高一上册数学复习知识点专题讲解6---函数的单调性

合集下载

高一数学函数的单调性知识点

高一数学函数的单调性知识点

高一数学知识点函数的单调性一、函数单调性知识结构【知识网络】1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用二、重点叙述1. 函数单调性定义(一)函数单调性概念(1)增减函数定义一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 :如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数;如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。

如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。

(2)函数单调性的内涵与外延⑴函数的单调性也叫函数的增减性。

函数的单调性是对某个区间而言的,是一个局部概念。

⑵由函数增减性的定义可知:任意的x1、x2∈D,① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性)② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小)③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。

(可用于比较自变量值的大小)2. 函数单调性证明方法证明函数单调性的方法有:定义法(即比较法);导数法。

实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。

(1)定义法:利用增减函数的定义证明。

在证明过程中,把数式的大小比较转化为求差比较(或求商比较)。

⑴转化为求差比较证明程序:①设任意的x 1、x 2∈D,使x 1<x 2 ;②求差—变形—判断正负;此为关键步骤,变形大多要“因式分解”。

求差:; 变形:化简、因式分解; 判断:差的符号的正或负。

函数的单调知识点总结

函数的单调知识点总结

函数的单调知识点总结一、函数的增减性1. 函数的单调性定义函数的单调性是指函数在其定义域上的增减性质。

如果对于任意的$x_1, x_2 \in D$, $x_1 <x_2$,有$f(x_1) \le f(x_2)$,则称函数$f(x)$在定义域上是单调不减的;如果对于任意的$x_1, x_2 \in D$, $x_1 < x_2$,有$f(x_1) \ge f(x_2)$,则称函数$f(x)$在定义域上是单调不增的。

2. 函数的单调性判定对于一个给定函数,要判定其在定义域上的增减性,可以通过对函数的导数进行分析来实现。

通常有以下几种方法:(1) 图像法:通过画出函数的图像,观察函数在定义域上的增减性。

(2) 导数法:计算函数的导数并分析其正负性来判定函数的单调性。

(3) 定义域划分法:对函数的定义域进行适当的划分,分别分析函数在各个子区间上的增减性。

3. 函数的单调性与最值函数的单调性可以帮助我们求解函数的最值。

如果一个函数在其定义域上是单调递增的,则其最小值为$f(x)$的最小值;如果一个函数在其定义域上是单调递减的,则其最大值为$f(x)$的最大值。

二、导数的应用1. 函数的导数导数是描述函数变化率的重要工具,它可以帮助我们研究函数的增减性。

对于可导函数$f(x)$,其导数$f'(x)$的正负性可以描述函数在某点附近的增减性。

具体来说:(1) 若$f'(x)>0$,则$f(x)$在$x$点附近是单调递增的;(2) 若$f'(x)<0$,则$f(x)$在$x$点附近是单调递减的。

2. 函数单调性与导数对于可导函数$f(x)$,如果$f'(x)>0$,则$f(x)$在其定义域上是单调递增的;如果$f'(x)<0$,则$f(x)$在其定义域上是单调递减的。

这是函数的单调性与导数之间的重要联系,也是求解函数的单调性的重要方法。

高一数学单调性知识点总结

高一数学单调性知识点总结

高一数学单调性知识点总结在高中数学学习中,单调性是一个非常重要的概念。

单调性可以帮助我们理解函数的增减趋势以及函数图像的形状。

在本文中,我们将总结高一数学中与单调性相关的知识点,并探讨其应用。

一、函数的单调性函数的单调性是指函数在定义域内的增减趋势。

具体来说,我们可以分为递增和递减两种情况进行讨论。

1. 函数的递增性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)<f(b),那么我们称函数为递增函数。

简单来说,递增函数的函数值随着自变量的增大而增大。

通过求导可以帮助我们判断函数的递增性。

如果函数的导数大于零,则函数递增;如果导数小于零,则函数递减;如果导数等于零,则函数在该区间内的单调性不确定,需要进行进一步的分析。

2. 函数的递减性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)>f(b),那么我们称函数为递减函数。

递减函数的函数值随着自变量的增大而减小。

二、函数图像的单调性分析在图像上观察函数的单调性,可以通过以下几个方面来判断。

1. 函数图像在某个区间内递增或递减通过观察函数图像,在某个区间内如果图像整体上升,则该区间内函数递增;如果图像整体下降,则该区间内函数递减。

2. 函数图像在特定点的切线斜率通过求导函数,可以得到函数的导函数。

根据导函数的正负性,可以判断函数图像在特定点的切线斜率的正负。

如果导函数大于零,则函数图像在该点的切线斜率大于零,即函数递增;如果导函数小于零,则函数图像在该点的切线斜率小于零,即函数递减。

3. 函数图像的拐点与极值点在函数图像上,拐点和极值点可能对函数的单调性产生影响。

如果在拐点或极值点的左侧函数递增,在右侧函数递减,或者相反,那么拐点或极值点就是函数单调性发生改变的点。

三、应用举例单调性是数学中的一个重要概念,有许多实际应用。

1. 市场需求曲线在经济学中,市场需求曲线通常被认为是递减函数。

这意味着当商品价格上涨时,需求量下降;当价格下降时,需求量增加。

函数单调性知识点总结高中

函数单调性知识点总结高中

函数单调性知识点总结高中一、基本概念函数单调性是指在定义域上函数值的变化趋势。

具体来说,如果对于函数f(x),当x1 < x2时有f(x1) < f(x2),则称函数f(x)在区间(x1, x2)上是增函数;如果对于函数f(x),当x1 <x2时有f(x1) > f(x2),则称函数f(x)在区间(x1, x2)上是减函数。

综合起来,可以将函数的单调性分为增函数、减函数和不单调函数。

其次,函数的单调性还与导数的正负有关。

若函数f(x)在区间I上可导,则:1. 若f'(x) > 0对于x∈I,即f(x)严格递增;2. 若f'(x) < 0对于x∈I,即f(x)严格递减;3. 若f'(x) = 0对于x∈I,即f(x)在区间I上是常数函数或拐点函数,不能确定其单调性。

对于定义在闭区间[a, b]上的函数f(x),其单调性还需考虑在端点处的情况。

若f(x)在[a, b]上是增函数,且在a处有定义域,则称f(x)在[a, b]上是关于x的增函数;若f(x)在[a, b]上是减函数,且在a处有定义域,则称f(x)在[a, b]上是关于x的减函数。

二、函数单调性的判定方法1. 利用函数的导数判定单调性函数f(x)在区间I上是增函数,当且仅当f'(x) > 0对于x∈I;函数f(x)在区间I上是减函数,当且仅当f'(x) < 0对于x∈I。

因此,判定函数的单调性,可通过求导数并考察导数的正负来进行。

2. 利用函数的增减表判定单调性若函数f(x)在区间I上可导,则可根据f'(x)的正负或0来构建增减表。

增减表是一个用来判定函数单调性的表格,通过列出各点的f'(x)值,来判断函数在各点的单调性。

三、函数单调性的应用1. 函数的最值问题对于一个定义在区间[a, b]上的函数f(x),若可判定出f(x)在[a, b]上为增函数,则f(x)在[a, b]上的最小值为f(a),最大值为f(b);若可判定出f(x)在[a, b]上为减函数,则f(x)在[a, b]上的最小值为f(b),最大值为f(a)。

函数的单调性知识点

函数的单调性知识点

函数的单调性知识点函数的单调性是数学分析中的一个重要概念,用来描述函数在定义域上的增减特性。

具体而言,一个函数可以是严格递增的、递增的、严格递减的或递减的。

函数的单调性具有广泛的应用,在求解极值、解方程、绘制函数图像等问题中起到重要的作用。

本文将介绍函数的单调性的概念、判定方法以及一些常见的单调函数。

一、函数的单调性概念函数的单调性是指函数在定义域上的增减变化规律。

具体而言,一个函数在某个区间上单调递增,意味着随着自变量的增大,函数的取值也随之增大;而在单调递减的区间上,函数的取值随着自变量的增大而减小。

二、函数单调性的判定方法1. 导数法导数是函数单调性判定的重要工具之一。

对于可导函数,函数在某个区间上单调递增的充要条件是导数恒大于等于零;函数在某个区间上单调递减的充要条件是导数恒小于等于零。

2. 一阶差分法对于分段连续的函数,可以通过一阶差分的正负来判断函数的单调性。

若一阶差分恒大于零,则函数在该区间上单调递增;若一阶差分恒小于零,则函数在该区间上单调递减。

3. 二阶导数法对于二次可导函数,函数在某个区间上的单调性可以通过二阶导数的正负来判断。

若二阶导数恒大于零,则函数在该区间上单调递增;若二阶导数恒小于零,则函数在该区间上单调递减。

三、常见的单调函数1. 线性函数线性函数是最简单的单调函数,其定义域为实数集,函数的图像为一条直线。

线性函数在整个定义域上均为单调递增或单调递减。

2. 指数函数指数函数为形如 f(x) = a^x (a>0, a≠1)的函数,指数函数在定义域上分为两类:当a>1时,函数为单调递增函数;当0<a<1时,函数为单调递减函数。

3. 对数函数对数函数为形如 f(x) = loga(x) (a>0, a≠1)的函数。

当0<a<1时,对数函数为单调递增函数;当a>1时,对数函数为单调递减函数。

4. 幂函数幂函数为形如 f(x) = x^a (a为常数)的函数。

高一数学已知单调性知识点

高一数学已知单调性知识点

高一数学已知单调性知识点在高中数学课程中,单调性是一个重要的概念。

它在解决函数的最大值、最小值以及方程的根等问题时扮演着重要的角色。

在本文中,我们将介绍高一数学课程中已知的一些与单调性相关的知识点。

一、函数的单调性定义在讨论函数的单调性之前,我们首先需要了解函数的单调性是如何定义的。

对于一个定义在区间上的函数f(x),如果满足对于任意的x₁和x₂(x₁<x₂),都有f(x₁)≤f(x₂)或者f(x₁)≥f(x₂),那么我们称函数f(x)在区间上是单调递增的或者单调递减的。

如果对于任意的x₁和x₂(x₁<x₂),都有f(x₁)<f(x₂)或者f(x₁)>f(x₂),则我们称函数f(x)在区间上是严格单调递增的或者严格单调递减的。

二、函数的单调性判定1. 导数法在高一数学中,我们学习了求函数的导数的方法。

利用导数,我们可以判断函数的单调性。

对于一个在开区间(a,b)上可导的函数f(x),如果f'(x)>0,那么函数f(x)在区间(a,b)上是单调递增的;如果f'(x)<0,那么函数f(x)在区间(a,b)上是单调递减的。

2. 函数图像法除了利用导数,我们还可以通过观察函数的图像来判断其单调性。

当我们观察函数图像时,如果图像上的任意两点,连接这两点的线段都与x轴的正方向成锐角或者直角,那么函数在这一段区间上是单调递增的;如果连接这两点的线段都与x轴的正方向成锐角或者钝角,那么函数在这一段区间上是单调递减的。

三、单调性定理在高一数学中,我们学习了一些与函数的单调性相关的定理,其中最重要的是费马定理和罗尔定理。

1. 费马定理费马定理是关于函数极值的一个重要定理。

如果函数f(x)在[a,b]上是单调递增的,并且在(a,b)内可导,那么对于任意的[c,d]⊂(a,b),函数f(x)在[c,d]的极值点唯一,且必然在端点处取得。

2. 罗尔定理罗尔定理是关于函数根的一个重要定理。

高一函数的单调性知识点

高一函数的单调性知识点函数的单调性是数学中的一个重要概念,它描述了函数在定义域上的增减情况。

了解函数的单调性有助于我们更好地理解和运用函数,下面就是关于高一函数的单调性知识点的详细介绍。

一、函数的递增和递减区间在讨论函数的单调性时,首先需要了解函数的递增和递减区间。

我们将函数在定义域上递增(或递减)的部分称为函数的递增(或递减)区间。

1. 函数的递增区间对于函数 f(x),如果对于任意两个 x1 和 x2(x1 < x2),都有 f(x1)< f(x2),那么 f(x) 在 [x1, x2] 上递增。

我们可以通过求函数的导数来确定函数的递增区间。

2. 函数的递减区间对于函数 f(x),如果对于任意两个 x1 和 x2(x1 < x2),都有 f(x1) > f(x2),那么 f(x) 在 [x1, x2] 上递减。

同样地,我们可以通过求函数的导数来确定函数的递减区间。

二、函数单调性的判定在大部分情况下,我们可以通过函数的导数来判定函数的单调性。

具体而言,可以根据函数导数的正负性来确定函数的单调性。

1. 函数导数的正负性如果函数 f(x) 的导数在某个区间内恒大于 0,则 f(x) 在该区间上递增;如果导数恒小于 0,则 f(x) 在该区间上递减。

通过求导数,我们可以得到函数的递增区间和递减区间。

2. 临界点和极值点函数的单调性与其临界点和极值点也有密切关系。

在函数的临界点和极值点处,其单调性会发生改变。

- 临界点:函数 f(x) 在定义域上的某个点 x=c 处,如果 f'(c)=0 或者f'(c) 不存在,那么点 c 称为函数的临界点。

在临界点之间,函数的单调性可能会改变。

- 极值点:函数 f(x) 在定义域上的某个点 x=c 处,如果存在一个邻域,使得对于临界点 x 不等于 c,在该邻域内 f(c) 是 f(x) 的最大值或最小值,那么点 c 称为函数的极值点。

高一数学重要知识点【函数的单调性】.doc

高一数学重要知识点【函数的单调性】高一数学学习对大家来说很重要,想要取得好成绩必须要掌握好课本上的知识点,为了帮助大家掌握高一数学知识点,下面为大家带来高一数学重要知识点【函数的单调性】,希望对大家掌握数学知识有所帮助。

1、单调函数对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1x2时,都有不等式f(x1)(或)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与区间紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的整体性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设x1、x2[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以正逆互推.5、复合函数y=f[g(x)]的单调性若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称同增、异减.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。

因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.6、证明函数的单调性的方法(1)依定义进行证明.其步骤为:①任取x1、x2M且x1(或)f(x2);③根据定义,得出结论.(2)设函数y=f(x)在某区间内可导.如果f(x)0,则f(x)为增函数;如果f(x)0,则f(x)为减函数.为大家带来了高一数学重要知识点【函数的单调性】,希望大家能够熟记这些数学知识点,更多的高一数学知识点请查阅。

高一数学必修一知识点函数的性质

高一数学必修一知识点函数的性质函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间d上是增函数.区间d称为y=f(x)的单调增区间.如果对于区间D上所的任意两个自变量的值x1,x2,当x1注意:类型函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个函数技术指标是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,攀升减函数的图象从左到右是上升的.(3).函数单调区间与单调性的判定方法(A) 定义法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性并不相同,其规律:“同增异减”注意:函数的单调区间是其定义域的子区间 ,不能把性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的三维空间一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的三维空间一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征非负值的图象关于y轴对称;奇函数的图形关于原点对称.利用定义判断函数奇偶性的步骤:1首先确定函数的有理数,并判断可逆其是否关于原点对称;2确定f(-x)与f(x)的关系;3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于圆心对称是函数具有奇偶性的必要条件.首先看函数的定义域关于原点对称,若不对称则可被视为函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象定性 . 9、函数的解析变量(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数(小)值(定义见课本p36页)1 利用二次函数的性质(配方法)求函数的(小)值2 利用图画求函数的(小)值3 利用函数单调评断性的来判断函数的(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上才单调递减则函数y=f(x)在x=b处有值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上乏味递增则函数y=f(x)在x=b处有最小值f(b);</x2;/x2></x2时,都有f(x1)<f(x2),那么就说f(x)在区间d上是增函数.区间d称为y=f(x)的单调增区间.。

高一上学期函数的单调性-奇偶性及周期性知识点和题型

(一)函数的单调性1.函数单调性定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D,当x 1<x 2时,都有f(x 1) <f(x 2),则称f(x)是区间D 上的增函数,D 叫f(x)单调递增区间.当x 1<x 2时,都有f(x 1)> f(x 2),则称f(x)是区间D 上的减函数,D 叫f(x)单调递减区间.2.函数单调性的判断方法:(1)从直观上看,函数图象从左向右看,在某个区间上,图象是上升的,则此函数是增函数,若图象是下降的,则此函数是减函数。

(2)一般地,设函数)(x f y =的定义域为I .如果对于属于定义域I 某个区间A 上的任意两个自变量的值1x ,2x ,且21x x <,则021<-x x(1)()()则0-21<x f x f ()()()1212120f x f x x x x x -⇔>≠-)(x f 即在区间A 上是增函数; (2)()()则21x f x f >()()()1212120f x f x x x x x -⇔<≠-)(x f 即在区间A 上是减函数. 如果函数)(x f y =在某个区间上是增函数或减函数,那么就说函数在这一区间具有(严格的)的单调性,这一区间叫做)(x f y =的单调区间.单调区间是函数定义域的子区间,因此函数单调性是函数的局部性质,应以定义域为前提;必须指明在某个区间上函数是增函数或减函数(3)复合函数单调性判断方法:设()()[][],,,,,y f u u g x x a b u m n ==∈∈若外两函数的单调性相同,则()y f g x =⎡⎤⎣⎦在x 的区间D 单调递增,若外两函数的单调性相反时,则()y f g x =⎡⎤⎣⎦在x 的区间D 单调递减.(同增异减)3.常见结论若f(x)为减函数,则-f(x)为增函数 ;若f(x)>0(或<0)且为增函数,则函数)(1x f 在其定义域为减函数.【题型一、单调性的判断】例、写出下列函数的单调区间(1),b kx y +=(2)x ky =, (3)c bx ax y ++=2.如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【题型二、用定义法证明单调性】例、定义法证明函数y=2x+3在),(+∞-∞的单调性.例、判断函数f (x )=x x 1+在(0,1)上的单调性.【变式训练1】证明函数12)(++=x x x f 在),1(+∞-上是增函数.【方法技巧】根据函数的定义法来进行判别,记好步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1.下列说法中,正确的有( )
[玩转练习]
①若任意 x1,x2∈I,当 x1<x2 时,f(xx11)--fx(2x2)>0,则 y=f(x)在 I 上是增函数; ②函数 y=x2 在 R 上是增函数;
1 ③函数 y=-x在定义域上是增函数;
1 ④函数 y=x的单调区间是(-∞,0)∪(0,+∞).
2.探究与创新 设 f(x)是定义在(0,+∞)上的函数,满足条件: (1)f(xy)=f(x)+f(y); (2)f(2)=1; (3)在(0,+∞)上是增函数. 如果 f(2)+f(x-3)≤2,求 x 的取值范围.
4/8
角度三:利用函数的单调性求参数 例 6 (1)如果函数 f(x)=ax2+2x-3 在区间(-∞,4)上是单调递增的,则实数 a 的取值
高一上册数学复习知识点专题讲解
第 6 讲 函数的单调性
1.函数的单调性
(1)单调函数的定义
增函数
减函数
一般地,设函数 y=f(x)的定义域为 A,区间 M⊆A.如果取区
间 M 中的任意两个值 x1,x2,
定义
改变量 ∆x=x2-x1>0,则当 改变量 ∆x=x2-x1>0,当∆ ∆y=f(x2)-f(x1)>0 时,就称 y=f(x2)-f(x1)<0 时,就称函
.
[玩转跟踪] 2-x
1.已知函数 f(x)=x+1,证明:函数 f(x)在(-1,+∞)上为减函数.
2.定义在
R
上的函数
f(x)对任意两个不相等的实数
f(a)-f(b) a,b,总有 a-b >0,则必有(数 C.函数 f(x)先减后增 D.函数 f(x)是 R 上的减函数 3.画出函数 y=-x2+2|x|+1 的图象并写出函数的单调区间.
6/8
A.0 个 B.1 个 C.2 个 D.3 个
2.下列函数中,在区间(0,1)上是增函数的是( )
A.y=|x|
B.y=3-x
1 C.y=x
D.y=-x2+4
3.若函数 f(x)=4x2-kx-8 在[5,8]上是单调函数,则 k 的取值范围是( )
A.(-∞,40)
B.[40,64]
C.(-∞,40]∪[64,+∞) D.[64,+∞)
范围是( ) A.-14,+∞
B.-14,+∞
C.-14,0
D.-14,0
(2).已知 f(x)=(-3ax-+11),x+x≥4a1,x<1, 是定义在 R 上的减函数,那么 a 的取值范围是
________.
题型三 分类讨论二次函数单调性和最值 例 7 求函数 f (x) = x2 − 2ax −1在闭区间[0,2]上的单调性和最小值.
A.f(-1)<f(1)<f(2)
B.f(1)<f(2)<f(-1)
C.f(2)<f(-1)<f(1)
D.f(1)<f(-1)<f(2)
10.讨论函数 y=x2-2(2a+1)x+3 在[-2,2]上的单调性.
11.已知函数 f(x)在实数集中满足 f(xy)=f(x)+f(y),且 f(x)在定义域内是减函数. (1)求 f(1)的值; (2)若 f(2a-3)<0,试确定 a 的取值范围.
题型二 函数单调性的应用 角度一:利用函数的单调性求最值
3/8
例4
(1)函数 f(x)=1x,x≥1,
的最大值为________.
-x2+2,x<1
1 (2)已知函数 f(x)=ax+a(1-x)(a>0),且 f(x)在[0,1]上的最小值为 g(a),求 g(a)的最大
值.
角度二:利用函数的单调性求解不等式 例 5 1.(1)已知 y=f(x)在定义域(-1,1)上是减函数,且 f(1-a)<f(2a-1),则实数 a 的取值范围为________. (2) 已知函数 f(x)为(0,+∞)上的增函数,若 f(a2-a)>f(a+3),则实数 a 的取值范围为 ________.
1 7.求证:函数 f(x)=-x-1 在区间(-∞,0)上是增函数.
7/8
8.如果函数 f(x)=ax2+2x-3 在区间(-∞,4)上是单调递增的,则实数 a 的取值范围是
() 1
A.a>-4
1 B.a≥-4
1 C.-4≤a<0
1 D.-4≤a≤0
9.已知函数 f(x)=x2+bx+c 的图象的对称轴为直线 x=1,则( )
<0,f(1)=-3. (1)求证: f (x) 在 R 上是减函数; (2)求 f (x) 在[-3,3]上的最大值和最小值.
【玩转跟踪】 1.已知函数 f (x) 的定义域为 (0 ,+ ∞) ,且当 x > 1 时,f (x) > 0 且 f (x ⋅ y) = f (x) + f ( y) . (1)求 f (1) 的值; (2)证明 f (x) 在定义域上的增函数; (3)解不等式 f [x(x − 1 )] < 0 .
【玩转跟踪】
1.已知函数 f (x) = x2 + 2ax + 2 ,求 f (x) 在[−5,5] 上的最大值与最小值.
2.已知函数 f (x) = x2 − 2x + 3 ,当 x ∈[t , t +1]时,求 f (x) 的最大值与最小值.
5/8
题型四 抽象函数单调性和最值
例 8 已知函数 f (x) 对于任意 x,y∈R,总有 f(x)+f(y)=f(x+y),且当 x>0 时,f(x) 2
4.若 f(x)为 R 上的增函数,kf(x)为 R 上的减函数,则实数 k 的取值范围是( )
A.k 为任意实数
B.k>0
C.k<0
D.k≤0
5.函数 y=x|x-1|的单调递增区间是________.
6. 函数 f(x)=2x2-mx+3,当 x∈[2,+∞)时是增函数,当 x∈(-∞,2]时是减函数, 则 f(1)=________.
[玩转典例]
题型一 函数单调性的判断和证明 x+2
例 1 判断并证明函数 y=x+1在(-1,+∞)上的单调性.
1,x>0, 例 2.设函数 f(x)=0,x=0,
-1,x<0,
2
g(x)=x f(x-1),则函数 g(x)的递减区间是
________.
2/8
例 3. 函数 y = x2 − 2x − 3 的单调递增区间为
8/8
函数 y=f(x)在区间 M 上是增 数 y=f(x)在区间 M 上是减函
函数

增函数
减函数
图象描述
自左向右看图象是上升的
自左向右看图象是下降的
(2)单调区间的定义 如果函数 y=f(x)在区间 D 上是增函数或减函数,那么就说函数 y=f(x)在这一区间具 有(严格的)单调性,区间 D 叫做函数 y=f(x)的单调区间.
1/8
2.函数的最值 前提
条件
结论
设函数 y=f(x)的定义域为 I,如果存在实数 M 满足
(1)对于任意 x∈I,都有 f(x) ≤M; (2)存在 x0∈I,使得 f(x0)=M
(1)对于任意 x∈I,都有 f(x) ≥M; (2)存在 x0∈I,使得 f(x0)= M
M 为最大值
M 为最小值
相关文档
最新文档