光谱分析

光谱分析

碱土光谱分析:从图中不难看出,从380nm~430nm随波长增加而逐渐上升,但反射率很低,反射率在0.5以下;430nm~780nm反射率呈平稳上升趋势,在近可见光波段反射率已达0.8;在近红外波段反射率增长趋势更显趋缓

水的光谱分析:清水的反射率在各个波段均较低(<%2).380nm~430nm随波长的增加反射率迅速增加,即紫光波段透射能力较弱,之后随波长的增加反射率逐渐减小,至760nm的近红外波段反射率几乎为零。

绿叶光谱分析:总体看来呈现五谷四峰的状态,450nm处于低谷处于蓝色光波段、670nm处于低谷处于红色波段(低谷的原因在于绿色植物在这两个波段的吸收率比较大,故反射率较低);500nm处反射率较高,原因是绿色反射率较高,非叶绿色吸收带;700~130nm反射率较高,其原因是其细胞结构(细胞质、细胞壁等结构);其后的三谷两峰是水的吸收带(绿叶饱含水分)。

枯叶光谱分析:枯叶的光谱反射率很显然在各个波段均低于绿叶,尤其在可见光(紫光、蓝光、红光)段其反射率几乎为零,原因在于对红光和蓝光的吸收率更大了,没有了叶绿素;700~1300nm反射率也低于绿叶,原因在于其细胞结构也不再完整,对可见光的反射能力也下降了;接下来的三谷两峰也较低于绿叶,原因是含水量明显减少(几乎为零)。

红叶光谱分析:红叶在可见光波段(红色波段除外),反射率几乎为零,究其原因:没有叶绿素,对任何波段的可见光都有很强的吸收能力,唯独强烈反射红色波段。近红外波段,随波长的增加反射率呈现出缓慢上升的情况,原因:有其细胞结构,反射率挺高的。

正常植被土:反射率非常低,也没有明显的峰谷和峰谷,近乎为零。原因是土颜色呈现出灰黑色,且还是粘土,光泽度较低,有机质含量较高含水量也很大。

光谱分析系统定标操作指南解析

光谱分析系统定标操作指南 1.打开WY直流电源和光谱仪电源,预热15分钟,启动 PMS-50/80PLUS软件。 2.在PMS-50/80软件主界面“测试”菜单“系统设置”中的“通讯 选项”对话框里设置相应通讯端口,选择任意一种“测试模式”。 3.把负载线连接在积分球上的“1”“2”接线柱和WY电源输出端之 间(WY305电压电流调至最小位置即逆时针方向调节电压和电流旋钮发出响声) 4.安装标准灯,调节灯杆位置使灯泡处于挡光班的中心高度,以确 保标准灯发出的光线不直射光度探测器和光纤。 5.关闭积分球,在“测试”菜单中或工具栏中选择“光通量定标”, 点击“关灯校零”进行光度校零。 6.校零成功后,手动调节WY电源(也可以在软件中的WY系列功 能中输入标准灯的标定电流和参考电压(输入的电压数值比标识的参考电压高1-2伏以把线路上的压降考虑进去),使其输出电流至标准灯标定电流值并处于稳流状态,等待5分钟以上待发光稳定,进行光通量定标,并“存盘推出”。 7.在“测试”菜单中或工具栏中点击“光谱定标”,进行色温定标, 完毕后“存盘退出”。 8.在PMS-50/80软件主页界面“测试”菜单“系统设置”中的“通 讯选项”对话框里选择另一种“测试模式”。 9.在“测试”菜单中或工具栏中点击“光谱定标”进行色温定标,

完毕后“存盘退出”。 10.把标准灯当做被测光源,在“测试”菜单中或工具栏中点击”电光 源测试“开始测试,测试结束验证测试色温和光通量是否正确:(要求色温偏差在±15K以内,光通量偏差在±1%以内)符合进行11步,如不符合关灯后重新5-10步的操作。 11.把WY电源的输出调至最小,以熄灭标准灯,等标准灯冷却后, 取下放入灯盒。 12.关闭WY电源,取下负载线接至机柜后的负载接线柱,至此完成 定标,即可以正常的测试操作了。 注:早期的PMS-50(即测试时间为2-3分钟的机型不需要8、9两步的操作)!

光谱分析仪

光谱分析仪 一、概述 光谱分析仪是在平时的光通信波分复用产品中较常使用到的仪表,当WDM系统刚出现时,多用它测试信号波长和光信噪比。其主要特点是动态范围大,一般可达70dB;灵敏度好,可达-90dBm;分辨率带宽小,一般小于0.1nm;比较适合于测试光信噪比。另外测量波长范围大,一般在600~1700nm.,但是测试波长精度时却不如多波长计准确。 在光谱的测量、各参考点通路信号光功率、各参考点光信噪比、光放大器各个波长的增益系数和增益平坦度的测试都可以使用光谱分析仪。光谱分析仪现在也集成了WDM的分析软件,可以很方便地把WDM的各个波长的中心频率、功率、光信噪比等参数用菜单的方式显示出来。 二、常用参数的测试 光谱分析仪的屏幕显示测量条件、标记值、其它数据以及测量波形。屏幕各部分的名称显示如下:

图1:屏幕各部分的名称 1、光谱谱宽的测量 谱宽即光谱的带宽,使用光谱分析仪可以测量LD、发光二极管的谱宽。在光谱的谱宽测量时,要特别注意光谱分析仪系统分辨率的选择,即原理上光谱分析仪的分辨率应当小于被测信号谱宽的1/10.,一般推荐设置为至少小于被测信号谱宽的1/5。 在实际的测量中,为了能够准确测量数据,一般选择分辨率带宽为0.1nm以下。分辨率带宽RES位于SETUP菜单中的第一项,直接输入所要设定的分辨率带宽的大小即可。如下图2、3、4所示(图中只为区别光谱形状的不同),当选择的分辨率带宽不同时,从光谱分析仪观察到的光谱形状有很大的不同,并且所测量得到的谱宽大小的不同。

图2:分辨率带宽RES=0.5nm时的光谱形状 图3:分辨率带宽RES=0.1nm时的光谱形状

冶金光电直读光谱分析的进展

冶金光电直读光谱分析的进展 九十年代以来,移动式光谱仪分析技术发展迅速.现在碳、磷、硫均可在移动式光谱仪上得到正确分析.它是通过两种不同技术实现的.早期的光导纤维对低于200nm的谱线有明显的吸收,因此不能分析碳、磷、硫.现代的特殊光导纤维已可以将碳(193.09nm)谱线吸收率大大降低,碳含量在0.02%以上浓度均可正常鉴别和区分.但这种方法仍不能分析磷、硫.另一种方法是专门为碳、磷、硫制作一个小光室,将其固定到激发枪上,光室为氢气气氛,这样激发枪激发的光通过两路传播:一路通过光纤传至5m外的主光学系统,另一路直接传给激发枪上的小光室,小光室有氮气保护不吸收紫外光,因此,可以测定碳、磷、硫.这样就大大拓展了移动式光谱仪的使用领域.目前,在我国移动式光谱仪的应用技术发展很快,各行业使用的移动式光谱仪估计在100台以上.为适应生产的需要,市场上又推出了全自动光谱检测车.我国宝钢就有两套全自动光谱检测车应用在钢管生产线上并实现了在线分析.它的工作流程是:钢管在生产线上经过光谱检测车的指定测量区域时,磨样装置自动从下而上打磨钢管表面,激发枪从下而上顶住钢管激发测量,两次测定取平均值,合格的钢管通过,不合格的便用吊臂将其吊至生产线外指定地点. 6小试样分析 光电直读光谱分析对试样有基本要求,试样与激发台的接触面应为大于激发孔的平面(激发孔直径10一15mm).因此许多小尺寸的试样不能直接在光电直读光谱仪上测定.为解决小试样的测量,国内外已经积累了丰富的经验,并广泛地应用于实际分析中。 (l)氮化硼片法:这是一项成熟技术,已应用多年.基本方法是用氮化硼作成一圆环,一般厚度为1mm刁外径与光电光谱仪激发孔相同,内径为5mm刀。或8mm,将氮化翻片放在激发孔上,由于有效的激发孔径减小,有些小试样可以进行测量. (2)夹具法:国内外开发出各种夹具解决了线、棒试样的分析问题.夹具可分为两类,一类是竖直夹具,可分析直径大于3mm的棒材.具体方法是用夹具夹住试样并置于与电极相对位置(用定位器定位)进行激发测量.另一类是卧式夹具,可分析0.5~3mm的线材.

光谱分析法在药物分析中的应用

光谱分析法在药物分析中的应用 当物质与辐射能相互作用时,物质内部发生能级跃迁。记录同能级跃迁所产生的辐射能随波长的变化所得的图谱称为光谱,利用特等的光谱进行定性、定量和结构分析的方法称为光谱分析方法,简称光谱法。如紫外-可见分光光度法、荧光分析法、原子吸收分光光度法和红外分光光度法等。 原子吸收光谱法在药物分析中的应用 原子吸收光谱法又称原子吸收分光光度法(atomic absorption spectroscopy, AAS).自从1955年澳大利亚物理学家阿兰·沃尔什发表了第一篇应用原子吸收光谱法作为一种分析手段的文章以来,该法已在分析化学领域获得了日益广泛的应用.目前,原子吸收光谱分析方法主要有直接法和间接法两种.直接法是利用特定的波长直接测定目标元素的含量,并已广泛应用于微量元素的分析、微量元素与药效关系的研究等领域.间接法是利用某些特定的金属离子可与药物的有机成分间有缔合、沉淀、氧化还原等定量反应的发生,经离心分离、原子吸收光谱法测定体系中游离的金属离子而间接测定目标分子.1968年,Christian等人[1]首先将原子吸收法用于间接测定一些无机阴离子和有机化合物.自那时起,已有许多文章发表[2~11],使间接AAS法逐渐走向成熟. 经过分析工作者的多年努力,AAS法在药物分析中的应用也有了较大进展.直接法可测定含有金属离子的药物,如VB12分子中含有一个钴离子,将样品溶解后在240.7 nm波长下测定钴便可测定出VB12的含量[12,13].约有30多种药物的分子结构中含有金属元素[14],能直接用AAS法测定.然而,对于绝大多数的药物,需要采用间接AAS法.这些药物虽不含金属元素,但含有可供氧化还原或配位的基团,通过一定的化学反应使其与金属离子或含有金属离子的络离子形成配合物或离子缔合物.经离心分离或溶剂萃取后,用AAS法进行测定.龙沛霞等人[15]曾评述了原子吸收光谱法分析中药微量元素的研究进展,王文海[16]评述了原子吸收光谱在食品金属元素分析中的应用.有关原子吸收光谱法在药物分析中的应用也有评述[17~19].本文对近两年来原子吸收光谱法在药物分析中应用的最新进展进行评述,并讨论了未来的发展趋势. 1 原子吸收光谱法分析药物中的微 量元素 1.1 微量元素的含量分析 微量元素的含量与药物的药效有直接的关系,是原子吸收光谱技术在药物分析应用最早也是最广泛的领域.近年来,与人体健康有关的微量元素的分析研究越来越受到人们的重视.现代研究表明,在中药材药效发挥过程中,微量元素的协同作用不可忽视.研究和测定中药材中的常见元素,不仅可为中药药理作用的研究提供基础数据,也能为中药材的鉴定提供依据.张瑾[20]利用原子吸收光谱法对16种活血化瘀中草药中10种微量元素进行了测定.方法的回收率为95.0%~105.0%,相对标准偏差小于0.03%.梁淑轩等人[21]采用HNO3:HClO4(4∶1)混酸化、石墨炉原子吸收法同时测定了银杏、杜仲及绞股蓝成熟青叶中的Se、Ge、Cu、Zn、Fe、Mn等6种微量元素,方法简便快速.通过对桃叶标准物中的Cu、Zn、Fe、Mn等4种微量元素的测定,证明了方法准确可靠.实验结果表明这3种药用植物叶中Cu、Zn、Fe、Mn含量都较为丰富,特别是银杏叶中的Se、绞股蓝中的Ge含量较高.韩丽琴等人[22,23]利用火焰

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

波谱分析概论作业

浙江大学远程教育学院 《波谱分析概论》课程作业 姓名:学号: 年级:2014秋药学学习中心:衢州学习中心————————————————————————————— 第一章紫外光谱 一、简答 1.丙酮的羰基有几种类型的价电子。试绘出其能级图,并说明能产生何种电子跃迁各种跃迁可在何区域波长处产生吸收 答:有n电子和π电子。能够发生n→π*跃迁。从n轨道向π反键轨道跃迁。 能产生R带。跃迁波长在250—500nm之内。 2.指出下述各对化合物中,哪一个化合物能吸收波长较长的光线(只考虑π→π*跃迁)。 答:(1)的后者能发生n→π*跃迁,吸收较长。 (2)后者的氮原子能与苯环发生P→π共轭,所以或者吸收较长。 3.与化合物(A)的电子光谱相比,解释化合物(B)与(C)的电子光谱发生变化的原因(在乙醇中)。 答:B、C发生了明显的蓝移,主要原因是空间位阻效应。 二、分析比较 1.指出下列两个化合物在近紫外区中的区别:

答:(A)和(B)中各有两个双键。(A)的两个双键中间隔了一个单键,这两个双键就能发生π→π共轭。而(B)这两个双键中隔了两个单键, 则不能产生共轭。所以(A)的紫外波长比较长,(B)则比较短。 2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n→π*跃迁及π→π*跃迁有何影响用能级图表示。 答:对n→π*跃迁来讲,随着溶剂极性的增大,它的最大吸收波长会发生紫移。而π→π*跃迁中,成键轨道下,π反键轨道跃迁,随着溶剂极性的 增大,它会发生红移。 三、试回答下列各问题 某酮类化合物λhexane max =305nm,其λEtOH max =307nm,试问,该吸收是由n→π*跃迁还是 π→π*跃迁引起的 答:乙醇比正己烷的极性要强的多,随着溶剂极性的增大,最大吸收波长从305nm 变动到307nm,随着溶剂极性增大,它发生了红移。化合物当中应当是π→π反键轨道的跃迁。 第二章红外光谱 一、回答下列问题: 1. C—H,C—Cl键的伸缩振动峰何者要相对强一些为什么 答:由于CL原子比H原子极性要大,C—CL键的偶极矩变化比较大,因此C—CL键的吸收峰比较强。 2. C═O与C═C都在μm区域附近。试问峰强有何区别意义何在 答:C=C双键电负性是相同的,C=O双键,O的双键电负性比C要强。在振动过程中,肯定是羰基的偶极矩的变化比较大,所以羰基的吸收峰要比 C=C双键的强的多。

光电直读光谱仪的工作原理原理及误差分析

光电直读光谱仪的工作原理原理及误差分析 由于我国材料技术的发展,工业企业对材料化学成分的控制要求越来越高,而传统化学分析方法速度慢, 分析范围小,极大地制约了材料技术的发展,而光电直读光谱仪具有速度快、准确度高、操作简单、分析 范围广等优点,是化学分析方法无法比拟的。因此,逐渐受到广大用户的欢迎。 光电直读光谱仪的测量误差受很多因素的影响,下面简单介绍其工作原理,再对测量误差进行详细 分析,以使广大使用者更好、更准确地使用光电直读光谱仪。 一、工作原理 光电直读光谱仪采用的是原子发射光谱分析法,工作原理是用电火花的高温使样品中各元素从固态直接气 化并被激发而发射出各元素的特征谱线,每种元素的发射光谱谱线强度正比于样品中该元素的含量,用光 栅分光后,成为按波长排列的光谱,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信 号变成电信号,经仪器的控制测量系统将电信号积分并进行模数转换,然后由计算机处理,并打印出各元 素的百分含量。工作原理图如图1所示。 二、误差分析 光电直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不 一致,存在一定误差,并且受诸多因素的影响,有的材料本身含量就很低。下面就误差的种类、来源及 如何避免误差进行分析。 根据误差的性质及产生原因,误差可分为系统误差、偶然误差、过失误差及其他误差等。 1.系统误差的来源 (1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误

差。 (2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别从而产生系统误差。 (3)浇注状态的钢样与经过退火、淬火、回火、热轧、锻压状态的钢样金属组织结构不相同时,测出的 数据会有所差别。 (4)未知元素谱线的重叠干扰。如熔炼过程中加入脱氧剂、除硫磷剂时,混入未知合金元素而引入系统 误差 (5)要消除系统误差,必须严格按照标准样品制备规定要求。为了检查系统误差,就需要采用化学分析 方分析多次校对结果。 2.偶然误差的来源 与样品成分不均匀有关的误差。因为光电光谱分析所消耗的样品很少,样品中元素分布的不均匀性、组织 结构的不均匀性,导致不同部位的分析结果不同而产生。 3.其他因素误差及如何避免 (1)氩气不纯。当氩气中含有氧和水蒸气时,会使激发斑点变坏。如果氩气管道与电极如果氩气管道与 电极架有污染物排不出,分析结果会变差。 (2)试样表面要平整,当试样放在电极架上时,不能有漏气现象。如有漏气,激发时声音不正常。(3)样品与控制标样的磨纹粗细要一致,不能有交叉纹,磨样用力不要过大,而且用力要均匀,用力过 大,容易造成试样表面氧化。 (4)对高镍铬钢磨样时,要使用新砂轮片磨样,磨纹操作要求更严格。 (5)试样不能有偏析、裂纹、气孔等缺陷,试样要有一定的代表性。 (6)电极的顶尖应具有一定角度,使光轴不偏离中心,放电间隙应保持不变,否则聚焦在分光仪的谱线强度会改变。多次重复放电以后,电极会长尖,改变了放电间隙。激发产生的金属蒸气也会污染电极。所 以必须激发一次后就用刷子清理电极。 (7)透镜内表面常常受到来自真空泵油蒸气的污染,外表面受到分析时产生金属蒸气的附着,使透过率 明显降低,对波长小于200nm的碳、硫、磷谱线的透过率影响更显著,所以聚光镜要进行定期清理。 8)真空度不够高会降低分析灵敏度,特别是波长小于200nm的元素更明显,为此要求真空度达到0. 05mmHg。 (9)出射狭缝的位置变化受温度的影响最大,因此保持分光室内恒温30℃很重要,还要求室内温度保持 一致,使出射狭缝不偏离正常。 (10)室内温度的升高会增加光电倍增管的暗电流,降低信噪比。湿度大容易导致高压元件发生漏电、放电,使分析结果不稳定。

光谱分析概论及UV习题

光学分析法概论 填空题: 1.电磁辐射具有 波动性 和 微粒性 两个性质。 2.可见光的波长范围是 400-760nm ,紫外光的波长范围是 200-400nm ,红外光的波长范围是 0.76-1000um 。 3.波长越大,其频率越 低 ,波数越 低 ,能量越 低 。 计算: 1.1μm 波长的光线对应的波数、频率分别为多少? 41 48141611101*103*10/3*10()1*10cm cm c m s s Hz m σλυλ----== ====

紫外可见分光光度法 填空: 紫外可见分光光度法的英文简写是。 紫外可见分光光度法吸收曲线纵坐标用表示,横坐标用表示。 选择 1紫外可见吸收光谱是由()产生? A 分子外层电子跃迁产生 B 原子的振动产生的 C 分子的转动产生的 D 原子外层电子跃迁产生 2电子能级间隔越小,电子跃迁时吸收光子的() A 能量越高 B 波长越长 C 波数越大小 D 频率越高 3丙酮在乙烷中的紫外吸收λmax=279nm,ε=14.8,此吸收峰是由哪种跃迁引起的?() A n → σ* B σ→ σ* C π→ π* D n → π* 4下列化合物中,同时有σ→ σ* ,π→ π*,n → σ*跃迁的化合物是() A 氯仿 B 丙酮 C 1,3-丁二烯 D 甲醇 5符合朗伯—比尔定律的某有色溶液,当有色物质的浓度增加时,最大吸收波长和吸光度分别是() A不变、增加B不变、减少 C增加、不变D减少、不变 6某物质摩尔吸光系数很大,则表明() A 该物质对某波长的吸光能力很强 B 该物质浓度很大 C 光通过该物质溶液的光程很长 D 测定该物质的精密度很高 7透射比与吸光度的关系是() A 1/T=A B lg1/T=A C lgT=A D lg1/A=T 8一有色溶液对某波长光的吸收遵守比尔定律。当选用2.0 cm的比色皿时,测得透光率为T,当改用1.0cm 的吸收池,则透光率应为() A 2T B T/2 C T2 D T1/2 9以下说法错误的是() A摩尔吸光系数随浓度增大而增大 B吸光度A随浓度增大而增大 C透光率T随浓度增大而减小

光谱分析仪应用及功能特点

光谱分析仪应用及功能特点 由于近红外光在常规中有良好的传输特性,且其仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,成为在线分析仪表中的一枝奇葩。近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、制药、烟草等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。光谱分析仪应用于钢铁冶金、有色金属、石油化工、机械制造、能源电力、铁路运输、航空航天、食品卫生、环境保护以及教学科研等各个领域。 直读光谱仪一般属于原子发射光谱,应用于冶金,铸造,有色,黑色金属鉴别,石化,机械制造等行业。国际上比较有名的有美国热电(收购瑞士ARL),德国斯派克,德国布鲁克,日本岛津等比较有名。 手持式光谱仪属于X射线荧光光谱仪,同样属于原子发射光谱仪,但和直读光谱的激发方式不一样,直读光谱靠高压放电激发,X射线是通过X光管来激发,接收原件也不同,检测元素范围和精度低于直读光谱,但应用于合金材料牌号鉴别以及混料筛选,废料回收,野外材料牌号鉴别有特殊用途,因可以做的小巧,一般做成手持式,方便携带。 性能特点 防返油真空技术,采用两级阀门控制。一级通过真空规管控制并与真空泵联动,为世界光谱仪领域最新技术,避免仪器抽真空带来的噪声、故障,防返油真空技术,避免油蒸汽对光学系统造成的污染,大大提高了仪器的使用寿命。 1.仪器采用的独立出射狭缝为国内首创,世界先进。金属整缝的特点是仪器调试方便、快捷,便于出射狭缝增加通道(用户可仅考虑目前应用的元素,以后需要的通道可随时增加)节约成本。 2.自动高压系统为世界先进水平。该系统可通过计算机控制每个通道提供8档高压,使同一通道可以在不同分析程序中得到应用,提高了通道的利用率和谱线最佳线性范围在分析不同材料中的采用,减少了通道的采用数量,降低了成本。 3.自动描迹为世界领先水平,同类仪器国内空白。自动描迹可大大缩短校准仪器所用的时间,使仪器校准变得简单、方便,非专业人员既可进行描迹操作。仪器设有内部恒温系统。大大减小了环境温度变化对光学系统造成的漂移。 4.WINDOWS系统下的中文操作软件,方便国内使用。不同层次的操作员可随时调用相关帮助菜单来指导对仪器的操作;分析速度快捷,20秒内测完所有通道的化学成分;针对不同的分析材料,通过制作预燃曲线来确定分析时间,使仪器用最短的时间达到最优的分析效果;预制好合理的工作曲线,用户可免购大量标样,节约使用成本,安装后即可投入使用。 5.多功能光源国内空白。多功能光源的采用可扩大元素的分析范围,满足超高含量以及痕量元素的分析;各系统独立供电,单元化设计,维修方便快捷。单元化的设计可达到非专业人员的快速维修,为互联网摇诊仪器故障做好了充分准备。

光谱分析的基本原理20079146572353623

第一章直读光谱仪的概况 国内外光电直读光谱仪的发展 光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。 1814年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时.把那些主要黑线绘出光谱图。 1826年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。 到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。 从1860年到1907年之间、用火焰和电火花放电发现碱金属元素铯Cs、1861年又发现铷Rb和铊Tl,1868年又发现铟In和氦He。1869年又发现氮N。1875~1907年又相继发现镓Ga,钾K,铥Tm,镨Pr,钋Pe,钐Sm,钇y,镥Lu等。 1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。 波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。 从测定光谱线的绝对强度转到测量谱线的相对强度的应用,使光谱分析方法从定性分析发展到定量分析创造基础。从而使光谱分析方法逐渐走出实验室,在工业部门中应用了。 1928年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。 最早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。工业生产的发晨,光谱学的进步,促使光学仪器进一步得到改善,而后者又反作用于前者,促进了光谱学的发展和工业生产的发展。 六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展,1964年ARL公司展示一套数字计算和控制读出系统。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。 解放后,我国的光谱仪器工业从无到有,由小到大,得到飞跃的发展,且具有一定的规模,与世界先进技术竞争中求生存,社会商品竞赛中得到发展。 1958年开始试制光谱仪器,生产了我国第一台中型石英摄谱仪,大型摄谱仪,单色仪等。中科院光机所开始研究刻制光栅,59年上海光学仪器厂,63年北京光学仪器厂开始研究刻制光栅,63年研制光刻成功。1966—1968年北京光学仪器厂和上海光学仪器厂先后研制成功中型平面光栅摄谱仪和一米平面光栅摄谱仪及光电直读头。1971—1972年由北京第二光学仪器厂研究成功国内第一台WZG—200平面光栅光量计,结束了我国不能生产光电直读光谱仪的历史。

光谱分析仪的主要用途和应用领域

光谱分析仪的主要用途和应用领域你清楚吗?不清楚的快来 看看小编为您汇总的吧! 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是 狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光。根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪。 光学多道分析仪OMA是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,手持式矿石分析仪,它集信息采集,处理,存储诸功能于一体。由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,岩矿石分析仪供应,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率;使用OMA分析光谱,测盆准确迅速,钼矿石分析仪,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。目前,它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,特别适应于对微弱信号,瞬变信号的检测。 一般分为两类,一种是光栅扫描的,很少使用;另一种是迈克尔逊干涉仪扫描的,称为傅立叶变换红外光谱,这是目前广泛使用的。光栅扫描的是利用分光镜将检测光(红外光)分成两束,一束作为参考光,一束作为探测光照射样品,再利用光栅和单色仪将红外光的波长分开,扫描并检测逐个波长的强度,后整合成一张谱图。傅立叶变换红外光谱是利用迈克尔逊干涉仪将检测光(红外光)分 成两束,在动镜和定镜上反射回分束器上,这两束光是宽带的相干光,会发生干涉。相干的红外光照射到样品上,经检测器采集,获得含有样品信息的红外干涉图数据,经过计算机对数据进行傅立叶变换后,得到样品的红外光谱图。傅立叶变换红外光谱具有扫描速率快,分辨率高,稳定的可重复性等特点,被广泛使用。

紫外光谱分析仪基础知识

紫外光谱分析仪基础知识 紫外,可见光谱法及相关仪器 UV-VIS Spectrometry & Instrument 紫外,可见光谱法及相关仪器 一(紫外,可见吸收光谱概述 二(紫外,可见分光光度计2 1(紫外,可见分光光度计的主要部件 2(紫外,可见分光光度计的分类 3(紫外,可见分光光度计的各项指标含义 4(紫外,可见分光光度计的校正 三(紫外,可见分光光度计的应用 四(紫外,可见分光光度计的进展 一(紫外,可见吸收光谱概述 利用紫外,可见吸收光谱来进行定量分析由来已久,可追溯到古代,公元60年古希腊已经知道利用五味子浸液来估计醋中铁的含量,这一古老的方法由于最初是运用人眼来进行检测,所以又称比色法。到了16、17世纪,相关分析理论开始蓬勃发展,1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的朗伯,比尔定律。 1(紫外,可见吸收光谱的形成 吸光光度法也称做分光光度法,但是分光光度法的概念有些含糊,分光光度是指仪器的功能,即仪器进行分光并用光度法测定,这类仪器包括了分光光度计与原

子吸收光谱仪(AAS)。吸光光度法的本质是光的吸收,因此称吸光光度法比较合理,当然,称分子吸光光度法是最确切的。 紫外,可见吸收光谱是物质中分子吸收200-800nm光谱区内的光而产生的。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级跃迁(原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因(如受光、热、电的激发)而从一个能级转到另一个能级,称为跃迁。)当这些电子吸收了外来辐射的能量就从一个能量较低的能级跃迁到一个能量较高的能级。因此,每一跃迁都对应着吸收一定的能量辐射。具有不同分子结构的各种物质,有对电磁辐射显示选择吸收的特性。吸光光度法就是基于这种物质对电磁辐射的选择性吸收的特性而建立起来的,它属于分子吸收光谱。跃迁所吸收的能量符合波尔条件: hvEE,,2121 二(紫外,可见分光光度计 1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外,可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,仪器的灵敏度和准确度也不断提高,其应用范围也不断扩大。 1(紫外,可见分光光度计的主要部件 全世界的紫外,可见分光光度计生产厂家有上百家,产品型号成千上万,但就基本结构来说,都是由五个部分组成,即光源、单色器(单色仪)、吸收池、检测器和信号指示系统。如下图所示: 信号指光源单色器吸收池检测器示系统光源

最新CCD光电直读光谱仪原理及技术

C C D光电直读光谱仪 原理及技术

第一篇概况 国内外光电直读光谱仪的发展 光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。 1814年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时.把那些主要黑线绘出光谱图。 1826年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。 到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。 从1860年到1907年之间、用火焰和电火花放电发现碱金属元素铯Cs、1861年又发现铷Rb和铊Tl,1868年又发现铟In和氦He。1869年又发现氮N。1875~1907年又相继发现镓Ga,钾K,铥Tm,镨Pr,钋Pe,钐Sm,钇y,镥Lu等。 1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。 波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。

高精度LED光谱分析系统

一、关于组合式光色电分析系统的数量清单,提供如下: 积分球/光谱分析仪可以配置电脑直接检测光源(节能灯,荧光灯,HID灯,白织灯,LED灯等)的相对光谱功率分布、色品坐标、相关色温、显色指数、色容差、峰值波长、光通量、光效、电压、电流等光色电参数组合式综合测试仪,由以下仪器组成. HSP系列组合式光谱分析系统 1、HSP-3000光谱分析仪(进口器件) 可测试参数: 相对光谱功率分布:P(λ);色品坐标:(x,y)、(u,v);相关色温:(Tc); 显色指数:Ra; Ri(I=1~14);色容差 (含国际和国内标准); 峰值波长、半宽度(光谱辐射带宽);红色比。 可自动测试光电变化曲线,适时监测电参数,光参数以及光效等。可直接保存为EXCEL文档,方便存档记录数据。 主要技术性能指标: 波长:380-780nm;波长准确度:±0.2nm; 波长重复性:±0.1nm;采样间隔:5nm; 光通量测试:根据积分球大小决定 光度线性:0.3%;光度准确度:一级(全范围); 色品坐标准确度:±0.0003(相对于稳定度优于0.0001的标 准光源和中国计量院直接传值); 色温测量范围:1500k-25000k; 色温准确度:±0.3%(相对于稳定度优于±0.1%的标 准光源和中国计量院直接传值)

显色指数测量范围:0-100.0;显色指数测量误差:±(0.3%rd+0.5); 色容差准确度:±0.5(相对于稳定度优于0.15的标准光 源和中国计量院直接量传计算值); 环境温度测量范围:―10℃∽80℃;球内温度测量范围:―10℃∽100℃; 新增功能: ㈠采用RS-232-C串口通讯或USB转RS-232-C串口通讯,无需插卡。 操作系统Windows/2000或Windows/XP。 ㈡快速负高压自动调节,不仅使测量时间更快,更大大降低了仪器的磨损。 ㈢仪器可自动校准系统误差,并增加了定时器功能,能自动进入测量。 ㈣环境温度、测光球内温度的同步监测,使测量条件更直观,资料更可靠。 ㈤光谱功率分布可选择彩色和黑白显示及打印。 ㈥测试报告中色品图与色容差图可自由转换,适合各类光源的测试㈦采用了更高精度的A/D转换,测量灵敏度和重复性更高。 2、1.5米导光纤维 主要用于HSP-3000光谱分析仪和积分球之间的光信号传输。 3、HP502标准灯专用电源 标准光源的供电电源,恒流源,带四位半数显电流表头。 ●输出范围:电压0.00 —30.00V,电流0.000 — 5.000A; ●稳压时电压稳定度:0.10 V —30.00V:≤5mV ●稳流时电流稳定度: 0.000 A —1.000 A:≤0.2mA 1.000 A —3.000 A:≤0.8mA 3.000 A —5.000 A:≤2mA 4、24V/50W通用标准光源(德国OSRAM) ●在标定的工作电流下具有稳定的可复现的色温(光谱分布)及光通量,用于HSP系列光谱分析系统的色温(光谱分布)定标及HP系列等光度计的光通量定标,量值可溯源至中国计量院。 5、2.0米积分球(特殊工艺喷涂) ●设计完全符合相应国际及国内标准的要求,内壁涂层主要材料选用分析纯硫酸钡(BaSO4),化学稳定性好,日久不易泛黄;球体材料选用冷轧钢板,不易变形;底座高度可调,能确保积分球的水平放置;多个接口可满足光源多项测试同时进行。 6、HP105电参数测量仪 在测量光源光参数的同时,监测光源的电压、电流、功率、功率因子/频率。可与HSP-3000 软件自动通讯。 ●四窗口同时显示:电压、电流、功率、功率因数/频率;

光电光谱分析法测定钢中的碳

光电光谱分析法测定钢中的碳 [摘要]本文论述了如何用光电光谱仪对钢中的碳进 行测定,以及光谱分析式样的要求。 [关键词]光谱法碳 中图分类号:F72 文献标识码:A 文章编号:1009-914X (2015)07-0290-01 为了满足现代炼钢生产的需要,快速、准确的分析钢中碳的含量,现采用光电光谱分析法测定钢中的碳含量。该方法解决了对钢中碳分析上存在的一些问题,获得了理想的分析结果。 1. 实验部分 1.1 实验仪器:本次实验采用日本岛津制造的 GVM-514S光电光谱分析仪。 1.1.1 分光仪 光栅曲率半径:500mm,分辨率:04nm/mm, 碳波长:193.09nm,氩气要求:99.99% 1.1.2 光源 HSPG-300型,带有五种性能的组合式高速光源,测定钢中的碳用其中的正常火花,C=2.5?f,L=150?H,Ip=350A。 1.1.3 软件职能 软件系统具有丰富的分析功能,它独到的功能之一是把

一次激发过程分为三个程次(SEQVENCE),在每个程次中可选用一种光源,根据需要对不同元素用不同光源分别激发。 1.2 采样分析 分析条件: 1.3 制样 1.3.1 切割材料:把炉前去除的试料,用切割机切去有缩孔的顶端部位3-4cm,制成5-8cm高度的试样。 1.3.2 试样的冷却 切割后的试样温度约为800℃,把它迅速放入冷却槽里横放静置冷却,直到试样的切面中心处冒出几个气泡为止,用这种冷却方法可以避免产生裂纹或炸裂。 1.3.3 磨样 把冷却好的试样在粒度为80#的氧化铝砂纸上研磨使其表面纹路整齐,试样温度一般在40℃,磨样时间过长,使样品过热,对碳的分析会有影响,注意不要用手直接接触分析表面,同时对油类的沾污也应避免。 1.4 建立工作曲线 以工业纯铁BHG15号(太原钢研所制) GSBA68057-68062-89(大连)为基础,建立工作曲线。 1.4.1 登记分析情报 对分析条件、分析通道、显示打印格式、有效数字、化

红外光谱分析技术及其应用

红外光谱分析技术及其应用(作者: _________ 单位:___________ 邮编: ___________ ) 作者:范雪芳徐淼侯晓涛王帅李洪宇张丽华 【摘要】红外光谱(IR)分析技术是一门发展迅猛的高新技术,与传统分析技术相比,红外光谱分析技术具有分析速度快,样品用量少,无破坏无污染等特点。红外光谱测定的是物质中分子的吸收光谱,不同的物质会有其特征指纹的特性,利用红外指纹图谱技术对中成药进行质量鉴定与分析,借助计算机和模式识别等技术,以综合的、宏观的、非线性的分析理念和质量控制模式来评价中药的真伪优劣 【关键词】红外光谱;红外指纹图谱技术 【Abstract ] Infrared spectrum (IR) is a fast developing newly tech no logy. Comparedwith traditi onal an alysis tech no logy, IR possesses characters of fast analysis, little sample, no breach and no pollution. IR measures the absorption spectrum of molecule, and different substances have different fingerprint patter ns. Thus, IR tech no logy can be applied to detect and an alyze the quality of traditi onal Chin ese drug. Using the computer, pattern recognition and so on, we can estimate if

光谱分析系统使用操作规范

光谱分析系统使用操作规范 1.本标准规定了光谱分析系统的操作步骤、方法和注意事项。测试前应详细阅读操作规范或用户手册,并注意仪器上的警告语。 2.本标准适用于远方 PMS-80光谱分析系统。 3.操作步骤及方法: 3.1 定标 3.1.1定标周期: a、每次更换积分球测试前需要定标。 b、对测试结果有疑义,或其他需要精确测量前应定标。 c、定期定标:每个月需定标1次。 3.1.2 定标方法: a、积分球电源线接直流电源端口,在积分球内放入标准光源,关闭积分球。手拿标准光源时须待白手套,注意保护好标准光源。 b、打开PmsLAB软件,点选“定标“>“光通量定标“,打开光通量定标界面,点击“关灯较零“校零。 c、点击”WY系统电源”按钮,选择以下设置:COM3口,多机模式,按照标准光源的参数设置标准值电压,电流先设置为标准值的80%,点选恒定电流,设置好后点设定,点亮标准光源,预热20min。 d、预热结束后,把电流设置为标准值,等待1min标准光源稳定后,准备定标。 e、在“设定与输入标准灯参数”栏内,选择“标准A光源”,输入标准光源的型号与编号,输入标准光源的“光通量标准值”和“标准A光源色温”。点击“光通量定标”,开始定标。仪器完成定标操作后,点击“开始检验”,检验定标是否正确。确认定标好之后,点击“保存定标”。光通量定标完成。 f、点选“定标“>“光谱定标“,打开光谱定标界面。 g、“光谱定标类型”选择“电光源“,”定标扫描步长“选择”5nm“,按照标准光源的参数输入”标准灯色温“和“光通量标准值“,点击”开始“,开始定标。定标完成后,点击“保存退出“。3.2 测试方法: 3.2.1 直流定标后,接好传输线,按照待测光源是直流输入还是交流输入,接好相应的电源线。放置好待测光源,准备测试。 3.2.2 打开PmsLAB软件,依次点击“设置”>“主机设置”,选择光谱仪型号为“PMS-80“,选择“精确测试”,端口号全为COM3,点选“自动通讯“和“测试灯参数”。若光源是直流输入,则选择功率计类型为WY(9bit),若光源是交流输入,则选择功率计类型为PF9811/10。 3.2.3 直流光源通过“工具”>“WY系统电源”,设置好输出参数,点击“设置“开始输出。交流光源需打开测试柜,直接调节交流变频电源的输出参数,然后按交流变频电源上的”OUTPUT”开始输出。点亮待测光源。 3.2.4 点击“测试”> “电光源测试”,打开电参数界面,确认待测光源的电参数,预热10min。 3.2.5 点击“确定“,进入光参数界面,设置灵敏度为“自动选择“,”扫描步长“为5nm,”扫描范围“为280-800,点选“测试前光校零”。点击“开始测试”,等待测试完成。 3.2.6 同型号光源批量测试时,第一个光源设置灵敏度为“自动选择“,仪器会自动分析并选择灵敏度。继续测试此批光源时,就可以选择相应的灵敏度,以加快测试速度。 3.2.7 保存并导出测试结果,将测试结果打印为PDF文档。测试结束。 制定:审核:批准:

相关文档
最新文档