光催化及材料

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1985年,Mutsunaga等发现在金属卤灯发出的近紫外光照射下, TiO2 - Pt电极具用杀菌效果,这一发现开创了用光催化方法杀பைடு நூலகம்消毒的先河。
目前,光催化技术在环保、卫生保健、有机合成等方面的应用研究 发展迅速,半导体光催化成为国际上最活跃的研究领域之一。
2
光催化的机理
A: 半导体吸收光,产生电子和空穴的过程 B: 电子和空穴表面复合过程 C: 电子和空穴体内复合过程 D: 还原过程 E: 氧化过程
H+ Water
reduction
H2
hv
H+/H2
O2/H2O
O2 Water
H2O oxidation
半导体光催化制氢条件
为实现太阳光直接驱动水的劈裂,要求光催化材料具有:
• 高稳定性、价廉;
• 半导体的禁带宽度Eg要大于水的分解电压;
• 能带位置要与氢和氧的反应电势相匹配:导带位置要负于氢电极的 反应电势(EH+/H2+ηc),使光电子的能量满足析氢反应要求。价带 位置应正于氧电极的反应电势(Vb +ηa),使光生空穴能够有效地氧 化水。
• Z-型制氢体系
光合作用Z过程由两个不同的原初光反应组成 模拟光合作用中光解水过程,采用不同的催化剂,借助两次光激励过程
分别实现光解水产氢和产氧 以氧化还原中间体实现体系的电荷平衡,使光解水过程得以连续进行
光合作用原理示意图
10
Z-型制氢原理示意图
• Z-型制氢体系的特点
催化剂只需满足光解水反应的一端,可拓宽催化剂的选择 范围
2.8
3.0 CdS
H+/H2 (E=0 eV)
2.4
O2/H2O (E=1.23eV)
2.0
绝大部分只能吸
收不到5%的太
3.0
阳光(紫外部分)!
6
半导体光催化制氢原理
H2O H2 + 1/2O2 G0 = 238 kJ/mol (E = -Go/nF = -1.23 eV)
V/NHE -1.0
应用领域:废水处理、汽车尾气处理、降解空气中的有害 有机物、有机磷农药等
5
常见半导体材料的能带结构
Evs.SHE(pH= )/eV
0
SiC
ZnS
-1.0
ZrO2
SrTiO3 TiO2 Ta2O5
0.0
Nb2O5 SnO2 ZnO
WO3
3.2 3.2
3.8
3.6
1.0
eV
4.6 5.0
3.2 3.4
第三章 光催化及材料
光催化的发展
1972 年日本科学家Fujishima和Honda用TiO2薄膜为电极,利用光能 分解水而生成氢气的实验,从而开辟了半导体光催化这一新的领域。
1976 年,John. H. Carey报道了TiO2光催化氧化法用于污水中PCB 化 合物脱氯去毒。1977年,Yokota发现光照条件下,TiO2对丙烯环氧化具 有光催化活性,拓宽了光催化应用范围,为有机物氧化反应提供了一 条新思路。
4
半导体的光催化活性主要取决于导带与价带的氧化-还原 电位,价带的氧化-还原电位越正,导带的氧化-还原电位 越负,则光生电子和空穴的氧化及还原能力就越强,从而 使光催化降解有机物的效率大大提高。
常用的光催化半导体纳米粒子有TiO2(锐铁矿相)、Fe2O3、 CdS、ZnS、PbS、PbSe、ZnFe2O4等。主要用处:将这 类材料做成空心小球,浮在含有有机物的废水表面上,利 太阳光可进行有机物的降解。
Sayama等采用RuO2-WO3为催化剂, Gratzel等报道TiO2表面镀WO3 Fe3+/Fe2+为电子中继体,可见光辐 薄膜:WO3吸收蓝光产生空穴,
氧化还原电对的电位位于H+/H2和O2/H2O之间,光激发所 需能量小,反应相对于直接分解水来说更容易
通过简单的筛网避免两种催化剂的混合,在分离的反应腔 中进行反映,可以解决光解水产物的分离。
在该模拟光合作用的Z-过程中,电子中继体可循环使用。 如I-/IO3-。
不需牺牲试剂,实现利用可见光分解水过程的连续进行
深度捕获 10 ns (不可逆)
ecb- + h + ecb- + TiIVOH·+ hvb+ + TiIIIOH
表面电荷转移:
hv or TiIVOH TiIVOH
ps 100ns—s
10ns
etr- + Ox TiIVOH·+ + Red
TiIVOH + Ox ·TiIVOH + Red ·+
很慢 ms 100ns
TiO2中光生电子、空穴的不同衰减过程的特征弛豫时间
主要过程
特征时间尺度
电子、空穴的产生:
TiO2 + hv
hvb+ + ecb-
fs
载流子被捕获过程:
hvb+ + TiIVOH
ecb- + TiIVOH ecb- + TiIV
电子、空穴的复合:
TiIVOH·+
TiIIIOH TiIII
10ns 轻度捕获 100ps—ms (动力学平衡)
• 当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到 导带(CB)形成光生电子-空穴。
• 价带空穴是强氧化剂,而导带电子是强还原剂。 • 空穴与H2O或OH-结合产生化学性质极为活泼的自由基基团( HO . ) • 电子与O2结合也会产生化学性质极为活泼的自由基基团(.O2-, HO . 等) 3 • 空穴,自由基都有很强的氧化性,能将有机物直接氧化为CO2, H2O
• 高效吸收太阳光谱中大多数的光子。光子的能量还必须大于半导体 禁带宽度Eg:若Eg~3V,则入射光波长应小于400 nm,只占太阳 光谱很小一部分。
光催化产氢体系
Z-型体系 光催化法
半导体光 催化制氢
悬浮体系 光催化法
光电化学 体系制氢
M.Gratzel, et al, Nature, 1991, 353: 737; Nature,1998, 395: 583; S.U.M. Khan, et al, Science, 2002, 297: 2243; Z.G.Zou, et al., Nature, 2001, 414, 625.
Conduction band
e- e- e- e- e-
0.0
+1.0
Band gap
+2.0
+3.0
h+ h+ h+ h+ h+
Valence band
Charge separation/recombination Separation of reduction and oxidation Control of reverse reaction
相关文档
最新文档