,设其方程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92=a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()012222>>=+b a b x a y .由椭圆过点()03,P ,知10922=+b a . 又b a 3=,联立解得812=a ,92=b ,故椭圆的方程为198122=+x y . 例4.求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程 分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见, 可设其方程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程. 解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为151522=+y x . 例5.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例6.ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解.(2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x . (2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例7. 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例8. 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为( )A .4 B .2 C .8 D .23解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,又因为ON 为21F MF ∆的中位线,所以4212==MF ON ,故答案为A . 4、点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+<二、椭圆的简单几何性质 1、范围:x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b .椭圆位于直线x =±a 和y =±b 围成的矩形里。

椭圆的课件ppt

椭圆的课件ppt
$y=bsintheta$。
对于长轴在y轴上的椭圆,参 数方程为:$x=bsintheta$,
$y=acostheta$。
其中,$theta$为参数,表示 椭圆上的点与长轴之间的夹角。源自05椭圆的作图方法
椭圆的基本作图方法
定义法
根据椭圆的定义,通过两个固定 点(焦点)和一根线段(焦距) 来绘制椭圆。
椭圆的任意两个不同点与椭圆中 心的连线形成的角为直角或锐角

椭圆的参数方程
椭圆的参数方程为 $x = a cos theta, y = b sin theta$,其中 $theta$ 是参数。
该方程描述了椭圆上任意一点 $P$ 的坐标与参数 $theta$ 的 关系。
通过参数方程,可以方便地研 究椭圆的几何性质和运动轨迹 。
离心率与长短轴关系
离心率与长短轴之间存在反比关系,即长轴越短,离心率越大;短轴 越短,离心率越小。
椭圆的对称性
对称性定义
椭圆关于坐标轴和原点对 称。
对称轴
椭圆有两条对称轴,分别 是长轴和短轴所在的直线 。
对称中心
椭圆的中心称为对称中心 ,是椭圆上任意一点关于 对称轴的对称点。
03
椭圆的几何应用
椭圆在几何图形中的应用
当 $a > b$ 时,椭圆呈横向;当 $a < b$ 时,椭圆呈纵向。
该方程描述了一个平面上的二维椭圆 ,其中心位于原点,长轴位于x轴上。
椭圆的几何性质
椭圆是一个封闭的二维曲线,由 两个焦点和其上的所有点组成。
椭圆的两个焦点到任意一点 $P$ 的距离之和等于椭圆的长轴长度 ,即 $|PF_1| + |PF_2| = 2a$。
01
椭圆在几何图形中可以作为椭圆 形的绘制基础,如椭圆形的车轮 、椭圆形的镜子等。

第九章 9.5椭 圆

第九章 9.5椭 圆

§9.5椭圆知识梳理:1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质-a≤x≤a -b≤x≤b[00(1)点P(x0,y0)在椭圆内⇔x20a2+y20b2<1. (2)点P(x0,y0)在椭圆上⇔x20a2+y20b2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b 2>1.课前检测:1.椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于( )A .4B .8C .4或8D .12 答案 C2.(2013·广东)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( ) A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 答案 D 3.设P 是椭圆x 225+y 216=1上的点,若F 1、F 2是椭圆的两个焦点,则△PF 1F 2的周长为________.答案 164.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点为F 1、F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为________. 答案 3-1应用示例:题型一 椭圆的定义及标准方程例1 (1)已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线(2)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P (3,0),则椭圆的方程为________________.(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1)、P 2(-3,-2),则椭圆的方程为________.思维点拨 (1)主要考虑椭圆的定义; (2)要分焦点在x 轴和y 轴上两种情况; (3)可以用待定系数法求解.答案 (1)B (2)x 29+y 2=1或y 281+x 29=1 (3)x 29+y 23=1解析 (1)点P 在线段AN 的垂直平分线上, 故|P A |=|PN |, 又AM 是圆的半径, ∴|PM |+|PN |=|PM |+|P A |=|AM |=6>|MN |,由椭圆定义知,P 的轨迹是椭圆.(2)若焦点在x 轴上,设方程为x 2a 2+y 2b2=1(a >b >0),∵椭圆过P (3,0),∴32a 2+02b 2=1,即a =3, 又2a =3×2b ,∴b =1,方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b2=1(a >b >0).∵椭圆过点P (3,0).∴02a 2+32b 2=1,即b =3. 又2a =3×2b ,∴a =9,∴方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(3)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1、P 2,∴点P 1、P 2的坐标适合椭圆方程.则⎩⎪⎨⎪⎧6m +n =1, ①3m +2n =1, ② ①、②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1 (m >0,n >0,m ≠n )的形式.(1)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________.(2)(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为______________________. 答案 (1)y 220+x 24=1 (2)x 2+32y 2=1题型二 椭圆的几何性质例2 (2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C . (1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.思维点拨 (1)根据椭圆的定义,建立方程关系即可求出a 、b 的值. (2)求出C 的坐标,利用F 1C ⊥AB 建立斜率之间的关系,解方程即可求出e 的值. 解 设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0).(1)因为B (0,b ),所以BF 2=b 2+c 2=a . 又BF 2=2,故a = 2.因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1,解得b 2=1. 故所求椭圆的方程为x 22+y 2=1. (2)因为B (0,b ),F 2(c,0)在直线AB 上,所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b .所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a 2-c 2)a 2+c 2.因为直线F 1C 的斜率为b (a 2-c 2)a 2+c2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3, 直线AB 的斜率为-bc ,且F 1C ⊥AB , 所以b (a 2-c 2)3a 2c +c 3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2. 故e 2=15,因此e =55.思维升华 求椭圆的离心率的方法: (1)直接求出a 、c 来求解e ,通过已知条件列方程组,解出a 、c 的值; (2)构造a 、c 的齐次式,解出e ,由已知条件得出a 、c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;(3)通过特殊值或特殊位置,求出离心率.(1)已知点F 1,F 2是椭圆x 2+2y 2=2的两个焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( ) A .0 B .1 C .2 D .2 2(2)(2013·辽宁)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.答案 (1)C (2)57题型三 直线与椭圆位置关系的相关问题例3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点. (1)若直线l 的方程为y =x -4,求弦|MN |的长. (2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式.思维点拨 直线与圆锥曲线的位置关系问题,一般可以直接联立方程,“设而不求”,把方程组转化成关于x 或y 的一元二次方程,利用根与系数的关系及弦长公式求解. 解 (1)由已知得b =4,且ca =55,即c 2a 2=15,∴a 2-b 2a 2=15,解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029.(2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知 BF →=2FQ →,又B (0,4),∴(2,-4)=2(x 0-2,y 0),故得x 0=3,y 0=-2,即得Q 的坐标为(3,-2).设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=6,y 1+y 2=-4,且x 2120+y 2116=1,x 2220+y 2216=1,以上两式相减得(x 1+x 2)(x 1-x 2)20+(y 1+y 2)(y 1-y 2)16=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=65,故直线MN 的方程为y +2=65(x -3), 即6x -5y -28=0.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.(2014·课标全国Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .课堂小结: 1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F1F2|,避免了动点轨迹是线段或不存在的情况. 2.求椭圆方程的方法,除了直接根据定义外,常用待定系数法.当椭圆的焦点位置不明确而无法确定其标准方程时,设方程为x2m +y2n =1 (m>0,n>0,且m≠n)可以避免讨论和烦琐的计算,也可以设为Ax2+By2=1 (A>0,B>0,且A≠B),这种形式在解题中更简便. 3.讨论椭圆的几何性质时,离心率问题是重点,求离心率的常用方法有以下两种: (1)求得a ,c 的值,直接代入公式e =ca 求得; (2)列出关于a ,b ,c 的齐次方程(或不等式),然后根据b2=a2-c2,消去b ,转化成关于e 的方程(或不等式)求解. 课后作业:。

数学(理)一轮复习题库:第九章 第讲 双曲线

数学(理)一轮复习题库:第九章 第讲 双曲线

第5讲双曲线一、选择题1.设双曲线错误!-错误!=1(a>0)的渐近线方程为3x±2y=0,则a的值为( ).A.4 B.3 C.2 D.1解析双曲线错误!-错误!=1的渐近线方程为3x±ay=0与已知方程比较系数得a=2。

答案C2.已知双曲线C:错误!-错误!=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为().A.错误!-错误!=1B.错误!-错误!=1C.错误!-错误!=1D.错误!-错误!=1解析不妨设a>0,b〉0,c=错误!。

据题意,2c=10,∴c=5。

①双曲线的渐近线方程为y=±错误!x,且P(2,1)在C的渐近线上,∴1=错误!。

②由①②解得b2=5,a2=20,故正确选项为A.答案A3.已知双曲线x2-y23=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则错误!·错误!的最小值为( ).A.-2 B.-错误!C.1 D.0解析设点P(x,y),其中x≥1.依题意得A1(-1,0),F2(2,0),则有错误!=x2-1,y2=3(x2-1),错误!·错误!=(-1-x,-y)·(2-x,-y)=(x+1)(x-2)+y2=x2+3(x2-1)-x-2=4x2-x-5=4错误!2-错误!,其中x≥1.因此,当x=1时,错误!·错误!取得最小值-2,选A。

答案A4.过双曲线错误!-错误!=1(a〉0,b>0)的左焦点F(-c,0)(c>0)作圆x2+y2=错误!的切线,切点为E,延长FE交双曲线右支于点P,若错误!+错误!=2错误!,则双曲线的离心率为().A。

2 B。

错误!C。

错误! D.错误!解析设双曲线的右焦点为A,则错误!=-错误!,故错误!+错误!=错误!-错误!=错误!=2错误!,即OE=错误!AP.所以E是PF的中点,所以AP=2OE=2×错误!=a.所以PF=3a.在Rt△APF中,a2+(3a)2=(2c)2,即10a2=4c2,所以e2=错误!,即离心率为e=错误!=错误!,选C.答案C5.已知双曲线x24-错误!=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ).A. 5 B.4 2 C.3 D.5解析易求得抛物线y2=12x的焦点为(3,0),故双曲线错误!-错误!=1的右焦点为(3,0),即c=3,故32=4+b2,∴b2=5,∴双曲线的渐近线方程为y=±错误!x,∴双曲线的右焦点到其渐近线的距离为错误!=错误!.答案A6.如图,已知点P为双曲线错误!-错误!=1右支上一点,F1、F2分别为双曲线的左、右焦点,I为△PF1F2的内心,若S△IPF1=S△IPF2+λS△IF1F2成立,则λ的值为()A.错误!B。

2021版高考数学一轮复习第九章平面解析几何第5讲椭圆第2课时直线与椭圆的位置关系教学案理北师大版

2021版高考数学一轮复习第九章平面解析几何第5讲椭圆第2课时直线与椭圆的位置关系教学案理北师大版

第2课时 直线与椭圆的位置关系直线与椭圆的位置关系(自主练透)1.(一题多解)若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5解析:选D.法一:由于直线y =kx +1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上, 则0<1m≤1且m ≠5,故m ≥1且m ≠5.法二:由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立. 由于m >0 且m ≠5,所以m ≥1且m ≠5.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解:将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y 22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过判断定点在椭圆内部或椭圆上来判定直线和椭圆有交点.弦长问题(师生共研)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |=4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.【解】 (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2, 解得a =2,b =3, 所以椭圆的方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=4+3=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k(x -1).将直线AB 的方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以|AB |=k 2+1|x 1-x 2|=k2+1·(x1+x2)2-4x1x2=12(k2+1)3+4k2.同理,|CD|=12⎝⎛⎭⎪⎫1k2+13+4k2=12(k2+1)3k2+4.所以|AB|+|CD|=12(k2+1)3+4k2+12(k2+1)3k2+4=84(k2+1)2(3+4k2)(3k2+4)=487,解得k=±1,所以直线AB的方程为x-y-1=0或x+y-1=0.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2]=⎝⎛⎭⎪⎫1+1k2[(y1+y2)2-4y1y2](k为直线的斜率).已知椭圆M:x2a2+y2b2=1(a>b>0)的离心率为63,焦距为2 2.斜率为k 的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若k=1,求|AB|的最大值.解:(1)由题意得⎩⎪⎨⎪⎧a2=b2+c2,ca=63,2c=22,解得a=3,b=1.所以椭圆M的方程为x23+y2=1.(2)设直线l的方程为y=x+m,A(x1,y1),B(x2,y2).由⎩⎪⎨⎪⎧y=x+m,x23+y2=1,得4x2+6mx+3m2-3=0,所以x1+x2=-3m2,x1x2=3m2-34.所以|AB|=(x2-x1)2+(y2-y1)2=2(x2-x1)2=2[(x1+x2)2-4x1x2]=12-3m22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6.中点弦问题(多维探究) 角度一 由中点弦确定直线方程或曲线方程(1)已知椭圆x 22+y 2=1,则斜率为2的平行弦中点的轨迹方程为________.(2)焦点是F (0,52),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________.【解析】 (1)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为P (x 0,y 0),通解:有x 212+y 21=1,x 222+y 22=1.两式作差,得(x 2-x 1)(x 2+x 1)2+(y 2-y 1)(y 2+y 1)=0.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 2-y 1x 2-x 1=k AB ,代入后求得k AB =-x 02y 0. 即2=-x 02y 0,所以x 0+4y 0=0.优解:由k AB ·k OP =-b 2a 2得2·y 0x 0=-12,即x 0+4y 0=0.故所求的轨迹方程为x +4y =0,将x +4y =0代入x 22+y 2=1得:x 22+⎝ ⎛⎭⎪⎫-x 42=1,解得x=±43,又中点在椭圆内,所以-43<x <43.(2)通解:设所求的椭圆方程为y 2a 2+x 2b 2=1(a >b >0),直线被椭圆所截弦的端点为A (x 1,y 1),B (x 2,y 2).由题意,可得弦AB 的中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,且x 1+x 22=27,y 1+y 22=-37.将A ,B 两点坐标代入椭圆方程中,得⎩⎪⎨⎪⎧y 21a 2+x 21b2=1,y 22a 2+x22b 2=1.两式相减并化简,得a 2b 2=-y 1-y 2x 1-x 2×y 1+y2x 1+x 2=-2×-6747=3,所以a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25,故所求椭圆的标准方程为y 275+x 225=1. 优解:设弦的中点为M ,由k AB ·k OM =-a 2b2得2×2×27-127=-a 2b 2,得a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25,所以所求的方程为y 275+x 225=1.【答案】 (1)x +4y =0⎝ ⎛⎭⎪⎫-43<x <43 (2)y 275+x 225=1 角度二 对称问题如图,已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点,设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.【解】 设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.因为直线AB 过椭圆的左焦点F ,所以方程有两个不等实根,记A (x 1,y 1),B (x 2,y 2),AB 的中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k22k 2+1,y 0=k (x 0+1)=k2k 2+1,所以AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2.因为k ≠0,所以-12<x G <0,所以点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0.(1)处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:(2)解决对称问题除掌握解决中点弦问题的方法外,还要注意“如果点A ,B 关于直线l 对称,则l 垂直于直线AB 且A ,B 的中点在直线l 上”的应用.1.过椭圆x 216+y 24=1内一点P (3,1),且被点P 平分的弦所在直线的方程是________.解析:设所求直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1,两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0. 因为P (3,1)是A (x 1,y 1),B (x 2,y 2)的中点, 所以x 1+x 2=6,y 1+y 2=2, 故k AB =y 1-y 2x 1-x 2=-34, 直线AB 的方程为y -1=-34(x -3),即3x +4y -13=0. 答案:3x +4y -13=02.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.求实数m 的取值范围.解:由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63.椭圆与向量的综合问题(师生共研)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,O 为坐标原点,求△OCD 的面积.【解】 (1)因为过焦点且垂直于长轴的直线被椭圆截得的线段长为433,所以2b 2a =433.因为椭圆的离心率为33,所以c a =33, 又a 2=b 2+c 2,解得b =2,c =1,a = 3. 所以椭圆的方程为x 23+y 22=1. (2)由(1)可知F (-1,0), 则直线CD 的方程为y =k (x +1).联立⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y 得(2+3k 2)x 2+6k 2x +3k 2-6=0. 设C (x 1,y 1),D (x 2,y 2),所以x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.又A (-3,0),B (3,0), 所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2=8,解得k =± 2.从而x 1+x 2=-6×22+3×2=-32,x 1x 2=3×2-62+3×2=0.所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =⎝ ⎛⎭⎪⎫-322-4×0=32,|CD |=1+k 2|x 1-x 2|=1+2×32=332.而原点O 到直线CD 的距离为d =|k |1+k2=21+2=63, 所以△OCD 的面积为S =12|CD |×d =12×332×63=324.解决椭圆中与向量有关问题的方法(1)将向量条件用坐标表示,再利用函数、方程知识建立数量关系. (2)利用向量关系转化成相关的等量关系.(3)利用向量运算的几何意义转化成图形中位置关系解题.(2020·河南郑州二模)已知动点M 到两定点F 1(-m ,0),F 2(m ,0)的距离之和为4(0<m <2),且动点M 的轨迹曲线C 过点N ⎝⎛⎭⎪⎫3,12. (1)求m 的值;(2)若直线l :y =kx +2与曲线C 有两个不同的交点A ,B ,且OA →·OB →=2(O 为坐标原点),求k 的值.解:(1)由0<m <2,得2m <4,可知:曲线C 是以两定点F 1(-m ,0),F 2(m ,0)为焦点,长半轴长为2的椭圆,所以a =2,设曲线C 的方程为x 24+y 2b2=1,把点N ⎝⎛⎭⎪⎫3,12代入得34+14b 2=1,解得b 2=1,由c 2=a 2-b 2,解得c 2=3,所以m = 3.(2)由(1)知曲线C 的方程为x 24+y 2=1,设A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +2,消去y 得⎝ ⎛⎭⎪⎫14+k 2x 2+22kx +1=0,则有Δ=4k 2-1>0,得k 2>14.x 1+x 2=-82k 1+4k 2,x 1x 2=41+4k2, 则OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+2=6-4k21+4k2=2. 得k 2=13>14,所以k 的值为±33.[基础题组练]1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( )A .至多为1B .2C .1D .0解析:选B.由题意知,4m 2+n2>2,即m 2+n 2<2, 所以点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2.2.椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( ) A .-23B .-32C .-49D .-94解析:选A.设以P 为中点的弦所在的直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),斜率为k ,则4x 21+9y 21=144,4x 22+9y 22=144,两式相减得4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)·(y 1-y 2)=0,又x 1+x 2=6,y 1+y 2=4,y 1-y 2x 1-x 2=k ,代入解得k =-23. 3.已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A.223B .423C. 2D .2解析:选B.由条件知c =1,e =c a =22,所以a =2,b =1,椭圆方程为x 22+y 2=1,联立直线方程与椭圆方程可得交点坐标为(0,1),⎝ ⎛⎭⎪⎫43,-13,所以|AB |=423.4.(2020·石家庄质检)倾斜角为π4的直线经过椭圆x 2a 2+y2b 2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且AF →=2FB →,则该椭圆的离心率为( )A.32 B .23 C.22D .33解析:选B.由题可知,直线的方程为y =x -c ,与椭圆方程联立⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x -c ,得(b 2+a 2)y2+2b 2cy -b 4=0,由于直线过椭圆的右焦点,故必与椭圆有交点,则Δ>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=-2b 2c a 2+b2,y 1y 2=-b4a 2+b 2,又AF →=2FB →,所以(c -x 1,-y 1)=2(x 2-c ,y 2),所以-y 1=2y 2,可得⎩⎪⎨⎪⎧-y 2=-2b 2c a 2+b2,-2y 22=-b4a 2+b 2.所以12=4c2a 2+b 2,所以e =23,故选B. 5.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是( )A .4B .3C .2D .1解析:选D.因为(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0,所以PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n ,则m +n =4,m 2+n 2=12,2mn =4,mn =2, 所以S △F 1PF 2=12mn =1.6.已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________.解析:由题意知,椭圆的右焦点F 1的坐标为(1,0),直线AB 的方程为y =2(x -1).由方程组⎩⎪⎨⎪⎧y =2(x -1),x 25+y 24=1,消去y ,整理得3x 2-5x =0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=53,x 1x 2=0.则|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+22)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553.答案:5537.直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为________.解析:由点差法可求出k 1=-12·x 中y 中,所以k 1·y 中x 中=-12,即k 1k 2=-12. 答案:-128.从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.解析:由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-ba,由于OP ∥AB ,所以-y 0c =-b a ,y 0=bc a,把P ⎝ ⎛⎭⎪⎫-c ,bc a 代入椭圆方程得(-c )2a 2+⎝ ⎛⎭⎪⎫bc a 2b 2=1, 所以⎝ ⎛⎭⎪⎫c a 2=12,所以e =c a =22.答案:229.已知椭圆E 的一个顶点为A (0,1),焦点在x 轴上,若椭圆的右焦点到直线x -y +22=0的距离是3.(1)求椭圆E 的方程;(2)设过点A 的直线l 与该椭圆交于另一点B ,当弦AB 的长度最大时,求直线l 的方程. 解:(1)由题意得b =1.右焦点(c ,0)(c >0)到直线x -y +22=0的距离d =|c +22|2=3,所以c = 2.所以a =b 2+c 2=3,所以椭圆E 的方程为x 23+y 2=1.(2)当直线l 的斜率不存在时,|AB |=2,此时直线l 的方程为x =0.当直线l 的斜率存在时,设直线l 的方程为y =kx +1,联立⎩⎪⎨⎪⎧y =kx +1,x 23+y 2=1得(1+3k 2)x 2+6kx =0,所以x A =0,x B =-6k1+3k2, 所以|AB |=1+k 26|k |1+3k 2,|AB |2=36k 2(1+k 2)(1+3k 2)2.令t =1+3k 2,t ∈(1,+∞),则|AB |2=4×⎣⎢⎡⎦⎥⎤-2⎝ ⎛⎭⎪⎫1t 2+1t+1,所以当1t =14,即k 2=1,得k =±1时,|AB |2取得最大值为92,即|AB |的最大值为322,此时直线l 的方程为y =x +1或y =-x +1.因为2<322,所以当弦AB 的长度最大时,直线l 的方程为y =x +1或y =-x +1.10.(2020·安徽五校联盟第二次质检)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点坐标分别为F 1(-1,0),F 2(1,0),P 为椭圆C 上一点,满足3|PF 1|=5|PF 2|且cos ∠F 1PF 2=35.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于A ,B 两点,点Q ⎝ ⎛⎭⎪⎫14,0,若|AQ |=|BQ |,求k 的取值范围. 解:(1)由题意设|PF 1|=r 1,|PF 2|=r 2,则3r 1=5r 2,又r 1+r 2=2a ,所以r 1=54a ,r 2=34a . 在△PF 1F 2中,由余弦定理得,cos ∠F 1PF 2=r 21+r 22-|F 1F 2|22r 1r 2=⎝ ⎛⎭⎪⎫54a 2+⎝ ⎛⎭⎪⎫34a 2-222×54a ×34a =35, 解得a =2,因为c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k2,且Δ=48(3+4k 2-m 2)>0,①设AB 的中点为M (x 0,y 0),连接QM ,则x 0=x 1+x 22=-4km 3+4k 2,y 0=kx 0+m =3m3+4k2, 因为|AQ |=|BQ |,所以AB ⊥QM ,又Q ⎝ ⎛⎭⎪⎫14,0,M 为AB 的中点,所以k ≠0,直线QM 的斜率存在,所以k ·k QM =k ·3m3+4k 2-4km 3+4k 2-14=-1,解得m =-3+4k24k,②把②代入①得3+4k 2>⎝ ⎛⎭⎪⎫-3+4k 24k 2,整理得16k 4+8k 2-3>0,即(4k 2-1)(4k 2+3)>0,解得k >12或k <-12,故k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞.[综合题组练]1.(一题多解)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A.12 B .22 C.32D .55解析:选C.法一:设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),分别代入椭圆方程,得⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式相减得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.因为k AB =y 1-y 2x 1-x 2=1,且x 1+x 2=-8,y 1+y 2=2,所以b 2a 2=14,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=32,故选C.法二:将直线方程x -y +5=0代入x 2a 2+y 2b2=1(a >b >0),得(a 2+b 2)x 2+10a 2x +25a 2-a 2b2=0,设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-10a2a 2+b 2,又由中点坐标公式知x 1+x 2=-8,所以10a 2a 2+b 2=8,解得a =2b ,又c =a 2-b 2=3b ,所以e =c a =32.故选C.2.(一题多解)(2020·广东深圳一模)已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线与椭圆交于P ,Q 两点,PQ ⊥PF 1,且|QF 1|=2|PF 1|,则△PF 1F 2与△QF 1F 2的面积之比为( )A .2- 3B .2-1 C.2+1D .2+ 3解析:选D.法一:可设|PF 1|=t ,则|QF 1|=2|PF 1|=2t , 由椭圆的定义可得|PF 2|=2a -t ,|QF 2|=2a -2t , |PQ |=4a -3t ,则|PQ |2+|PF 1|2=|QF 1|2,即(4a -3t )2+t 2=4t 2,即有4a -3t =3t ,解得t =43+3a ,则△PF 1F 2与△QF 1F 2的面积之比为12|PF 1|·|PF 2|12|QF 1|·|QF 2|·sin 30°=12·43+3a ·2+233+3a 12·83+3a ·23-23+3a ·12=1+33-1=2+ 3.故选D.法二:同法一得出t =43+3a ,则S △PF 1F 2S △QF 1F 2=12|F 1F 2||y P |12|F 1F 2||y Q |=|y P ||y Q |=|PF 2||QF 2|=2a -t2a -2t =2a -43+3a2a -2×43+3a=(2+23)a (23-2)a=2+ 3.故选D.3.(一题多解)(2020·安徽蚌埠一模)已知F 1,F 2是椭圆x 24+y 23=1的左,右焦点,点A的坐标为⎝⎛⎭⎪⎫-1,32,则∠F 1AF 2的平分线所在直线的斜率为________. 解析:法一:因为F 1,F 2是椭圆x 24+y 23=1的左,右焦点,所以F 1(-1,0),F 2(1,0),又A ⎝ ⎛⎭⎪⎫-1,32, 所以AF 1⊥x 轴,所以|AF 1|=32,则|AF 2|=52,所以点F 2(1,0)关于l (∠F 1AF 2的平分线所在直线)对称的点F ′2在线段AF 1的延长线上,又|AF ′2|=|AF 2|=52,所以|F ′2F 1|=1,所以F ′2(-1,-1),线段F ′2F 2的中点坐标为⎝⎛⎭⎪⎫0,-12,所以所求直线的斜率为32-⎝⎛⎭⎪⎫-12-1-0=-2.法二:如图.设∠F1AF2的平分线交x轴于点N,∠F1AN=β,∠ANF2=α.因为tan 2β=|F1F2||AF1|=232=43=2tan β1-tan2β,所以tan β=12或-2(舍).在Rt△AF1N中,tan β=|F1N||AF1|,即|F1N|32=12,所以|F1N|=34,所以k l=tan α=tan(π-∠ANF1)=-tan∠ANF1=-|AF1||F1N|=-3234=-2.答案:-24.如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则椭圆的离心率的取值范围为________.解析:设椭圆的方程为x2a2+y2b2=1(a>b>0),∠B1PA2为钝角可转化为B2A2→,F2B1→所夹的角为钝角,则(a,-b)·(-c,-b)<0,得b2<ac,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a-1>0即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝⎛⎭⎪⎫5-12,15.在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴、y 轴上滑动,CP →=2PD →.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线与曲线E 相交于A ,B 两点,OM →=OA →+OB →,当点M 在曲线E 上时,求四边形AOBM 的面积.解:(1)设C (m ,0),D (0,n ),P (x ,y ). 由CP →=2PD →,得(x -m ,y )=2(-x ,n -y ).所以⎩⎨⎧x -m =-2x ,y =2(n -y ),得⎩⎨⎧m =(2+1)x ,n =2+12y ,由|CD →|=2+1,得m 2+n 2=(2+1)2, 所以(2+1)2x 2+(2+1)22y 2=(2+1)2,整理,得曲线E 的方程为x 2+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由OM →=OA →+OB →, 知点M 的坐标为(x 1+x 2,y 1+y 2). 由题意知,直线AB 的斜率存在.设直线AB 的方程为y =kx +1,代入曲线E 的方程,得 (k 2+2)x 2+2kx -1=0, 则x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2. y 1+y 2=k (x 1+x 2)+2=4k 2+2.由点M 在曲线E 上,知(x 1+x 2)2+(y 1+y 2)22=1,即4k 2(k 2+2)2+8(k 2+2)2=1,解得k 2=2. 这时|AB |=1+k 2|x 1-x 2|=3[(x 1+x 2)2-4x 1x 2]=322,原点到直线AB 的距离d =11+k2=33, 所以平行四边形OAMB 的面积S =|AB |·d =62. 6.(2020·郑州模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,原点到过点A (0,-b )和B (a ,0)的直线的距离为32. (1)求椭圆的方程;(2)设F 1,F 2为椭圆的左、右焦点,过F 2作直线交椭圆于P ,Q 两点,求△PQF 1内切圆半径r 的最大值.解:(1)直线AB 的方程为x a +y-b=1, 即bx -ay -ab =0. 原点到直线AB 的距离为|-ab |(-a )2+b2=32, 即3a 2+3b 2=4a 2b 2,① 由e =c a =63,得c 2=23a 2,② 又a 2=b 2+c 2,③所以联立①②③可得a 2=3,b 2=1,c 2=2. 故椭圆的方程为x 23+y 2=1.(2)由(1)得F 1(-2,0),F 2(2,0), 设P (x 1,y 1),Q (x 2,y 2).易知直线PQ 的斜率不为0,故设其方程为x =ky +2, 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x =ky +2,x 23+y 2=1,(k 2+3)y 2+22ky -1=0.故⎩⎪⎨⎪⎧y 1+y 2=-22kk 2+3,y 1y 2=-1k 2+3.④而S △PQF 1=S △F 1F 2P +S △F 1F 2Q =12|F 1F 2||y 1-y 2|= 2 (y 1+y 2)2-4y 1y 2,⑤ 将④代入⑤,得S △PQF 1=2⎝ ⎛⎭⎪⎫-22k k 2+32+4k 2+3=2 6 k 2+1k 2+3. 又S △PQF 1=12(|PF 1|+|F 1Q |+|PQ |)·r =2a ·r =23r ,所以2 6 k 2+1k 2+3=23r ,故r = 2 k 2+1k 2+3=2k 2+1+2k 2+1≤12, 当且仅当k 2+1=2k 2+1,即k =±1时取等号.故△PQF 1内切圆半径r 的最大值为12.。

2021高考数学一轮复习统考第9章平面解析几何第5讲椭圆课时作业含解析北师大版

2021高考数学一轮复习统考第9章平面解析几何第5讲椭圆课时作业含解析北师大版

椭圆课时作业1.若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A .12B .33 C .22D .24答案 C解析 因为椭圆的短轴长等于焦距,所以b =c ,所以a 2=b 2+c 2=2c 2,所以e =c a =22,故选C .2.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .8答案 D解析 椭圆焦点在y 轴上,∴a 2=m -2,b 2=10-m .又c =2,∴m -2-(10-m )=c 2=4.∴m =8.3.(2019·杭州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=1 答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1.选A .4.椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8D .32答案 B解析 |ON |=12|MF 2|=12×(2a -|MF 1|)=12×(10-2)=4,故选B .5.(2019·河南豫北联考)已知点P ⎝⎛⎭⎪⎫1,22是椭圆x 2a 2+y 2=1(a >1)上的点,A ,B 是椭圆的左、右顶点,则△PAB 的面积为( )A .2B .24C .12 D .1答案 D解析 由题可得1a 2+12=1,∴a 2=2,解得a =2(负值舍去),则S △PAB =12×2a ×22=1,故选D .6.(2019·吉林长春模拟)椭圆x 22+y 2=1的两个焦点分别是F 1,F 2,点P 是椭圆上任意一点,则·的取值范围是( )A .[-1,1]B .[-1,0]C .[0,1]D .[-1,2]答案 C解析 由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),∴=(-1-x ,-y ),=(1-x ,-y ),则·=x 2+y 2-1=x 22∈[0,1],故选C .7.(2019·湖南郴州模拟)设e 是椭圆x 24+y 2k =1的离心率,且e ∈⎝ ⎛⎭⎪⎫12,1,则实数k 的取值范围是( )A .(0,3)B .⎝⎛⎭⎪⎫3,163C .(0,3)∪⎝ ⎛⎭⎪⎫163,+∞D .(0,2)答案 C解析 当k >4时,c =k -4,由条件知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件知14<4-k4<1,解得0<k <3.故选C .8.若椭圆x 236+y 29=1的弦被点(4,2)平分,则此弦所在直线的斜率是( )A .2B .-2C .13D .-12答案 D解析 设弦的端点为A (x 1,y 1),B (x 2,y 2),∴⎩⎪⎨⎪⎧x 21+4y 21=36,x 22+4y 22=36,整理,得x 21-x 22=-4(y 21-y 22),∴此弦的斜率为y 1-y 2x 1-x 2=x 1+x 2-4(y 1+y 2)=-12,则此直线的斜率为-12. 9.(2020·甘肃联考)设A ,B 是椭圆C :x 212+y 22=1的两个焦点,点P 是椭圆C 与圆M :x 2+y 2=10的一个交点,则||PA |-|PB ||=( )A .2 2B .4 3C .4 2D .6 2答案 C解析 由题意知,A ,B 恰好在圆M 上且AB 为圆M 的直径,∴|PA |+|PB |=2a =43,|PA |2+|PB |2=(2c )2=40,∴(|PA |+|PB |)2=|PA |2+|PB |2+2|PA ||PB |,解得2|PA ||PB |=8,∴(|PA |-|PB |)2=|PA |2+|PB |2-2|PA ||PB |=32,则||PA |-|PB ||=42,故选C .10.(2020·西安摸底检测)设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π4,若AB =4,BC =2,则椭圆的两个焦点之间的距离为( )A .463B .263C .433D .233答案 A解析 不妨设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),如图,由题意知,2a =4,a =2,∵∠CBA =π4,BC =2,∴点C 的坐标为(-1,1),∵点C 在椭圆上,∴14+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c =263,则椭圆的两个焦点之间的距离为463.11.(2019·山西八校联考)椭圆x 225+y 216=1的左、右焦点分别为F 1,F 2,弦AB 过F 1,若△ABF 2的内切圆周长为π,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则|y 1-y 2|的值为( )A .53 B .103C .203D .53答案 A解析 在椭圆x 225+y 216=1中,a =5,b =4,所以c =3.故椭圆左、右焦点分别为F 1(-3,0),F 2(3,0).由△ABF 2的内切圆周长为π,可得内切圆的半径为r =12.△ABF 2的面积=△AF 1F 2的面积+△BF 1F 2的面积=12|y 1|·|F 1F 2|+12|y 2|·|F 1F 2|=12(|y 1|+|y 2|)·|F 1F 2|=3|y 1-y 2|(A ,B 在x轴的上下两侧),又△ABF 2的面积=12r (|AB |+|BF 2|+|F 2A |)=12×12(2a +2a )=a =5,所以3|y 1-y 2|=5,即|y 1-y 2|=53.12.(2019·湖北八校联考)如图,已知椭圆C 的中心为原点O ,F (-5,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=6,则椭圆C 的方程为( )A .x 236+y 216=1B .x 240+y 215=1C .x 249+y 224=1 D .x 245+y 220=1 答案 C解析 由题意可得c =5,设右焦点为F ′,连接PF ′,由|OP |=|OF |=|OF ′|=12|FF ′|知,∠FPF ′=90°,即PF ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=102-62=8,由椭圆定义,得|PF |+|PF ′|=2a =6+8=14,从而a =7,得a 2=49,于是b 2=a 2-c 2=72-52=24,所以椭圆C 的方程为x 249+y 224=1,故选C .13.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.答案33解析 设|PF 2|=m ,∵PF 2⊥F 1F 2,∠PF 1F 2=30°,∴|PF 1|=2m ,|F 1F 2|=3m .又|PF 1|+|PF 2|=2a ,|F 1F 2|=2c .∴2a =3m,2c =3m ,∴C 的离心率为e =c a =33. 14.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,分析可知M 在以F 1为圆心、焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎨⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15).15.(2019·浙江高考)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.答案15解析 如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此OM =2. 在△FF ′P 中,OM 12PF ′, 所以PF ′=4.根据椭圆的定义,得PF +PF ′=6,所以PF =2. 又因为FF ′=4, 所以在Rt △MFF ′中,tan ∠PFF ′=MF ′MF =FF ′2-MF 2MF=15,即直线PF 的斜率是15.16.(2020·南充模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且·=0,=3,则椭圆C 的标准方程为________,圆A 的标准方程为________.答案x 24+y 2=1 (x -2)2+y 2=85解析 如图,设T 为线段PQ 的中点,连接AT ,则AT ⊥PQ .∵·=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又=3, ∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12. 由已知得半焦距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4, ∴|AT |2+4|AT |2=4,∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85.17.(2019·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围. 解 (1)连接PF 1.由△POF 2为等边三角形可知在△F 1PF 2中,∠F 1PF 2=90°,|PF 2|=c ,|PF 1|=3c ,于是2a =|PF 1|+|PF 2|=(3+1)c ,故C 的离心率为e =ca=3-1.(2)由题意可知,满足条件的点P (x ,y )存在当且仅当 12|y |·2c =16,y x +c ·y x -c =-1,x 2a 2+y 2b 2=1, 即c |y |=16,①x 2+y 2=c 2,② x 2a 2+y 2b 2=1.③ 由②③及a 2=b 2+c 2得y 2=b 4c2.又由①知y 2=162c2,故b =4.由②③及a 2=b 2+c 2得x 2=a 2c2(c 2-b 2),所以c 2≥b 2,从而a 2=b 2+c 2≥2b 2=32,故a ≥4 2. 当b =4,a ≥42时,存在满足条件的点P . 所以b =4,a 的取值范围为[42,+∞).18.(2019·成都一诊)已知椭圆x 25+y 24=1的右焦点为F ,设直线l :x =5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(1)若直线l 1的倾斜角为π4,求|AB |的值;(2)设直线AM 交直线l 于点N ,证明:直线BN ⊥l . 解 由题意知,F (1,0),E (5,0),M (3,0). (1)∵直线l 1的倾斜角为π4,∴斜率k =1.∴直线l 1的方程为y =x -1.代入椭圆方程,可得9x 2-10x -15=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=109,x 1x 2=-53.∴|AB |=2·(x 1+x 2)2-4x 1x 1 =2×⎝ ⎛⎭⎪⎫1092+4×53=1659.(2)证明:设直线l 1的方程为y =k (x -1). 代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2.设N (5,y 0),∵A ,M ,N 三点共线, ∴-y 13-x 1=y 02,∴y 0=2y 1x 1-3. 而y 0-y 2=2y 1x 1-3-y 2=2k (x 1-1)x 1-3-k (x 2-1) =3k (x 1+x 2)-kx 1x 2-5kx 1-3=3k ·10k 24+5k 2-k ·5k 2-204+5k 2-5k x 1-3=0.∴直线BN ∥x 轴,即直线BN ⊥l .19.(2019·广东广州联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为26,且过点A (2,1).(1)求椭圆C 的方程;(2)若不经过点A 的直线l :y =kx +m 与椭圆C 交于P ,Q 两点,且直线AP 与直线AQ 的斜率之和为0,证明:直线PQ 的斜率为定值.解 (1)因为椭圆C 的焦距为26,且过点A (2,1), 所以4a 2+1b2=1,2c =2 6.又因为a 2=b 2+c 2,由以上三式解得a 2=8,b 2=2, 所以椭圆C 的方程为x 28+y 22=1.(2)证明:设点P (x 1,y 1),Q (x 2,y 2),x 1≠x 2≠2, 则y 1=kx 1+m ,y 2=kx 2+m .由⎩⎪⎨⎪⎧y =kx +m ,x 28+y22=1,消去y 并整理,得(4k 2+1)x 2+8kmx +4m 2-8=0, 则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-84k 2+1.因为k AP +k AQ =0,所以y 1-1x 1-2=-y 2-1x 2-2, 化简得x 1y 2+x 2y 1-(x 1+x 2)-2(y 1+y 2)+4=0. 即2kx 1x 2+(m -1-2k )(x 1+x 2)-4m +4=0. 所以2k (4m 2-8)4k 2+1-8km (m -1-2k )4k 2+1-4m +4=0, 整理得(2k -1)(m +2k -1)=0. 因为直线l 不经过点A , 所以2k +m -1≠0,所以k =12.所以直线PQ 的斜率为定值,该值为12.20.(2019·天津高考)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解 (1)设椭圆的半焦距为c ,依题意,2b =4,c a =55,又a 2=b 2+c 2,可得a =5,b =2,c =1.所以,椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M,0),直线PB 的斜率为k (k ≠0),因为B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立,得⎩⎪⎨⎪⎧y =kx +2,x 25+y24=1,整理得(4+5k 2)x 2+20kx =0, 可得x P =-20k4+5k2,代入y =kx +2得y P =8-10k24+5k2,进而直线OP 的斜率为y P x P =4-5k 2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245,从而k =±2305.所以直线PB 的斜率为2305或-2305.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

9-5椭 圆

9-5椭 圆

考基自主导学
考向探究导析
考题专项突破
活页限时训练
考向三 椭圆几何性质的应用 x2 【例3】►(2011· 北京)已知椭圆G: 4 +y2=1.过点(m,0)作圆x2+ y2=1的切线l交椭圆G于A,B两点. (1)求椭圆G的焦点坐标和离心率; (2)将|AB|表示为m的函数,并求|AB|的最大值. [审题视点] (1)由椭圆方程可直接求出c,从而求出离心率.(2) 可设出直线方程与椭圆方程联立得一元二次方程,由弦长公式 列出|AB|长的表达式从而求出|AB|的最大值.
活页限时训练
解 (1)若椭圆的焦点在x轴上, x2 y2 设方程为 2+ 2=1(a>b>0), a b 9 ∵椭圆过点A(3,0),∴a2=1,a=3, x2 2 ∵2a=3· 2b,∴b=1,∴方程为 9 +y =1. 若椭圆的焦点在y轴上, y2 x2 设椭圆方程为a2+b2=1(a>b>0), 02 9 ∴椭圆过点A(3,0),∴a2+b2=1,∴b=3,
∵2a+2b=18,∴a+b=9,又∵2c=6,∴c=3,则c2
=a2-b2=9,故a-b=1,从而可得a=5,b=4,∴椭圆的方 x2 y2 x2 y2 程为25+16=1或16+25=1. 答案 C
考基自主导学 考向探究导析 考题专项突破 活页限时训练
x2 y2 2.(2012· 合肥月考)设P是椭圆 + =1上的点,若F1、F2是 25 16 椭圆的两个焦点,则|PF1|+|PF2|等于( A.4 B.5 C.8 D.10 解析 答案 依椭圆的定义知:|PF1|+|PF2|=2×5=10. D ).
考基自主导学
考向探究导析
考题专项突破
活页限时训练
【训练2】 准方程.
(1)求长轴是短轴的3倍且经过点A(3,0)的椭圆的标

5 第5讲 椭 圆

5 第5讲 椭 圆

第5讲椭圆1.椭圆的定义条件结论1结论2 平面内的动点M与平面内的两个定点F1,F2M点的轨迹为椭圆F1、F2为椭圆的焦点|F1F2|为椭圆的焦距|MF1|+|MF2|=2a 2a>|F1F2|标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:x轴、y轴对称中心:(0,0)顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca,e∈(0,1)a,b,c的关系c2=a2-b2已知点P(x0,y0),椭圆x2a2+y2b2=1(a>b>0),则(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.4.椭圆中四个常用结论(1)P 是椭圆上一点,F 为椭圆的焦点,则|PF |∈[a -c ,a +c ],即椭圆上的点到焦点距离的最大值为a +c ,最小值为a -c ;(2)椭圆的通径(过焦点且垂直于长轴的弦)长为2b 2a,通径是最短的焦点弦;(3)P 是椭圆上不同于长轴两端点的任意一点,F 1,F 2为椭圆的两焦点,则△PF 1F 2的周长为2(a +c ).(4)设P ,A ,B 是椭圆上不同的三点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为定值-b 2a2.判断正误(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( ) (3)椭圆既是轴对称图形,又是中心对称图形.( )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (5)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√(教材习题改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 解析:选D.右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1. 与椭圆x 29+y 24=1有相同离心率的椭圆方程是( )A.y 29+x 24=1 B.x 236+y 225=1 C.y 236+x 225=1 D.x 236+y 211=1 解析:选A.椭圆y 29+x 24=1与已知椭圆的长轴长和短轴长分别相等,因此两椭圆的形状、大小完全一样,只是焦点所在坐标轴不同,故两个椭圆的离心率相同. 若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4.答案:(3,4)∪(4,5)(教材习题改编)椭圆C :x 225+y 216=1的左右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A 、B 两点,则△F 1AB 的周长为________. 解析:△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a .在椭圆x 225+y 216=1中,a 2=25,a =5,所以△F 1AB 的周长为4a =20. 答案:20椭圆的定义及应用[典例引领](1)(2018·豫北六校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16,则|AF 2|=________.(2)(2018·徐州模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________. 【解析】 (1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3, 因为△ABF 2的周长为16,所以4a =16,所以a =4.则|AF 1|+|AF 2|=2a =8, 所以|AF 2|=8-|AF 1|=8-3=5. (2)设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3.【答案】 (1)5 (2)3本例(2)中增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解:由原题得b 2=a 2-c 2=9,又2a +2c =18,所以a -c =1,解得a =5,故椭圆的方程为x 225+y 29=1.(1)椭圆定义的应用范围①确认平面内与两定点有关的轨迹是否为椭圆. ②解决与焦点有关的距离问题. (2)焦点三角形的结论椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫作焦点三角形.如图所示,设∠F 1PF 2=θ. ①|PF 1|+|PF 2|=2a .②4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ. ③焦点三角形的周长为2(a +c ).④S △PF 1F 2=12|PF 1||PF 2|sin θ=b 2·sin θ1+cos θ=b 2tan θ2=c |y 0|,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取最大值,为bc .已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN的垂直平分线交MA 于点P ,则动点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:选B.点P 在线段AN 的垂直平分线上,故|P A |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|P A |=|AM |=6>|MN |.由椭圆的定义知,P 的轨迹是椭圆.椭圆的标准方程[典例引领](待定系数法)(1)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( ) A.x 28+y 26=1 B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 (2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为( )A.x 220+y 24=1 B.x 225+y 24=1 C.y 220+x 24=1 D.x 24+y 225=1 【解析】 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12,得a 2=8,b 2=6,故椭圆方程为x 28+y26=1.(2)设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得(-5)225-k +(3)29-k=1,解得k =5(k =21舍去),所以所求椭圆的标准方程为y 220+x 24=1.【答案】 (1)A (2)C[提醒] 当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).[通关练习]1.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则该椭圆的方程为________.解析:设椭圆方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ).因为椭圆经过P 1,P 2两点,所以P 1,P 2点坐标适合椭圆方程,则⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,②①②两式联立,解得⎩⎨⎧m =19,n =13.所以所求椭圆方程为x 29+y 23=1.答案:x 29+y 23=12.已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是________________. 解析:设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,a ∶b =2∶3,c =2,解得a 2=16,b 2=12.所以椭圆C 的方程为x 216+y 212=1.答案:x 216+y 212=1椭圆的几何性质(高频考点)椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大.高考对椭圆几何性质的考查主要有以下三个命题角度: (1)由椭圆的方程研究其性质; (2)求椭圆离心率的值(范围); (3)由椭圆的性质求参数的值(范围).[典例引领]角度一 由椭圆的方程研究其性质已知正数m 是2和8的等比中项,则圆锥曲线x 2+y 2m=1的焦点坐标为( ) A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)【解析】 因为正数m 是2和8的等比中项,所以m 2=16,即m =4,所以椭圆x 2+y 24=1的焦点坐标为(0,±3),故选B.【答案】 B角度二 求椭圆离心率的值(范围)(2017·高考全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为 ( ) A.63 B.33C.23D.13【解析】 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a 2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63,选A. 【答案】 A角度三 由椭圆的性质求参数的值(范围)已知椭圆mx 2+4y 2=1的离心率为22,则实数m 等于( ) A .2 B .2或83C .2或6D .2或8【解析】 显然m >0且m ≠4,当0<m <4时,椭圆长轴在x 轴上,则1m -141m=22,解得m =2;当m >4时,椭圆长轴在y 轴上,则14-1m 14=22,解得m =8. 【答案】 D(1)求椭圆离心率的方法①直接求出a ,c 的值,利用离心率公式e =ca=1-b 2a2直接求解. ②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.(2)利用椭圆几何性质求值或范围的思路①将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系. ②将所求范围用a ,b ,c 表示,利用a ,b ,c 自身的范围、关系求范围.[通关练习]1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( ) A .(-3,0) B .(-4,0) C .(-10,0)D .(-5,0)解析:选D.因为圆的标准方程为(x -3)2+y 2=1, 所以圆心坐标为(3,0),所以c =3.又b =4, 所以a =b 2+c 2=5. 因为椭圆的焦点在x 轴上, 所以椭圆的左顶点为(-5,0).2.(2018·新余模拟)椭圆C 的两个焦点分别是F 1,F 2,若C 上的点P 满足|PF 1|=32|F 1F 2|,则椭圆C 的离心率e 的取值范围是( ) A .e ≤12B .e ≥14C.14≤e ≤12D .0<e ≤14或12≤e <1解析:选C.因为椭圆C 上的点P 满足|PF 1|=32|F 1F 2|,所以|PF 1|=32×2c =3c .由a -c ≤|PF 1|≤a +c ,解得14≤c a ≤12.所以椭圆C 的离心率e 的取值范围是⎣⎡⎦⎤14,12.3.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2 B .3 C .6D .8解析:选C.由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +3⎝⎛⎭⎫1-x 24 =14x 2+x +3=14(x +2)2+2,-2≤x ≤2, 当且仅当x =2时,OP →·FP →取得最大值6.直线与椭圆的位置关系[典例引领](2017·高考北京卷)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5. 【解】 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c = 3.所以b 2=a 2-c 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)设M (m ,n ),则D (m ,0),N (m ,-n ). 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n .所以直线DE 的方程为y =-m +2n(x -m ). 直线BN 的方程为y =n2-m(x -2).联立⎩⎨⎧y =-m +2n (x -m ),y =n2-m (x -2),解得点E 的纵坐标y E=-n (4-m 2)4-m 2+n 2.由点M 在椭圆C 上,得4-m 2=4n 2, 所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.(1)直线与椭圆位置关系判断的步骤①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.(2)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则 |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率,k ≠0). 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝⎛⎭⎫1,32,离心率为12,左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点. (1)求椭圆C 的方程;(2)当△F 2AB 的面积为1227时,求直线的方程.解:(1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝⎛⎭⎫1,32, 所以1a 2+94b 2=1.①又因为离心率为12,所以c a =12,所以b 2a 2=34.②解①②得a 2=4,b 2=3. 所以椭圆C 的方程为x 24+y 23=1.(2)当直线的倾斜角为π2时,A ⎝⎛⎭⎫-1,32,B ⎝⎛⎭⎫-1,-32, S △ABF 2=12|AB |·|F 1F 2|=12×3×2=3≠1227.当直线的倾斜角不为π2时,设直线方程为y =k (x +1),代入x 24+y 23=1得(4k 2+3)x 2+8k 2x +4k 2-12=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以S △ABF 2=12|y 1-y 2|×|F 1F 2|=|k |(x 1+x 2)2-4x 1x 2 =|k |⎝⎛⎭⎫-8k 24k 2+32-4·4k 2-124k 2+3=12|k |k 2+14k 2+3=1227,所以17k 4+k 2-18=0,解得k 2=1⎝⎛⎭⎫k 2=-1817舍去, 所以k =±1,所以所求直线的方程为x -y +1=0或x +y +1=0.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n )与椭圆有关的最值问题,在转化为函数求最值时,一定注意函数的定义域. 易错防范(1)判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.(2)在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.(3)椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系.1.已知椭圆x 2m -2+y 210-m =1的焦点在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5解析:选A.因为椭圆x 2m -2+y 210-m =1的焦点在x 轴上.所以⎩⎪⎨⎪⎧10-m >0,m -2>0,m -2>10-m ,解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.2.(2018·湖北武汉模拟)已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( ) A.x 216+y 27=1 B.x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D.x 216+y 225=1或x 225+y 216=1 解析:选B.因为a =4,e =34,所以c =3,所以b 2=a 2-c 2=16-9=7.因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.3.(2018·湖北八校联考)设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59解析:选B.由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,因为OM ⊥F 1F 2,所以PF 2⊥F 1F 2,所以|PF 2|=b 2a =53.又因为|PF 1|+|PF 2|=2a =6,所以|PF 1|=2a-|PF 2|=133,所以|PF 2||PF 1|=53×313=513,故选B.4.(2018·湖南百校联盟联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为( )A.35B.12C.23D.34解析:选A.因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即OC =bca ,因为四边形F AMN是平行四边形,所以点M 的坐标为⎝⎛⎭⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0,又0<e <1,所以e =35.故选A.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( ) A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1解析:选D.由题意可设P ⎝⎛⎭⎫a2c ,y ,因为PF 1的中垂线过点F 2,所以|F 1F 2|=|F 2P |,即2c = ⎝⎛⎭⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2. 因为y 2≥0,所以3c 2+2a 2-a 4c 2≥0, 即3e 2-1e 2+2≥0,解得e ≥33.所以e 的取值范围是⎣⎡⎭⎫33,1.6.(2018·贵阳模拟)若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________.解析:由题意可知e =c a =32,2b =4,得b =2,所以⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎨⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.答案:x 216+y 24=17.设F 1,F 2是椭圆x 249+y 224=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为________.解析:因为|PF 1|+|PF 2|=14, 又|PF 1|∶|PF 2|=4∶3, 所以|PF 1|=8,|PF 2|=6. 因为|F 1F 2|=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.答案:248.(2018·海南海口模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-c ,0),右顶点为A ,上顶点为B ,现过A 点作直线F 1B 的垂线,垂足为T ,若直线OT (O 为坐标原点)的斜率为-3bc ,则该椭圆的离心率为________.解析:因为椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 和F 1点坐标分别为(a ,0),(0,b ),(-c ,0),所以直线BF 1的方程是y =b c x +b ,OT 的方程是y =-3bc x .联立解得T 点坐标为⎝⎛⎭⎫-c 4,3b 4,直线AT 的斜率为-3b 4a +c .由AT ⊥BF 1得,-3b 4a +c ·b c =-1,因为a 2=b 2+c 2,e =ca ,所以e =12.答案:129.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b>0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32,解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1.10.(2018·兰州市诊断考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),且离心率为22.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P 满足OP→=OM →+2ON →,求点P 的轨迹方程. 解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b 2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2, 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知, k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程为x 220+y 210=1.1.(2017·高考全国卷Ⅰ)设A 、B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)解析:选A.依题意得,⎩⎪⎨⎪⎧3m≥tan∠AMB 20<m <3或 ⎩⎪⎨⎪⎧m 3≥tan ∠AMB 2m >3,所以⎩⎪⎨⎪⎧3m ≥tan 60°0<m <3 或⎩⎪⎨⎪⎧m 3≥tan 60°m >3,解得0<m ≤1或m ≥9.故选A. 2.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|P A |+|PF |的最大值为________,最小值为________. 解析:如图所示,设椭圆右焦点为F 1,则|PF |+|PF 1|=6. 所以|P A |+|PF |=|P A |-|PF 1|+6.利用-|AF 1|≤|P A |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立). 所以|P A |+|PF |≤6+2,|P A |+|PF |≥6- 2. 故|P A |+|PF |的最大值为6+2,最小值为6- 2. 答案:6+2 6- 23.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1.解得a =7,b 2=4a =28, 故a =7,b =27.4.已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=2PB →. (1)求椭圆的方程; (2)求m 的取值范围.解:(1)由题意知椭圆的焦点在y 轴上,可设椭圆方程为y 2a 2+x 2b 2=1(a >b >0),由题意知a =2,b =c , 又a 2=b 2+c 2, 则b =2,所以椭圆的方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意知,直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,得⎩⎪⎨⎪⎧y 2+2x 2=4,y =kx +m . 则(2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0.由根与系数的关系知⎩⎪⎨⎪⎧x 1+x 2=-2mk 2+k 2x 1x 2=m 2-42+k2,又由AP →=2PB →,即(-x 1,m -y 1)=2(x 2,y 2-m ),得-x 1=2x 2,故⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22,可得m 2-42+k 2=-2⎝⎛⎭⎫2mk 2+k 22, 整理得(9m 2-4)k 2=8-2m 2,又9m 2-4=0时不符合题意, 所以k 2=8-2m 29m 2-4>0,解得49<m 2<4,此时Δ>0,解不等式49<m 2<4,得23<m <2或-2<m <-23, 所以m 的取值范围为⎝⎛⎭⎫-2,-23∪⎝⎛⎭⎫23,2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 平面解析几何
第5讲 椭 圆
第九章 平面解析几何
1.椭圆的定义 条件
平面内的动点 M 与平面内 的两个定点 F1,F2 |MF1|+|MF2|=2a 2a>|F1F2|
结论 1
M 点的 轨迹为 椭圆
结论 2 _F_1_、__F_2_为椭圆的
焦点 __|F__1F__2|_为椭圆的
焦距
栏目 导引
性质 对称性
对称轴:__x_轴__、__y_轴_______ 对称中心:(0,0)
顶点 A1(-a,0),A2(a,0) A1(0,-a),A2(0,a) B1(0,-b),B2(0,b) B1(-b,0),B2(b,0)
栏目 导引
第九章 平面解析几何
标准方程 xa22+by22=1(a>b>0) ay22+xb22=1(a>b>0)
栏目 导引
第九章 平面解析几何
2.已知椭圆 C:xa22+by22=1(a>b>0)的左、右焦点分别为 F1,
F2,离心率为 33,过 F2 的直线 l 交 C 于 A,B 两点.若△AF1B
的周长为 4 3,则 C 的方程为( )
A.x32+y22=1
B.x32+y2=1
C.1x22 +y82=1
椭圆的定义及应用(高频考点) 椭圆的定义是每年高考的重点,题型既有选择、填空题, 也有时出现在解答题的已知条件中.主要命题角度有: (1)利用定义求轨迹方程; (2)利用定义解决“焦点三角形”问题.
栏目 导引
第九章 平面解析几何
[典例引领] 角度一 利用定义求轨迹方程
(1)如图,圆 O 的半径为定长 r,A 是圆 O 内一个定点, P 是圆上任意一点,线段 AP 的垂直平分线 l 和半径 OP 相交 于点 Q,当点 P 在圆上运动时,点 Q 的轨迹是( ) A.椭圆 B.双曲线 C.抛物线 D.圆
栏目 导引
第九章 平面解析几何
[通关练习]
1.设 P 是椭圆2x52+y92=1 上一点,M,N 分别是两圆:(x+
4)2+y2=1 和(x-4)2+y2=1 上的点,则|PM|+|PN|的最小值
和最大值分别为( )
A.9,12
B.8,11
C.8,12
D.10,12
栏目 导引
第九章 平面解析几何
栏目 导引
第九章 平面解析几何
[通关练习] 1.已知 F1,F2 分别是椭圆 E:xa22+by22=1(a>b>0)的左、右
焦点,点1,
22在椭圆上,且点(-1,0)到直线
PF2 的距离
为455,其中点 P(-1,-4),则椭圆 E 的标准方程为( )
A.x2+y42=1
B.x42+y2=1
C.x2+y22=1
栏目 导引
第九章 平面解析几何
1.在本例中增加条件“△PF1F2 的周长为 18”,其他条件不 变,求该椭圆的方程. 解:由原题得 b2=a2-c2=9, 又 2a+2c=18,所以 a-c=1,解得 a=5, 故椭圆的方程为2x52 +y92=1.
栏目 导引
第九章 平面解析几何
2.在本例中的条件“P→F1⊥P→F2”“△PF1F2 的面积为 9”分别 改为“∠F1PF2=60°”“S△PF1F2=3 3”,结果如何?
栏目 导引
第九章 平面解析几何
已知椭圆2x52+my22=1(m>0)的左焦点为 F1(-4,0),则 m=
() A.2
B.3
C.4
D.9
解析:选 B.依题意有 25-m2=16,因为 m>0,所以 m=3. 选 B.
栏目 导引
第九章 平面解析几何
(教材习题改编)椭圆 C 的一个焦点为 F1(0,1),并且经过
第九章 平面解析几何
2.椭圆的标准方程和几何性质 标准方程 xa22+by22=1(a>b>0)
ay22+xb22=1(a>b>0)
图形
栏目 导引
第九章 平面解析几何
标准方程 xa22+by22=1(a>b>0) ay22+xb22=1(a>b>0)
-a≤x≤a 范围
-b≤y≤b
-b≤x≤b -a≤y≤a
=12×43b2× 23= 33b2=3 3, 所以 b=3.
栏目 导引
第九章 平面解析几何
椭圆定义的应用 (1)椭圆定义的应用主要有两个方面:一是判定平面内动点与 两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周 长、面积、弦长、最值和离心率等. (2)椭圆的定义式必须满足 2a>|F1F2|.
点 P(32,1)的椭圆的标准方程为( )
A.x42+y32=1
B.x22+y32=1
C.x32+y22=1
D.y42+x32=1
栏目 导引
第九章 平面解析几何
解析:选
D. 由 题 意 可 设 椭 圆
C
的标准方程为
y2 a2

x2 b2

1(a>b>0),且另一个焦点为 F2(0,-1),
所 以 2a = |PF1| + |PF2| =

焦距 性质
离心率
长轴 A1A2 的长为___2_a__ 短轴 B1B2 的长为___2_b___
|F1F2|=__2_c___
c e=__a_____,e∈(0,1)
a,b,c 的关系
c2=_a_2_-__b_2_
栏目 导引
第九章 平面解析几何
判断正误(正确的打“√”,错误的打“×”) (1)平面内两个定点 F1,F2 的距离之和等于常数的点的轨迹是 椭圆.( × ) (2)椭圆上一点 P 与两焦点 F1,F2 构成△PF1F2 的周长为 2a +2c(其中 a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ ) (3)椭圆的离心率 e 越大,椭圆就越圆.( × )

1
表示椭圆,则
k
的取值范围是
________.
解析:由已知得k5--3k>>00,,
解得 3<k<5 且 k≠4.
5-k≠k-3,
答案:(3,4)∪(4,5)
栏目 导引
第九章 平面解析几何
(教材习题改编)椭圆 C:2x52+1y62 =1 的左右焦点分别为 F1, F2,过 F2 的直线交椭圆 C 于 A,B 两点,则△F1AB 的周长 为________.
栏目 导引
第九章 平面解析几何
求椭圆标准方程的 2 种常用方法 根据椭圆的定义,确定 a2,b2 的值,结合焦点位 定义法 置可写出椭圆方程 若焦点位置明确,则可设出椭圆的标准方程,结合 待定系 已知条件求出 a、b;若焦点位置不明确,则需要 数法 分焦点在 x 轴上和 y 轴上两种情况讨论,也可设椭 圆的方程为 Ax2+By2=1(A>0,B>0,A≠B).
栏目 导引
第九章 平面解析几何
(2)已知两圆 C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动
圆在圆 C1 内部且和圆 C1 相内切,和圆 C2 相外切,则动圆圆
心 M 的轨迹方程为( )
A.6x42-4y82 =1
B.4x82+6y42 =1
C.4x82-6y42 =1
D.6x42+4y82 =1
栏目 导引
第九章 平面解析几何
(4)方程 mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭 圆.( √ ) (5)ay22+xb22=1(a≠b)表示焦点在 y 轴上的椭圆.( × ) (6)xa22+by22=1(a>b>0)与ay22+xb22=1(a>b>0)的焦距相等.( √ )
点,则该椭圆的标准方程为( )
A.x52+y2=1
B.x42+y52=1
C.x52+y2=1 或x42+y52=1 D.以上答案都不对
栏目 导引
第九章 平面解析几何
(2)一个椭圆的中心在原点,焦点 F1,F2 在 x 轴上,P(2, 3)
是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的
D.1x22 +y42=1
栏目 导引
第九章 平面解析几何
解析:选 A.由题意及椭圆的定义知 4a=4 3,则 a= 3,
又ac=
c= 3
33,所以
c=1,所以
b2=2,
所以 C 的方程为x32+y22=1,选 A.
栏目 导引
第九章 平面解析几何
椭圆的标准方程
[典例引领]
(1)若直线 x-2y+2=0 经过椭圆的一个焦点和一个顶
栏目 导引
第九章 平面解析几何
解析:△F1AB 的周长为|F1A|+|F1B|+|AB| =|F1A|+|F2A|+|F1B|+|F2B|=2a+2a=4a. 在椭圆2x52+1y62 =1 中,a2=25,a=5, 所以△F1AB 的周长为 4a=20. 答案:20
栏目 导引
第九章 平面解析几何
322+(1-1)2 +
322+(1+1)2=4. 所以 a=2,又 c=1,所以 b2=a2-c2=3. 故所求的椭圆方程为y42+x32=1,故选 D.
栏目 导引
第九章 平面解析几何
(教材习题改编)椭圆 C 的长轴长是短轴长的 3 倍,则 C 的
离心率为( )
A.
6 3
B.
2 3
C.
3 3
D.2 3 2
栏目 导引
第九章 平面解析几何
解析:选 D.不妨设椭圆 C 的方程为xa22+by22=1(a>b>0),则 2a =2b×3,即 a=3b.所以 a2=9b2=9(a2-c2). 即ac22=89,所以 e=ac=232,故选 D.
栏目 导引
第九章 平面解析几何
相关文档
最新文档