椭圆及其标准方程(第1课时)教学设计.doc
椭圆及其标准方程(第1课时)教学设计

椭圆及其标准方程(第1课时)教学设计一、教材内容分析本节是整个解析几何局部的重要根底学问。
这一节课是在《直线和圆的方程》的根底上,将探究曲线的方法拓展到椭圆,又是接着学习椭圆几何性质的根底,同时还为后面学习双曲线和抛物线作好打算。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析中学二年级学生正值身心开展的鼎盛时期,思维活泼,又有了相应学问根底,所以他们乐于探究、敢于探究。
但中学生的逻辑思维实力尚属经历型,运算实力不是很强,有待于训练。
基于上述分析,我采纳的是“创设问题情景-----自主探究探究-----结论应用稳固”的一种探究性教学方法,教学中采纳激发爱好、主动参加、踊跃体验、自主探究的学习,形成师生互动的教学气氛。
使学生真正成为课堂的主体。
三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动表达出数学的管用性;2、进展分组试验,让学生亲自动手,体验学问的发生过程,并造就团队协作精神;3、利用《几何画板》进展动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、驾驭标准方程及其推导。
2、过程与方法目标:注意数形结合,驾驭解析法探究几何问题的一般方法,注意探究实力的造就。
3、情感、看法和价值观目标:(1)探究方法激发学生的求知欲,造就深厚的学习爱好。
(2)进展数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程〔一〕、创设情景,导入新课。
〔3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆形态的物体?对学生的答复进展筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使学生简洁了解椭圆的实际应用,另一方面产生问题意识,对探究椭圆产生心理期盼。
(完整版)《椭圆及其标准方程》(第一课时)教学设计

《椭圆及其标准方程》(第一课时)教学设计一、教学内容分析教材选自人教A版《普通高中课程标准实验教科书》数学选修2-1.《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例。
椭圆的标准方程是圆锥曲线方程研究的基础,它的学习方法对整个这一章具有导向和引领作用。
一方面,它是对前面所学的运用“代数方法研究几何问题”的又一次实际演练,同时它也是进一步研究椭圆几何性质和双曲线、抛物线的基础;另一方面,教科书以椭圆作为学习圆锥曲线的开始和重点,并依此来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,为我们后面研究双曲线、抛物线这两种圆锥曲线提供了基本模式和方法。
因此本节课有承前启后的作用,是本章和本节的重点内容。
椭圆是通过描述椭圆形成过程进行定义的,作为椭圆本质属性的揭示和椭圆方程建立的基石,这是本节课的一个教学重点;而坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例,让学生亲身经历椭圆概念形成的数学化过程,并通过探究得到椭圆的标准方程,有利于培养学生观察分析、抽象概括的能力。
学生对“曲线与方程”的内在联系仅在“圆的方程”一节中有过一次感性认识,并未真正有所感受。
通过本节学习,学生一方面认识到椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础。
根据以上分析,确定本课时的教学难点和教学重点分别是:教学重点:掌握椭圆的定义及标准方程,体会坐标法的应用。
教学难点:椭圆概念的深入理解及选择不同的坐标系推导椭圆的标准方程。
二、学生学情分析在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识。
因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力。
而本节课要求学生通过自己动手亲自作出椭圆并且还要利用曲线方程的知识推导出方程,与前面学生熟悉的圆相比,对学生的抽象、分析、实践的能力要求比较高,可能困难要大一点,导致学生在学习中可能出现的困难是:学生动手作图慢;用尺规作图的思路可能出现障碍;受教材的影响,学生选择坐标系的思维可能受到限制;方程的化简也是一个难点。
人教课标版高中数学选修2-1《椭圆及其标准方程(第1课时)》教学设计

2.2.1 椭圆及其标准方程(第一课时)一、教学目标 (一)学习目标 1.掌握椭圆的定义;2.掌握椭圆标准方程的推导和标准方程. (二)学习重点椭圆的定义及椭圆标准方程. (三)学习难点椭圆标准方程的建立和推导. 二、教学设计 (一)预习任务设计 1.预习任务 写一写:(1)定义:平面内与两个定点12,F F 距离的和 等于常数 c ,大于12||F F 的点的轨迹叫做椭圆,这两个定点叫做椭圆的 焦点 ,两定点间距离叫做 椭圆的焦距 .(2)椭圆的标准方程: 焦点在x 轴上: 2221(0)y a b a b+=>> .焦点在y 轴上: 2221(0)x a b a b+=>> .2.预习自测判断分别满足下列条件的动点M 的轨迹是否为椭圆(1)到点()12,0F -和点()22,0F 的距离之和为6的点的轨迹; (2)到点()12,0F -和点2(2,0)F 的距离之和为4的点的轨迹; (3)到点()12,0F -和点2(2,0)F 的距离之和为3的点的轨迹.【解题过程】当12||||2MF MF a +=,且122||a F F >的常数时M 点的轨迹为椭圆,故(2)(3)不是.【思路点拨】注意把握椭圆的定义. 【答案】(1)是;(2)不是;(3)不是.(4)已知动圆P 过定点(3,0)A -,并且与定圆22:(3)64B x y -+=内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆 【解题过程】设动圆P 与定圆B 内切于M ,由条件知:||||||||||8PA PB PM PB BM +=+==,故P 的轨迹是以,A B 为焦点的椭圆.【思路点拨】利用椭圆的定义解题. 【答案】D (二)课堂设计 1.新知讲解探究一 创设情景,认识椭圆 ●活动① 归纳提炼概念画一画:①将一条绳子的两端固定在同一个定点上,用笔尖勾起绳子的中点使绳子绷紧,围绕定点旋转,笔尖形成的轨迹是什么?②将绳子的两端分别固定在两个定点上,笔尖勾直绳子,移动笔尖,得到的是轨迹是什么? 动画演示作图过程.提出问题:①作图过程中,哪些量没有变?哪些量变了? ②为什么要求作图过程中笔尖要绷紧?③笔尖所对应的动点M 到定点的距离有什么长度之间的关系? 总结:笔尖对应的动点M 到直线两个端点的长度之和固定不变.【设计意图】学生可通过动手实践的过程去体会“满足什么样的条件下的点的集合为椭圆”,从而对椭圆定义中的条件有直观深刻的认识.提出问题:根据刚才动手实践的过程,能否总结椭圆的定义?(同学自由发言,再由学生进一步补充完善)我们把平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.●活动② 辨析概念问题1:定义中的常数等于21F F ,则动点的轨迹是什么?问题2:定义中的常数小于21F F ,则动点的轨迹是什么?椭圆相关概念:两个定点1F ,2F 叫作椭圆的焦点.....,两个焦点1F ,2F 间的距离叫作椭圆的焦距...... 【设计意图】使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风. 探究二 推导椭圆的标准方程 ●活动① 利用定义求方程动手演算:让学生动手,求推导焦点在x 轴上的椭圆的标准方程①建系:观察椭圆的几何特征,如何建系能使方程更简洁?(利用椭圆的对称性特征)以直线21F F 为x 轴,以线段21F F 的垂直平分线为y 轴,建立平面直角坐标系.②设点:设焦距为()20c c >,则()()12,0,0F c F c -.设(),M x y 为椭圆上任意一点,点M 与点12F F 、的距离之和为()222a a c >.③列式:动点M 满足的几何约束条件: 122MF MF a += 2a =④化简:()()a y c x y c x 22222=+-+++1F 2F∴()()22222y c x a y c x +--=++∴两边同时平方、整理得:()222y c x acx a +-=-将上式两边平方、整理得:2222222222422y a c a cx a x a x c cx a a ++-=+-()()22222222c a a y a x c a-=+-122222=-+c a y a x 分析22c a -的几何含义,令222b c a =-得到焦点在x 轴上的椭圆的标准方程为()012222>>=+b a b y a x焦点在y 轴上的椭圆的标准方程是什么?(由学生动手列式,()()a c y x c y x 22222=-++++,引导学生观察焦点在x轴上与焦点在y 轴上式子的差异,从而用类比的方法得到焦点在y 轴上椭圆的标准方程)如果椭圆的焦点在y 轴上,其焦点坐标为()c F -,01,()c F ,02,用同样的方法可以推出它的标准方程()012222>>=+b a bx a y ●活动② 归纳梳理、理解提升 椭圆的标准方程及方程特点焦点在x 轴上 焦点在y 轴上标准方程: 12222=+b y a x (0>>b a ) 12222=+b x a y (0>>b a )学生思考:(1)椭圆的标准方程中三个参数b c a ,,的关系怎样?(2)如何从椭圆的标准方程判断椭圆焦点的位置?总结方程特征:(1).0,0222>>>>+=c a b a c b a , (2)哪个变量下的分母大,焦点就在哪个轴上.【设计意图】通过归纳总结让学生对两种方程进行对比分析,强化对椭圆方程的理解.有助于教学目标的实现,培养学生的总结归纳能力,而且使学生体会和学习类比的思想方法.●活动③ 互动交流、初步实践判定下列椭圆的标准方程在哪个轴上,并写出焦点的坐标(1)1162522=+y x (在x 轴上,焦点为()0,3-,()0,3)(2)116914422=+y x (在y 轴上,焦点为()5,0-,()5,0)(3)112222=++m y m x (在y 轴上,焦点为()1,0-,()1,0)●活动④ 巩固基础、检查反馈例1.已知a =c =,则椭圆的标准方程为( )A.2211312x y +=B.2211325x y +=或2212513x y += C.22113x y += D.22113x y +=或22113y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知21b =. 【思路点拨】通过焦点的位置判断方程. 【答案】D同类训练 已知椭圆的焦点为(1,0)-和(1,0),点(2,0)P 在椭圆上,则椭圆的方程为( )A.22143x y += B.2214x y += C.22143y x += D.2214y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知23b =. 【思路点拨】通过焦点的位置判断方程. 【答案】A例2 椭圆22125x y +=上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A.5B.6C.7D.8 【知识点】椭圆的定义.【解题过程】由210a =知P 到另一个焦点的距离为8. 【思路点拨】通过定义122PF PF a +=计算. 【答案】D同类训练 已知F 1、F 2是椭圆 192522=+y x 的两个焦点,过F 1的直线交椭圆于M 、N 两点,则三角形MF 2N 的周长为 . 【知识点】椭圆的定义.【解题过程】由221212101020MN MF NF MF MF NF NF ++=+++=+=.【思路点拨】通过定义122PF PF a +=计算. 【答案】20. 3.课堂总结 知识梳理(1)椭圆的定义:平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.(2)椭圆的标准方程:焦点在x 轴上:12222=+by a x (0>>b a );焦点在y 轴上:12222=+bx a y (0>>b a ).重难点归纳(1)区分焦点:哪个变量下的分母大,焦点就在哪个轴上;(2)标准方程中,,a b c 的关系:.0,0222>>>>+=c a b a c b a , (三)课后作业 基础型 自主突破1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )A.椭圆B.直线C.圆D.线段 【知识点】椭圆的几何性质.【解题过程】∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2. 【思路点拨】几何性质判断图形. 【答案】D.2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( ) A.5 B.3或8 C.3或5 D.20 【知识点】椭圆的标准方程.【解题过程】2c =2,c =1,故有m -4=1或4-m =1,∴m =5或m =3,故选C.【思路点拨】确定焦点位置再结合222a b c =+可得m 的值. 【答案】C3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( )A.(±a -b ,0)B.(±b -a ,0)C.(0,±a -b )D.(0,±b -a ) 【知识点】椭圆的标准方程.【解题过程】ax 2+by 2+ab =0可化为x 2-b +y 2-a=1,∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a , ∴焦点坐标为(0,±b -a ).【思路点拨】将方程整理为椭圆的标准形式. 【答案】D4.中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1B.x 281+y 29=1C.x 281+y 272=1D.x 281+y 236=1 【知识点】椭圆的标准方程.【解题过程】由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C. 【思路点拨】由几何性质即可. 【答案】C5.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________. 【知识点】椭圆的标准方程.【解题过程】由题意可得⎩⎨⎧ a +c =3,a -c =1.∴⎩⎨⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y23=1.【思路点拨】由椭圆定义及几何关系可得,,a b c 的值. 【答案】x 24+y 23=16.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________________.【知识点】椭圆的标准方程.【解题过程】由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4. ∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,解得b 2=2 3. 【思路点拨】由椭圆几何性质即可. 【答案】2 3 能力型 师生共研1.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A.m <2B.1<m <2C.m <-1或1<m <2D.m <-1或1<m <32 【知识点】椭圆的标准方程.【解题过程】由题意得⎩⎨⎧|m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D.【思路点拨】根据焦点的位置可确定椭圆方程形式为22221(0)y x a b a a +=>>.【答案】D2.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 【知识点】椭圆的标准方程.【解题过程】∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D. 【思路点拨】由椭圆定义即可. 【答案】D 探究型 多维突破1.求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)a c =135,且椭圆上一点到两焦点的距离的和为26. 【知识点】椭圆的标准方程.【解题过程】(1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,28a =+=, 所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1. (2)由题意知,2a =26,即a =13,又135a c =,所以c =5, 所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1. 【思路点拨】由椭圆性质求解即可. 【答案】见解析2.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【知识点】椭圆的标准方程及几何性质. 【解题过程】设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433. 【思路点拨】由定义可知焦点三角形12PF F 的面积:2tan2S b θ=,其中12F PF θ∠=.【答案】见解析自助餐1.已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1B.x 2+y 216=1C.x 220+y 25=1D.x 25+y 220=1【知识点】椭圆的标准方程及几何性质.【解题过程】由椭圆过点(2,2),排除A 、B 、D ,选C.【思路点拨】由椭圆定义即可.【答案】C2.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B.3C.977D.94【知识点】椭圆的标准方程.【解题过程】a 2=16,b 2=9⇒c 2=7⇒c =7.∵△PF 1F 2为直角三角形.且b =3>7=c .∴F 1或F 2为直角三角形的直角顶点,∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.【思路点拨】由椭圆定义即可.【答案】D3.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.射线D.直线【知识点】椭圆的几何性质.【解题过程】∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a ,∴|PQ |+|PF 1|=2a ,又∵F 1、P 、Q 三点共线,∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a .即Q 在以F 1为圆心,以2a 为半径的圆上.【思路点拨】根据椭圆定义判断.【答案】A4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 28=1上,则sin A +sin C sin B 的值是( )A. 3B.2C.2 3D.4【知识点】椭圆的定义及几何性质.【解题过程】由椭圆定义得|BA |+|BC |=43,又∵sin A +sin C sin B =|BC |+|BA ||AC |=434=3,故选A.【思路点拨】根据椭圆定义判断..【答案】A5.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.【知识点】椭圆的标准方程.【解题过程】由题设知1c =. 结合椭圆的定义得:12122||||2||4a PF PF F F =+==,故2,3a b ==,所以椭圆方程为:22143x y +=. 【思路点拨】利用椭圆的定义求,a c ,再利用222a b c =+求b .【答案】22143x y += 6.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.【知识点】椭圆的几何性质.【解题过程】设椭圆右焦点为F′,由椭圆的对称性知,|P1F|=|P7F′|,|P2F|=|P6F′|,|P3F|=|P5F′|,∴原式=(|P7F|+|P7F′|)+(|P6F|+|P6F′|)+(|P5F|+|P5F′|)+12(|P4F|+|P4F′|)=7a=35.【思路点拨】由椭圆定义,转换即可. 【答案】35。
《椭圆及其标准方程》教学设计

《椭圆及其标准方程》教学设计霞浦第一中学郑德松一、概述1.课名是《椭圆及其标准方程》,是高中数学选修1-1(人教版)2.1.1中的内容。
2.分三课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路。
本节是第一课时.3.主要学习内容是运用多媒体形象地给出椭圆,通过让学生自已动手作图,“定性”地画出椭圆,再通过坐标法“定量”地描述椭圆,使之从感性到理性抽象概括,形式概念,推出方程。
4.本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。
椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础. 因此这节课有承前启后的作用,是本章和本节的重点内容之一。
二、教学目标分析知识与技能:(1)学生能够归纳椭圆的定义,理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式;(2)明确焦点、焦距的概念;(3)学生能根据条件求出椭圆的标准方程。
过程与方法:(1)学生通过对椭圆概念的学习,达到提高观察分析、动手操作、概括能力,同时能养成分类讨论的数学思想方法;(2)学生通过亲身经历椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并学会处理比较复杂根式化简的思想方法。
情感态度与价值观:(1)通过对椭圆的学习,感受数学的对称、简洁、和谐美;(2)通过查找“神舟7号”有关材料,增强数学应用意识;(3)通过主动探究,讨论交流,感受探索的乐趣与成功的喜悦,增强对物理学习的兴趣。
三、学习者特征分析1.在此之前,学生已学过坐标法解决几何问题,学过圆的定义与标准方程,但掌握不够,2.从研究圆到研究椭圆,跨度较大,学生思维上存在障碍.3.在求椭圆标准方程时,会遇到比较复杂的根式化简问题,而这些在目前初中代数中都没有详细介绍,初中代数不能完全满足学习本节的需要。
椭圆及其标准方程(第一课时) 精品教案

《椭圆及其标准方程》教学设计(第一课时)一、课标要求理解掌握椭圆的定义,标准方程及其推导过程,会求一些简单的椭圆的标准方程.二、教学设计思想《椭圆及其标准方程》是学生学习了直线和圆有关知识后学习的第二种圆锥曲线,因此这一节的教学既可以是对前面所学知识情况进行检查,又为以后进一步学习其它两种圆锥曲线打好基础,所以学好本节课内容具有承上启下的重要意义.我们在教学中采用实验探索法,讲授发现法等教学法,具体做法如下:(1)通过图形由圆变化到椭圆的过程中蕴含着运动变化的思想,由学生通过观察、猜想,从而使学生参与知识的获取、抽象、归纳的全过程,得到了椭圆的定义及其应注意条件,提高学生的综合分析能力.(2)由演示出发,问题思考→研究讨论→点拔引导→抽象概括,得到椭圆标准方程.教师边演示边提出问题,充分调动学生学习自主性和积极性,并从中体会数学知识的和谐美和获取知识的喜悦.一位教育学家说过:“不能只向学生奉献真理,而应教给学生发现和探求真理的方法.”本节课的教学,正是本着这样的教学思想去设计的.三、教学目标(一)知识与技能1、理解椭圆、椭圆的焦点和焦距的定义;2、掌握椭圆标准方程的推导过程;3、会求一些简单的椭圆的标准方程.(二)过程与方法通过数形结合,让学生观察猜想归纳,培养学生自主地获取知识的能力,开拓学生探究发现能力.(三)情感态度、价值观1、通过探究性学习,获得成功的喜悦、培养学好数学的信心;2、帮助学生树立运动、变化观点,培养学生勇于进取精神和良好心理素质;3、经历观察、探究等学习活动,培养尊重事实、实事求是的科学态度.四、教学重点与难点重点:椭圆定义的形成和标准方程的推导.难点:椭圆标准方程的推导.五、教学基本流程观察演示直观认识椭圆→学生自己动手画图,“定性”认识椭圆→引导学生归纳形成椭圆定义→再提出问题,用坐标法“定量”地描述椭圆→得出椭圆标准方程→例题习题处理→练习、交流、反馈、巩固→学生归纳小结、教师评价问题设计意图师生活动1、观察计算机演示《常见椭圆的轨迹》课件,提出问题:这些轨迹是什么图形?这些曲线你还在什么地方见过?先从实际生活中有关椭圆例子出发,通过实际例子创设情景,可使引入自然,易于接受,又使教学内容亲切,激发学生的学习热情,促使学生萌发解决问题和学习新知识的欲望.师:组织学生观察演示,并提出问题.生:根据自己的观察,回答出运动的轨迹是椭圆,并举出常见的一些椭圆如立体几何中圆的直观图,一些物体的横截面的轮廓线.师:由此可见,椭圆在实际生活中是很常见的,因而学习椭圆的有关知识是非常必要的.问题设计意图师生活动2、我们知道,动点保持某种规律运动形成的轨迹叫曲线,通过实际操作,探究椭圆形成过程满足的几何条件,使学生对椭圆师:用计算机演示《椭圆轨迹的变化》的课件,然后让学生拿出课前准备的一块纸板、一段细绳、两颗图钉按课本要求画椭圆,使其尝到成功喜悦后思考问题.那么椭圆是什么条件的点的轨迹呢?如何对椭圆下定义?的概念有一个粗略的认识,然后通过演示、观察、猜想、归纳得到椭圆的概念.师:动点是在怎样的条件下运动的?生:是否到两定点距离之和等于定值的点的轨迹就是椭圆呢?(学生可能一时回答不出,教师可请学生观察演示课件并思考)师:当两个定点(图钉)位置变化时,轨迹发生怎样的变化?学生讨论、交流后师生共同完成下面结论:当绳长(定值)大于两图钉(定点)间距离时得到的是椭圆;当两图钉(定点)重合时,得到的是圆;当绳长(定值)等于两图钉(定点)的距离时,得到的是线段;不能使绳长小于两图钉(定点)的距离,因为图形不存在.由此得出椭圆、椭圆的焦点、焦距的概念.3、由于椭圆形的例子在实际生活中随处可见,因此对椭圆的研究十分重要,观察椭圆的形状,你认为怎样选择坐标系才能使椭圆方程简单?建立直角坐标系一般要符合简单和谐化的原则,正确处理关键点的坐标可使关键的几何量的表达式简单化.师:提出问题,启发、强调建立适当坐标系的重要性.生:讨论、交流、归纳(大体有如下三种方案):a.取一定点为原点,以F1F2所在直线为x轴;b.以F1F2所在直线为x轴,线段F1F2中点为坐标原点;c.以F1F2所在直线为y轴,线段F1F2中点为坐标原点.问题设计意图师生活动(续上)(续上)师生通过归纳评议,分析各种方案的利弊,由椭圆的对称性,最后确定采取方案b.4、选择方案b,椭圆上的点满用数学表达式表示椭圆.教师启发学生由椭圆的定义,得出表示椭圆的集合:{}12|||||2P M MF MF a=+=.足什么条件?能否用集合表示出来?5、如何推导出椭圆的方程?引导学生分析,鼓励学生自行推导、概括,从而提高学生分析、思考、归纳、整理的能力.教师指导学生设点、列式,化简,并引导学生回顾化简的方法(移项,两边平方,再移项两边平方),从而得到:222221x ya a c+=-并思考:此方程仍然不够简洁,还有变形的必要,你认为应如何变形,使之更为简洁.师:引导学生观察课本2.1-3,从中找出22a a c-,c,,并把椭圆方程整理成:22221x ya b+=并指出上式就是椭圆的标准方程.6、若选定方案c,方程的形式又怎样?让学生利用对称性进行猜想,培养学生类比、归纳的能力.提出不必运算,让学生合理猜想,注意引导学生两个方程形式相同,仅仅是x、y的位置互换了,进一步得出:22221y xa b+=.7、两个椭圆方程中,a、b、c 三者的大小关系怎样?关系如何?强调椭圆方程的限制条件.师生归纳得出:222,0,a b a c a b c a b c>>>+=且、、且一般写成0a b>>.问题设计意图师生活动8、两个方程中,焦点位置与方程形式有何关系?注意椭圆的焦点位置和方程形式的关系,切忌混淆.师:提出问题,引导学生回答出两种形式的椭圆的焦点是什么?生:方程22221x ya b+=的焦点坐标为12,0),(,0)F c F c x -(在轴上,22221y x a b +=的焦点坐标为120,),(0,)F c F c y -(在轴上.师:其判断的依据是:222a b a x y 与中,与、哪一个对应,焦点就在哪条坐标轴上.9、自学例1,并解决习题A 组第5题第1小题,总结求简单椭圆方程的方法、步骤.巩固所学知识,培养学生自学能力和归纳总结能力. 师:指导学生阅读教材的例1.生:阅读例1,并完成习题第5题第1小题. 师生归纳求椭圆方程的方法、步骤(①确定焦点位置;②求a 、b ).10、课堂反馈 练习第一题和第二小题.反馈学生对知识掌握情况.生:独立完成练习第1题和第2题. 师:巡堂指导,并组织学生对自己解答进行评价.11、课堂小结:教师提出问题供学生思考:1.本节课我们是如何得到椭圆的定义的,从中你学习到什么知识?2.坐标法是研究曲线常用的方法,这节课我们是如何建立坐标系去推导椭圆的标准方程的,从中你有什么体会?3.通过本节课的学习,你能掌握求曲线方程的一般步骤方法吗?你还学会了什么? 学生思考、小组讨论、推举代表发言,其它同学补充.教师引导学生对所学知识、数学思想进行小结,并对学生回答情况进行评价和补充.(续上表)12、作业:习题2.1A组5.(1)(2)(3)补充:“神州6号”宇宙飞船的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点,远地点离地面的距离大约分别为115R R1,3,求“神州5号”宇宙飞船运行的轨道方程.探究:通过学习,你能根据椭圆的定义,利用直尺和圆规描点画椭圆吗?若能,请你设计画法.几点说明:(1)本节课容量大,建议采用信息技术创设教学情景.(2)教学中教师应该注意少讲,还应力求克服单纯展示课件的教学形式,使计算机辅助教学的作用得以充分发挥,应该给学生充分的时间去尝试、思考、交流、讨论和表述,从而使学生想象、发现问题的空间更加广阔.。
2019年椭圆及其标准方程教学设计2精品教育.doc

椭圆及其标准方程(第一课时)教学设计尚志市一曼中学毛锡平一、教学目标(1)、知识目标:掌握椭圆的定义及其标准方程,通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。
(2)、能力目标:让学生通过自我探究、操作、数学思想(待定系数法)的运用等, 从而提高学生实际动手、合作学习以及运用知识解决实际问题的能力。
(3)、情感目标:在教学中充分揭示“数”与“形”的内在联系,体会形数美的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于创新的精神。
二、教学重点、难点教学重点:椭圆的定义及椭圆的标准方程教学难点:椭圆标准方程的建立和推导三、教学过程2、议一议(椭圆的定义及有关概念)(1) 、由学生画图及教师演示椭圆的形成过程,引导学生归纳定义。
定义:在平面内,到两定点F i , F 2的距离之和等于 常数2a(2a> I F 1F 2 |)的点的轨迹叫做 椭圆。
这两个定点叫做椭圆的 焦点,两焦点的距离 叫做椭圆的焦距,记I F 1F 2 |=2c.(2) 、椭圆定义的再认识。
问题:为什么要满足2a>2c 呢?( 1、当2a=2c 时,轨迹是什么?( 2、当2a<2c 时,轨迹 又是什么?结论:(1)、当2a>|F 1F 2|时,是椭圆;(2) 、当2a=|FiF2|时,是线段; (3) 、当2a<|F 1F 2|轨迹不存在。
3、求一求:(椭圆标准方程的推导)(教师引导)设问1:求曲线方程的一般方法样? (建系、设点、列式、化简) 设问2:本题中可以怎样建立直角坐标系?(让学 生根据自已的经验来确定)方案1:(如图1)以F1、F2所在的直线为x 轴,F1F2 推 的中点为原点建立直角坐标系:2 2 2 2与十十 =1(a>b >0) 占卜弓=1(a >b A O) a b和 a b疋 义 椭 圆让学生通过反思画图, 归纳定义,理解定义, 利用动画演示,深刻地 理解椭圆定义条件,突 破了重点。
《椭圆及其标准方程》第一课时示范公开课教学设计【高中数学人教版】

《椭圆及其标准方程》第1课时教学设计本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线.椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础.因此这节课有承前启后的作用,是本章和本节的重点内容之一.因此这一节的教学既可以对前面所学知识情况进行检查,又为以后进一步学习其他两种圆锥曲线打好基础,所以学好本节课内容具有承上启下的重要意义.我们在教学中采用实验探索法,讲授发现法等教学法,具体做法如下:(1)通过图形由圆变化到椭圆的过程中蕴含着运动变化的思想,由学生通过观察、猜想,从而使学生参与知识的获取、抽象、归纳的全过程,得到椭圆的定义及其应注意的条件,提高学生的综合分析能力.(2)由演示出发,经过问题思考→研究讨论→点拨引导→抽象概括,得到椭圆标准方程.教师边演示边提出问题,充分调动学生学习的自主性和积极性,并从中体会数学知识的和谐美和获取知识的喜悦.一位教育学家说过:“不能只向学生奉献真理,而应教给学生发现和探求真理的方法.”本节课的教学,正是本着这样的教学思想去设计的.课时分配本节内容分两课时完成.第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法.掌握椭圆的定义及其标准方程;能正确推导椭圆的标准方程;明确焦点、焦距的概念.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.多媒体课件和自制教具:绘图板、图钉、细绳.引入新课1.通过演示课前老师和学生共同准备的有关椭圆的实物和图片(PPT),让学生从感性上认识椭圆.2.通过动画设计(几何画板演示),展示椭圆的形成过程,使学生认识到椭圆是点按一定“规律”运动的轨迹.探究新知探究:取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两点处(如图),套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?下面请同学们在绘图板上作图,并思考以下问题:在作图时,因为笔尖M运动,所以为动点,两个图钉F1、F2不动,所以为定点.1.在这一过程中,你能说出移动的笔尖(动点)满足的几何条件吗?其轨迹是什么曲线?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?4.两个图钉重合在一点时,画出的图形是什么?5.当绳长满足什么条件时,动点M形成的轨迹是椭圆?活动设计:两个学生一组,合作操作画图过程,并思考上述问题,必要时,允许合作、讨论、交流.教师巡视指导,及时发现问题,解决问题.活动成果:1.|MF1|+|MF2|=绳长(定值);椭圆;2.不是椭圆,是线段F1F2;3.不能;4.以F1(F2)为圆心,以绳长的一半为半径的圆;5.当两图钉F1、F2之间的距离不为0且绳长大于两图钉F1、F2之间的距离时.提出问题:类比平面几何中圆的定义,给出椭圆的定义.活动设计:学生先独立思考,必要时允许学生自愿合作、讨论、交流.学情预测:开始学生的回答可能不全面、不准确,但在学生的不断补充、纠正下,会趋于完善.活动成果:师生共同概括出椭圆定义:平面内与两个定点F1 、F2的距离的和等于常数(大于|F1F2 | )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(在归纳定义时强调定义要满足三个条件:在平面内、任意一点到两个定点的距离之和等于常数、常数大于|F1F2|)设计意图:通过上述操作、思考问题使学生建立起对椭圆的初步、直观的认识,并训练和培养学生的抽象概括能力.下面我们根据椭圆的几何特征,选择适当的坐标系,建立椭圆方程.为今后通过方程研究椭圆的性质做好准备.提出问题:利用坐标法求曲线方程的一般方法和步骤是什么?活动结果:建系、设点、列式、化简.(学生回答,教师板书)提出问题:如图,已知椭圆的两焦点为F1,F2,且|F1F2|=2c,对椭圆上任一点M,有|MF1|+|MF2|=2a,尝试建立椭圆的方程.提出问题:如何建立坐标系,使求出的方程更为简单?活动设计:学生先独立思考,必要时,允许合作讨论.教师巡视指导.学情预测:学生的建系方法应当会有很多种.活动结果:教师将各个学生或学习小组的建立坐标系的方案一一画图表示.然后,提醒全班学生应当类比利用圆的对称性建立圆的标准方程时的建立坐标系的方法,根据椭圆的几何特征(主要是对称性),选择适当的坐标系,才可能使建立的椭圆方程简单.这样,师生就会达成一致意见,选定以下两种方案:方案一:如图,以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线为y 轴,建立直角坐标系xOy.方案二:如图,以经过椭圆两焦点F1,F2的直线为y轴,线段F1F2的垂直平分线为x 轴,建立直角坐标系xOy.方案一方案二提出问题:请同学们按方案一具体求出椭圆的方程. 活动设计:学生独立解决.必要时,为顺利完成教学,教师应当介入,加以指导、提示. 设点:设椭圆上任一点M 的坐标为(x ,y ).列式:|MF 1|+|MF 2|=2a ,∴(x +c)2+y 2+(x -c)2+y 2=2a .①化简:(这里,教师为突破难点,进行设问:我们怎样化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?)(x +c)2+y 2=2a -(x -c)2+y 2.两边平方,得(x +c )2+y 2=4a 2-4a (x -c)2+y 2+(x -c )2+y 2.即a 2-cx =a (x -c)2+y 2.两边平方,得a 4-2a 2cx +c 2x 2=a 2(x -c )2+a 2y 2.整理,得(a 2-c 2)x 2+a 2y 2=a 2(a 2-c 2).(※)学情预测:一般情况下,得到方程(※)即告结束.提出问题:设方案一中的椭圆与x 轴的交点分别为A 1,A 2,与y 轴的交点分别为B 1,B 2,同学们都知道a ,c 的含义,你能从图形中找到长度分别等于a ,c 的线段吗?活动设计:学生先独立思考,必要时,可以重复开始的画椭圆的过程,并可合作交流.学情预测:估计得出c =|F 1F 2|2=|OF 1|=|OF 2|,a =|A 1A 2|2=|OA 1|=|OA 2|应当不会有问题. 提出问题:当动点M 移动到B 1或B 2点时,根据椭圆的定义及坐标系的建立方式,你还能发现新的结论吗?学情预测:学生会发现:|B 2F 1|=|B 2F 2|=a =|B 1F 1|=|B 1F 2|.教师:这样,因为△B 2OF 2为直角三角形,且|B 2F 2|=a ,|OF 2|=c ,所以,a 2-c 2=|OB 2|2.因此,方程(※)中的a 2-c 2有明显的几何意义.为此,令|OB 2|=b ,则a 2-c 2=b 2.于是,方程(※)可以进一步化简为:b 2x 2+a 2y 2=a 2b 2.(☆)学情预测:一般情况下,得到方程(☆),本题求解也即告结束.提出问题:非常好.这个方程两边次数一致,非常工整,类似这种结构的方程在哪儿见过,怎么处理的呢?活动设计:学生可以互相讨论、启发,必要时教师可以提示.活动结果:直线的截距式方程x a +y b=1就是由bx +ay =ab 化得的.因此. 方程(☆)可以进一步整理成:x 2a 2+y 2b 2=1(a >b >0)(这种形式“美”). 指出:方程x 2a 2+y 2b 2=1(a >b >0)叫做椭圆的标准方程,焦点在x 轴上,焦点是F 1(-c ,0),F 2(c ,0),且c 2=a 2-b 2.提出问题:如果以F 1,F 2所在直线为y 轴,线段F 1F 2的垂直平分线为x 轴,建立直角坐标系,焦点是F 1(0,-c ),F 2(0,c ),椭圆的方程又如何呢?教师:列式:|MF 1|+|MF 2|=2a ,即x 2+(y +c)2+x 2+(y -c)2=2a .②试比较①②两式,它们有何区别与联系?发现只需交换①式中x 和y 的位置,即得②式,反之也成立.所以,易知,只需将x 2a 2+y 2b 2=1(a >b >0)中的x 和y 的位置互换,即得焦点在y 轴上的椭圆方程为y 2a 2+x 2b 2=1(a >b >0). 教师指出:我们所得的两个方程x 2a 2+y 2b 2=1和y 2a 2+x 2b 2=1(a >b >0)都是椭圆的标准方程. 提出问题:已知椭圆的标准方程,如何判断焦点位置?活动设计:学生先独立思考,当然,学生自愿合作讨论也允许.活动结果:看x 2,y 2的分母大小,哪个分母大就在哪一条轴上.理解新知1.观察椭圆图形及其标准方程,师生共同总结归纳:(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;(3)椭圆标准方程中三个参数a ,b ,c 满足关系式:b 2=a 2-c 2(a >b >0);(4)椭圆焦点的位置由标准方程中分母的大小确定;(5)求椭圆标准方程时,可运用待定系数法求出a ,b 的值.2.在归纳总结的基础上填写下表b 2=a 2-c 2 b 2=a 2-c 2 (±c ,0) (0,±c ) 在y 轴上运用新知 1已知一个贮油罐横截面的外轮廓是一个椭圆,它的焦距为2.4 m ,外轮廓线上的点到两个焦点的距离的和为3 m ,求这个椭圆的标准方程.思路分析:巩固椭圆的标准方程,通过学生熟悉的实际模型,体会圆锥曲线应用的广泛性.解题思路是寻找两个定值a ,c .用待定系数法求出椭圆的标准方程.解:以两焦点F 1、F 2所在直线为x 轴,线段F 1F 2的垂直平分线为y 轴,建立如图所示的直角坐标系xOy ,则这个椭圆的标准方程可设为x 2a 2+y 2b 2=1(a >b >0). 根据题意知2a =3,2c =2.4,即a =1.5,c =1.2,所以b 2=a 2-c 2=1.52-1.22=0.81.因此,这个椭圆的标准方程为x 22.25+y 20.81=1. 点评:(1)进一步熟悉椭圆的焦点位置与标准方程之间的关系;(2)掌握运用待定系数法求椭圆的标准方程,解题时强调“二定”即定位定量; (3)培养学生运用知识解决问题的能力.2求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点的距离和等于10.(2)两焦点坐标分别是(0,-2),(0,2),并且椭圆经过点(-32,52).(教材例题改编)(3)a +b =10,c =25.思路分析:(1)根据题设容易知道c =4,2a =10且椭圆焦点在x 轴上;(2)思路1:利用椭圆定义(椭圆上的点(-32,52)到两个焦点(0,-2)、(0,2)的距离之和为常数2a )求出a 值,再结合已知条件和a 、b 、c 间的关系求出b 2的值,进而写出标准方程;思路2:先根据已知条件设出焦点在y 轴上的椭圆的标准方程y 2a 2+x 2b 2=1(a >b >0),再将椭圆上点的坐标(-32,52)代入此方程,并结合a 、b 、c 间的关系求出a 2、b 2的值,从而得到椭圆的标准方程为y 210+x 26=1. (3)利用已知条件得a 2-b 2=20,联立⎩⎪⎨⎪⎧ a +b =10,a 2-b 2=20, 解得a ,b .然后根据焦点位置分别写出焦点在x 轴和y 轴上的椭圆方程.答案:(1)x 225+y 29=1 (2)y 210+x 26=1 (3)x 236+y 216=1或y 236+x 216=1. 点评:加深学生对椭圆的焦点位置与标准方程之间关系的理解,加深对定义的理解和对分类讨论数学思想方法的运用.教学时采用在教师引导下学生自主完成的方法.变练演编提出问题:请解答下列问题:1.已知椭圆x 225+y 216=1,则你可以得到哪些结论?(把你能得到的结论都写出来) 2.已知a =5,c =4,则你可以得到哪些结论?(把你能得到的结论都写出来)3.已知a =4,______,可以求得椭圆的标准方程为x 29+y 216=1,则题中横线上需要添加什么样的条件?活动设计:学生先独立探索,允许互相交流成果.然后,全班交流.学情预测:1.a =5,b =4,c =3,两焦点为(-3,0),(3,0).2.b =3,椭圆的标准方程为x 225+y 216=1或y 225+x 216=1等. 3.b =3,且焦点在y 轴上;或c =7,且焦点在y 轴上;或一个焦点坐标为(0,7);或椭圆上有一点(3,0)(答案很多).设计意图:设置本组开放性问题,意在增加问题的多样性、有趣性、探索性和挑战性,训练学生思维的发散性、收敛性、灵活性和深刻性,长期坚持,不仅会加深学生对数学的理解、掌握,而且会潜移默化地学会编题、解题.达标检测1.椭圆x 264+y 29=1上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是______.2.动点P 到定点F 1(-5,0),F 2(5,0)的距离的和是10,则动点P 的轨迹为( )A .椭圆B .线段F 1F 2C .直线F 1F 2D .不能确定3.如图所示,若AB 是过椭圆x 29+y 225=1的下焦点F 1的弦,则△F 2AB 的周长是______. 4.椭圆4x 2+3y 2=12的焦点坐标是______.5.简化方程:x 2+y +32+x 2+y -32=10.(学生分组比赛,每组抽2位同学的作业用幻灯演示,教师订正.)答案:1.10 2.B 3.20 4.(0,1),(0,-1) 5.y 225+x 216=1 课堂小结知识整理,形成系统(由学生归纳,教师完善)1.椭圆的定义.(注意定义中的三个条件)2.椭圆的标准方程.(注意焦点的位置与方程形式的关系)3.标准方程中a ,b ,c 的关系.4.注意体会运动变化、类比推理、抽象概括、数形结合等数学思想方法在数学学习中的运用.5.若有时间或机会,可以引导学生得出推导椭圆标准方程更为简单的解法:同前得,(x +c)2+y 2+(x -c)2+y 2=2a ,①对①式左边分子有理化,得4cx =2a ((x +c)2+y 2-(x -c)2+y 2). 即(x +c)2+y 2-(x -c)2+y 2=2c ax .③ ①+③,并整理,得(x +c)2+y 2=a +c ax . 以下从略.布置作业教材习题 2.2.A 组 1,2.补充练习基础练习1.填空题:(1)x 252+y 232=1,则a =______ ,b =______ ; (2) x 242+y 262=1,则a =______ ,b =______ ; (3)x 29+y 24=1,则a =______ ,b =______ ; 2.求下列椭圆的焦点坐标:(1)x 29+y 24=1 (2)16x 2+7y 2=112. 3.求适合下列条件的椭圆的标准方程:(1)a =4 ,b =3,焦点在x 轴上;(2)b =1 ,c =15,焦点在y 轴上;(3)经过点P (-2 , 0)和Q (0 , -3).答案或提示或解答:1.(1)5 3 (2)6 4 (3)3 22.(1)(5,0),(-5,0) (2)(0,3),(0,-3)3.(1)x 216+y 29=1 (2)y 216+x 2=1 (3)y 29+x 24=1 拓展练习4.设定点A (6,2),P 是椭圆x 225+y 29=1上的动点,求线段AP 中点M 的轨迹方程. 解法剖析:①(代入法求伴随轨迹)设M (x ,y ),P (x 1,y 1);②(点与伴随点的关系)∵M 为线段AP 的中点,∴⎩⎪⎨⎪⎧x 1=2x -6,y 1=2y -2,③(代入已知轨迹求出伴随轨迹),∵x 2125+y 219=1,∴点M的轨迹方程为(x-3)225+(y-1)29=14;④伴随轨迹表示的范围.本节借助几何画板的演示功能,使学生通过点的运动,观察到椭圆的轨迹的特征.多媒体创设问题情境,让探究式教学走进课堂,唤醒学生的主体意识,发展学生的主体能力,让学生在参与中学会学习、学会合作、学会创新.学生虽然对椭圆图形有所了解,但只限于感性认识,缺少理性的思考、探索和创新,这与缺乏必要的数学思想和方法密切相关.本节课从实例出发,用多媒体结合本课题设计了一对动点有规律的运动作一些理性的探索和研究.在教材处理上,大胆创新,根据椭圆定义的特点,结合学生的认识能力和思维习惯,在概念的理解上,先突出“和”,在此基础上再完善“常数”取值范围.在标准方程的推导上,并不是直接给出教材中的“建系”方式,而是让学生自主地“建系”,通过所得方程的比较,得到标准方程,从中去体会探索的乐趣和数学中的对称美和简洁美.在对教材中“令a2-c2=b2”的处理并不是生硬地过渡,而是通过课件让学生观察在当M 为椭圆短轴端点时(但这一几何性质并不向学生交待),特征三角形所体现出来的几何关系,再做变换.例题和练习的设计遵循由浅入深,循序渐进的原则,低起点,多落点,高终点,照顾到各个层次的学生,目的是强化基本技能训练和基本知识的灵活运用.。
高中数学教案——椭圆及其标准方程 第一课时

课题:8.1椭圆及其标准方程(一)教学目的:1.理解椭圆的定义明确焦点、焦距的概念2.熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆的草图并确定椭圆的标准方程3.能由椭圆定义推导椭圆的方程4.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力教学重点:椭圆的定义和标准方程教学难点:椭圆标准方程的推导授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:高中数学学科课程标准对本节课的教学要求达到“掌握”的层次,即在对有关概念有理性的认识,能用自己的语言进行叙述和解释,了解它们与其他知识联系的基础上,通过训练形成技能,并能作简单的应用根据数学学科的特点、学生身心发展的合理需要和社会的政治经济、科学技术的需求,本节课从知识、能力和情感三个层面确定了相应的教学目标椭圆的定义是一种发生性定义,是通过描述椭圆形成过程进行定义的 作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点 同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识 但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受 所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础 教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础 根据本节教材的重点、难点,课时拟作如下安排:第一课时,椭圆的定义及标准方程的推导;第二课时,椭圆标准方程的两种形式及运用待定系数法求椭圆的标准方程;第三课时,以椭圆为载体的动点轨迹方程的探求 教学过程:一、复习引入:1.1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长(说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题) 2.复习求轨迹方程的基本步骤:3.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的21,F F 两点,当绳长大于两点间的距离时,用铅笔把绳子拉 近,使笔尖在图板上慢慢移动,就可以画出一个椭圆分析:(1)轨迹上的点是怎么来的?(2)在这个运动过程中,什么是不变的?答:两个定点,绳长即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 二、讲解新课: 1 椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 注意:椭圆定义中容易遗漏的两处地方: (1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定较扁(→线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(→圆) 由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫) 2.根据定义推导椭圆标准方程:取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴设),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,又设M 与21,F F 距离之和等于a 2(c a 22>)(常数){}a PF PF P P 221=+=∴221)(y c x PF ++= 又,a y c x y c x 2)()(2222=+-+++∴,化简,得 )()(22222222c a a y a x c a -=+-,由定义c a 22>,022>-∴c a令222b c a =-∴代入,得 222222b a y a x b =+,两边同除22b a 得 12222=+by a x此即为椭圆的标准方程它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程 其中22b c a +=注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在y 轴上(选取方式不同,调换y x ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+by a x 中的y x ,调换,即可得12222=+bx a y ,也是椭圆的标准方程 理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在12222=+by a x 与12222=+b x a y 这两个标准方程中,都有0>>b a 的要求,如方程),0,0(122n m n m n y m x ≠>>=+就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式1=+b y a x 类比,如12222=+by a x 中,由于b a >,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看22,y x 分母的大小)三、讲解范例:例1 写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+by a x )0(>>b a9454,582,10222222=-=-=∴==∴==c a b c a c a所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为12222=+b x a y )0(>>b a 由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10211023+=102= 10=∴a 又2=c6410222=-=-=∴c a b所以所求标准方程为161022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程点评:题(1)根据定义求 若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程 四、课堂练习:1 椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A.5B.6C.4D.102.椭圆11692522=+y x 的焦点坐标是( ) A.(±5,0) B.(0,±5)C.(0,±12)D.(±12,0)3.已知椭圆的方程为18222=+my x ,焦点在x 轴上,则其焦距为( ) A.228m - B.2m -22 C.282-m D.222-m4.1,6==c a ,焦点在y 轴上的椭圆的标准方程是5.方程1)42sin(322=+-παy x 表示椭圆,则α的取值范围是( ) .838παπ≤≤-B.k k k (838ππαππ+<<-∈Z) C.838παπ<<- D. k k k (83282ππαππ+<<-∈Z) 参考答案: 1.A2.C3.A4.1353622=+x y 5.B五、小结 :本节课学习了椭圆的定义及标准方程,应注意以下几点: ①椭圆的定义中, 022>>c a ;②椭圆的标准方程中,焦点的位置看x ,y 的分母大小来确定; ③a 、b 、c 的几何意义 六、课后作业:1.判断下列方程是否表上椭圆,若是,求出c b a ,,的值①12222=+y x ;②12422=+y x ;③12422=-y x ;④9422=+x y 答案:①表示园;②是椭圆2,2,2===c b a ;③不是椭圆(是双曲线);④369422=+x y 可以表示为1322222=+y x ,是椭圆,,2,3===c b a 2 椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为答案:4);0,7(),0,7(;72221=-=a F F c3. 方程1422=+ky x 的曲线是焦点在y 上的椭圆 ,求k 的取值范围答案:0<<k4 化简方程:)3()3(2222=-++++y x y x答案:1251622=+y x 5 椭圆13610022=+y x 上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是 答案:46 动点P 到两定点1F (-4,0),2F (4,0)的距离的和是8,则动点P 的轨迹为 _______ 答案:是线段21F F ,即)44(0≤≤-=x y七、板书设计(略)八、课后记:写出适合下列条件的椭圆的标准方程:(口答)(1)a=4,b=3,焦点在x 轴;(2)a=5,c=2,焦点在y 轴上.(答案:19y 16x 22=+;121x 25y 22=+)(2) 已知三角形ΔABC 的一边∠长为6,周长为16,求顶点A 的轨迹方程解:以BC 边为x 轴,BC 线段的中垂线为y 轴建立直角坐标系,则A 点的轨迹是椭圆,其方程为:116y 25x 22=+ 若以BC 边为y 轴,BC 线段的中垂线为x 轴建立直角坐标系,则A 点的轨迹是椭圆,其方程为:125y 16x 22=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆及其标准方程(第1课时)教学设计一、教材内容分析本节是整个解析几何部分的重要基础知识。
这一节课是在《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好准备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。
但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。
基于上述分析,我采取的是“创设问题情景-----自主探索研究-----结论应用巩固”的一种研究性教学方法,教学中采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。
使学生真正成为课堂的主体。
三、设计思想 1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的实用性;2、进行分组实验,让学生亲自动手,体验知识的发生过程,并培养团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标 1、知识与技能目标:理解椭圆定义、掌握标准方程及其推导。
2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。
3、情感、态度和价值观目标:(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆形状的物体?对学生的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使学生简单了解椭圆的实际应用,另一方面产生问题意识,对研究椭圆产生心理期待。
通过图片、实物,吸引学生的注意力,提高参与程度,为后续学习做好准备。
从而激发学生的学习积极性和参与热情。
(二)、动画演示,探索研究(15分钟)引导学生互相配合利用细绳和铅笔动手画椭圆,通过巡视找出作图比较规范的同学用细绳和粉笔演示。
再根据多媒体规范演示椭圆的形成过程。
根据作图过程,让学生思考:轨迹为椭圆需满足的条件,引导学生总结椭圆定义。
设计意图:注重概念形成过程,通过让合作交流,思考问题;让学生都积极地参与到学习中来,体现学生主体意识,开动大脑,训练思维。
使知识从感性认识自然过渡到理性认识,增强了他们的集体凝聚,树立团队意识,培养学生的观察、归纳、概括能力。
定义:设问:(1)、为什么强调“平面内”?(2)、对常数有什么限制?(3)、常数的取值不同时,轨迹如何变化?设计意图:培养学生动手实践能力,通过分组讨论提高发现问题的能力和提炼总结能力。
在给出定义后,通过设问让学生加深对椭圆定义中的关键词汇的理解,进一步强化椭圆定义,真正使学生理解定义的内涵和外延。
(三)、构建方程,探索新知(10分钟)3一、教材内容分析本节是整个解析几何部分的重要基础知识。
这一节课是在《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好准备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。
但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。
基于上述分析,我采取的是“创设问题情景-----自主探索研究-----结论应用巩固”的一种研究性教学方法,教学中采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。
使学生真正成为课堂的主体。
三、设计思想 1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的实用性;2、进行分组实验,让学生亲自动手,体验知识的发生过程,并培养团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标 1、知识与技能目标:理解椭圆定义、掌握标准方程及其推导。
2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。
3、情感、态度和价值观目标:(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆形状的物体?对学生的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使学生简单了解椭圆的实际应用,另一方面产生问题意识,对研究椭圆产生心理期待。
通过图片、实物,吸引学生的注意力,提高参与程度,为后续学习做好准备。
从而激发学生的学习积极性和参与热情。
(二)、动画演示,探索研究(15分钟)引导学生互相配合利用细绳和铅笔动手画椭圆,通过巡视找出作图比较规范的同学用细绳和粉笔演示。
再根据多媒体规范演示椭圆的形成过程。
根据作图过程,让学生思考:轨迹为椭圆需满足的条件,引导学生总结椭圆定义。
设计意图:注重概念形成过程,通过让合作交流,思考问题;让学生都积极地参与到学习中来,体现学生主体意识,开动大脑,训练思维。
使知识从感性认识自然过渡到理性认识,增强了他们的集体凝聚,树立团队意识,培养学生的观察、归纳、概括能力。
定义:设问:(1)、为什么强调“平面内”?(2)、对常数有什么限制?(3)、常数的取值不同时,轨迹如何变化?设计意图:培养学生动手实践能力,通过分组讨论提高发现问题的能力和提炼总结能力。
在给出定义后,通过设问让学生加深对椭圆定义中的关键词汇的理解,进一步强化椭圆定义,真正使学生理解定义的内涵和外延。
(三)、构建方程,探索新知(10分钟)3一、教材内容分析本节是整个解析几何部分的重要基础知识。
这一节课是在《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好准备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。
但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。
基于上述分析,我采取的是“创设问题情景-----自主探索研究-----结论应用巩固”的一种研究性教学方法,教学中采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。
使学生真正成为课堂的主体。
三、设计思想 1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的实用性;2、进行分组实验,让学生亲自动手,体验知识的发生过程,并培养团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标 1、知识与技能目标:理解椭圆定义、掌握标准方程及其推导。
2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。
3、情感、态度和价值观目标:(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆形状的物体?对学生的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使学生简单了解椭圆的实际应用,另一方面产生问题意识,对研究椭圆产生心理期待。
通过图片、实物,吸引学生的注意力,提高参与程度,为后续学习做好准备。
从而激发学生的学习积极性和参与热情。
(二)、动画演示,探索研究(15分钟)引导学生互相配合利用细绳和铅笔动手画椭圆,通过巡视找出作图比较规范的同学用细绳和粉笔演示。
再根据多媒体规范演示椭圆的形成过程。
根据作图过程,让学生思考:轨迹为椭圆需满足的条件,引导学生总结椭圆定义。
设计意图:注重概念形成过程,通过让合作交流,思考问题;让学生都积极地参与到学习中来,体现学生主体意识,开动大脑,训练思维。
使知识从感性认识自然过渡到理性认识,增强了他们的集体凝聚,树立团队意识,培养学生的观察、归纳、概括能力。
定义:设问:(1)、为什么强调“平面内”?(2)、对常数有什么限制?(3)、常数的取值不同时,轨迹如何变化?设计意图:培养学生动手实践能力,通过分组讨论提高发现问题的能力和提炼总结能力。
在给出定义后,通过设问让学生加深对椭圆定义中的关键词汇的理解,进一步强化椭圆定义,真正使学生理解定义的内涵和外延。
(三)、构建方程,探索新知(10分钟)3一、教材内容分析本节是整个解析几何部分的重要基础知识。
这一节课是在《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好准备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。
但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。
基于上述分析,我采取的是“创设问题情景-----自主探索研究-----结论应用巩固”的一种研究性教学方法,教学中采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。
使学生真正成为课堂的主体。
三、设计思想 1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的实用性;2、进行分组实验,让学生亲自动手,体验知识的发生过程,并培养团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标 1、知识与技能目标:理解椭圆定义、掌握标准方程及其推导。
2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。
3、情感、态度和价值观目标:(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。
(2)进行数学美育的渗透,用哲学的观点指导学习。