全等三角形的判定条件和边角边

合集下载

三角形全等的判定“边角边”判定定理教案

三角形全等的判定“边角边”判定定理教案

三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的判定方法。

2. 让学生掌握“边角边”(SAS)判定定理,并能运用其判定两个三角形全等。

3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。

二、教学内容1. 三角形全等的概念。

2. “边角边”(SAS)判定定理。

三、教学重点与难点1. 教学重点:三角形全等的概念,SAS判定定理。

2. 教学难点:SAS判定定理在实际问题中的应用。

四、教学方法1. 采用讲授法讲解三角形全等的概念和SAS判定定理。

2. 利用多媒体演示和实物模型辅助教学,增强学生的直观感受。

3. 开展小组讨论和练习,培养学生的合作精神和解决问题的能力。

五、教学过程1. 导入新课:通过复习三角形全等的概念,引入“边角边”判定定理。

2. 讲解三角形全等的概念:三角形全等指的是在平面内,两个三角形的所有对应角度相等,对应边长比例相等。

3. 讲解“边角边”(SAS)判定定理:如果两个三角形的一边和与其相邻的两个角分别与另一个三角形的一边和与其相邻的两个角相等,这两个三角形全等。

4. 演示和练习:利用多媒体演示和实物模型,让学生直观地理解SAS判定定理。

让学生进行一些练习题,巩固所学知识。

5. 小组讨论:让学生分组讨论如何运用SAS判定定理解决实际问题,并分享讨论成果。

6. 总结与拓展:对本节课的内容进行总结,强调SAS判定定理在三角形全等问题中的应用。

提出一些拓展问题,激发学生的学习兴趣。

7. 布置作业:布置一些有关三角形全等和SAS判定定理的练习题,巩固所学知识。

六、教学评价1. 通过课堂讲解、练习和小组讨论,评价学生对三角形全等概念和SAS判定定理的理解程度。

2. 观察学生在练习题中的解题思路和解答过程,评价其运用SAS判定定理的能力。

3. 收集学生的讨论成果,评价其合作精神和解决问题的能力。

七、教学反思1. 反思本节课的教学内容安排是否合适,教学方法是否得当。

全等三角形的判定条件及边角边

全等三角形的判定条件及边角边
求证:△ABC ≌△AED A
D
C
B
E
3.已知:如图△ABC 和△AED 中, AB=AC,AD=AE,且∠CAB= ∠EAD
求证:CE=BD
A
E D
B
C
2、如图:如果AB=A’B’ , 那么△ABC≌△A’B’C’吗?
小结:有一组对应相等的元素,这两个三角形不全等
两组呢?
两组对应相等的元素,想一想,会有几种可能的 情况?
两角;两边;一角一边
按照下面的条件,用刻度尺或量角器画三角形,并和周围 的同学比较一下,所画的图形是否全等.
(1) 三角形的两个内角分别为30°和70°;
还需_________
6.如图,D是BC中点,AD⊥BC那么
下列说法错误的是( )
A.△ABD ≌△ACD
B. ∠B= ∠ C
A
C.AD是△ABC的顶角平分线
D. △ABC是等边三角形
B
D
C
1.已知:点M是等腰梯形ABCD 底边AB的中点.
证明:△AMD ≌△BMC
D
C
A
M
B
2.已知:如图AB=AE,C、D 分别是AE、AB的中点。
对应角是∠AOB与______,∠OBA与_________, ∠BAO与___________.
(第 1 题)
全等三角形的对应边相等,对应角相等。
反之?
能否再减少一些条件?
对两个三角形来说,六组元素(三条边、三个角)中 至少要有几组元素分别对应相等,两个三角形才会 全等呢?
试一试:
1、如图:如果∠A=∠A’,那么 △ABC≌△A’B’C’吗?
这就说明这两个三角形全等.
S.A.S的证明:

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明全文共四篇示例,供读者参考第一篇示例:全等三角形(即三角形的所有对应边和角都相等)在几何学中具有重要意义,因为它们有着很多共性特征和性质。

在实际问题中,我们常常需要判定两个三角形是否全等,以便解决一些几何问题。

下面我们将介绍五种判定方法,并给出它们的证明。

一、SSS法则(边边边全等)首先我们来介绍SSS法则,即如果两个三角形的三条边分别相等,则这两个三角形全等。

设有两个三角形ABC和DEF,已知AB=DE,AC=DF,BC=EF。

我们要证明三角形ABC全等于三角形DEF。

【证明过程】由已知条件可知,三角形ABC和三角形DEF的三边分别相等。

所以可以得到以下对应关系:AB=DEAC=DFBC=EF三角形的两边之和大于第三边,所以我们有以下结论:AB+AC>BCDE+DF>EF由于AB=DE,AC=DF,BC=EF,所以根据上述两个不等式可得:AB+AC>BCAB+AC>BC所以三角形ABC与三角形DEF全等。

由于∠C=∠F,所以我们有以下结论:∠A+∠C+∠B=180°∠A+∠F+∠E=180°由于∠C=∠F,所以可以将两个等式相减,得到:∠B-∠E=0∠B=∠E四、HL法则(斜边-直角-斜边全等)由于∠A=∠D,∠B=∠E,所以可以使用AA法则证明三角形ABC 与三角形DEF全等。

我们介绍了五种全等三角形的判定方法以及它们的证明。

这些方法在解决几何问题中起着至关重要的作用,希望大家能够掌握并灵活运用这些方法。

如果遇到类似的题目,可以根据不同情况灵活选择合适的方法来判定三角形的全等关系。

通过不断练习和思考,相信大家能够在几何学习中取得更好的成绩。

【2000字】第二篇示例:全等三角形是指具有完全相同的三边和三角形的一种特殊情况。

在几何学中,全等三角形之间具有一些特殊的性质和关系。

正确判断两个三角形是否全等是解决几何问题的关键。

三角形全等的判定“边角边”判定定理教案

三角形全等的判定“边角边”判定定理教案

三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的条件。

2. 引导学生学习“边角边”判定定理,并能运用该定理判断三角形是否全等。

3. 培养学生的观察能力、思考能力和动手操作能力。

二、教学内容1. 三角形全等的概念2. “边角边”判定定理3. 运用“边角边”判定定理判断三角形全等三、教学重点与难点1. 教学重点:三角形全等的概念,“边角边”判定定理及其运用。

2. 教学难点:三角形全等的判断过程,运用“边角边”判定定理时的思路。

四、教学方法1. 采用问题驱动法,引导学生探究三角形全等的条件。

2. 运用案例分析法,让学生通过观察、操作、思考,掌握“边角边”判定定理。

3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。

五、教学过程1. 导入:通过复习三角形的基本概念,引导学生思考三角形全等的条件。

2. 新课:介绍三角形全等的概念,讲解“边角边”判定定理。

3. 案例分析:展示三角形全等的实例,让学生运用“边角边”判定定理进行判断。

4. 课堂练习:设计相关练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调三角形全等的判断方法。

6. 作业布置:布置相关作业,巩固所学知识。

教学反思:本节课通过问题驱动法和案例分析法,引导学生探究三角形全等的条件,并运用“边角边”判定定理进行判断。

在教学过程中,注意调动学生的积极性,培养学生的观察能力、思考能力和动手操作能力。

采用小组合作学习法,培养学生的团队协作能力和沟通能力。

通过课堂练习和作业布置,巩固所学知识。

在教学反思中,要关注学生的掌握情况,针对性地进行教学调整。

六、教学拓展1. 引导学生思考:除了“边角边”判定定理,还有哪些判定三角形全等的方法?2. 介绍其他判定三角形全等的方法:a. 角角边(AAS)判定定理b. 角边角(ASA)判定定理c. 边边边(SSS)判定定理3. 分析各种判定方法的适用范围和条件。

全等三角形的判定条件和边角边

全等三角形的判定条件和边角边
AC=DC
∠ACB=∠DCE
BC=EC △ACB≌△DCE(SAS)
AB=DE
小结:
1、SAS 定理 2、SSA 不是定理
教材P39 1,2
两个三角形不一定全等
“SSA”不是定理
不能用作判定三角形全等
1、已知:AD=CD, BD 平分∠ ADC 。 问
∠A=∠ C 吗?
A
解:∵ BD 平分∠ ADC
∴∠ADB=∠CDB
B
在⊿ADB与⊿CDB中,
∵ AD=CD,∠ADB=∠CDB,BD=BD
∴ ⊿ADB≌⊿CDB(SAS)
∴ ∠A=∠ C (全等三角形对应角相等)
问:如图△ABC和△ DEF 中, AB=DE=3 ㎝,∠ B=∠ E=300 ,
BC=EF=5 ㎝ 则它们完全重合吗?即
△ABC≌△ DEF ?
A
D
3㎝
3㎝
300
300
B 5㎝
C E 5㎝
F
问:如图△ABC和△ DEF 中,
AB=DE=3 ㎝,∠ B=∠ E=300 , BC=EF=5 ㎝
则它们完全重合,即 △ABC≌△ DEF .
探究新知
A B
因铺设电线的需要,要 在池塘两侧A、B处各埋 设一根电线杆(如图), 因无法直接量出A、B两 点的距离,现有一足够的 米尺。请你设计一种方案, 粗略测出A、B两杆之间 的距离。。
小明的设计方案:先在池塘旁取一个能直接到 达A和B处的点C,连结AC并延长至D点,使 AC=DC,连结BC并延长至E点,使BC=EC,连 结CD,用米尺测出DE的长,这个长度就等于A, B两点的距离。请你说明理由。
E (1)
△ABC≌△EFD 根据“SAS”

14.2.1.1全等三角形的判定—边角边

14.2.1.1全等三角形的判定—边角边

例1
如图,在△AEC和△ADB 中,已知AE=AD,AC=AB。请说明 △AEC ≌ △ADB的理由。
解:在△AEC和△ADB中
C
D
AD 已知) AE =____( ∠A _____( ∠A 公 AC
E
B
∴ △_____≌△ ______ AEC ADB ( SAS
A
E
D F B

C
答: (1)全等
(2)全等
⑶不一定全等
例3:已知:如图, AB=CB ,∠ ABD=
∠ CBD ,△ ABD 和△ CBD 全等吗?
分析: △ ABD ≌△ CBD 边: AB=CB(已知) 角: ∠ABD= ∠CBD(已知) (SAS)
B D A
C
边:

例4:小兰做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件标注 在图中,小明不用测量就能知道EH=FH吗? 与同桌进行交流。 D 解:在△EDH和△FDH中:
说一说
今天你学到了什么
1、今天我们学习了哪种方法判定 两三角形全等? 答:边角边(S.A.S.) 通过证 明两个三角形的两条边及其夹角 对应相等,这两个三角形全等。 2、 “边边角”能不能判定两个三 角形全等“? 答:不能
C
4cm ; 2.画∠ CAM= 45°; 3.以C 为圆心, 3cm长为半径画弧,交AM于 点和B’; B 4.连结CB 、CB’。
步骤:1.画一线段AC,使它等于
A
45°
B B’ M
△ ABC与△ AB’C 就是 所求做的三角形。
显然: △ ABC与△ AB’C不全等
结论:两边及其一边所对的角相等,两个三 角形不一定全等。

边角边能证明三角形全等吗

边角边能证明三角形全等吗
边角边能证明三角形全等。

验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。

经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形。

如果在两个三角形中,有两条边和其中一边的对角分别对应相等,那么这两个三角形互为全等三角形(是假命题)。

当两个三角形都分别为边边直角、边边钝角、边边锐角时,这种情况成立。

利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关要验证全等三角形,不需验证所有边及所有角也对应地相同。

全等三角形的判定全等三角形的条件

全等三角形的判定全等三角形的条件全等三角形是指具有完全相同形状和大小的两个三角形。

在几何学中,我们可以通过比较两个三角形的边长和角度来确定它们是否全等。

下面将详细介绍全等三角形的条件。

1. SSS判定法(边边边):当两个三角形的三条边分别相等时,这两个三角形是全等的。

例如,若三角形ABC和三角形DEF的边长分别满足AB = DE,BC = EF,AC = DF,则可以判定三角形ABC与三角形DEF全等。

2. SAS判定法(边角边):当两个三角形的一对边和夹角分别相等时,这两个三角形是全等的。

例如,若三角形ABC和三角形DEF满足AB = DE,∠BAC =∠EDF,BC = EF,则可以判定三角形ABC与三角形DEF全等。

3. ASA判定法(角边角):当两个三角形的一对角度和夹边分别相等时,这两个三角形是全等的。

例如,若三角形ABC和三角形DEF满足∠BAC = ∠EDF,BC = EF,∠CBA = ∠FED,则可以判定三角形ABC与三角形DEF全等。

4. RHS判定法(直角边斜边):当两个直角三角形的一对直角边和斜边分别相等时,这两个三角形是全等的。

例如,若三角形ABC和三角形DEF满足∠ABC = ∠DEF,AB = DE,AC = DF,则可以判定三角形ABC与三角形DEF全等。

需要注意的是,这些判定法都是基于几何定理的推导得出的。

在实际应用中,我们可以根据已知条件使用这些判定法来判断两个三角形是否全等。

除了以上判定法,还有一些特殊情况下的判定法,比如:- 两个等腰三角形的顶角相等时,可以判定它们全等;- 两个等腰直角三角形的斜边相等时,可以判定它们全等。

总之,全等三角形的判定主要基于边长和角度的相等性。

当我们已知一些边长和角度的关系时,可以利用上述判定法来判断两个三角形是否全等。

这在几何学和实际生活中都有广泛的应用。

全等三角形判定知识讲解

全等三角形判定一(SSS,ASA ,AAS )(基础)【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .举一反三:【变式】(2015•武汉模拟)如图,在△ABC和△DCB中,AB=DC,AC=DB,求证:△ABC≌△DCB.类型二、全等三角形的判定2——“角边角”2、如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是.(1)小明添加的条件是:AP=BP.你认同吗?(2)你添加的条件是,请用你添加的条件完成证明.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.类型三、全等三角形的判定3——“角角边”3、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.4、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【巩固练习】一、选择题1. 能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A. SSS B. SAS C.ASA D. AAS3.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF 4.(2016•黔西南州)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A .AB=DEB .AC=DFC .∠A=∠D D .BF=EC5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.①②③都带去6.如图,∠1=∠2,∠3=∠4,下面结论中错误的是( )A .△ADC ≌△BCDB .△ABD ≌△BAC C .△ABO ≌△CDOD .△AOD ≌△BOC二、填空题7.(2014秋•石林县校级月考)如图,AC=AD ,BC=BD ,则△ABC≌△ ;应用的判定方法是(简写) .8. 在△ABC 和△'''A B C 中,∠A =44°,∠B =67°,∠'C =69°,∠'B =44°,且AC = ''B C ,则这两个三角形_________全等.(填“一定”或“不一定”)9. 已知,如图,AB ∥CD ,AF ∥DE ,AF =DE ,且BE =2,BC =10,则EF =________.10. 如图,AB∥CD,AD∥BC,OE =OF ,图中全等三角形共有______对.11.(2016•通州区一模)在学习“用直尺和圆规作射线OC ,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O 为圆心,任意长为半径作弧,交OA 于D ,交OB 于E ;(2)分别以D ,E 为圆心,以大于DE 的同样长为半径作弧,两弧交于点C ;(3)作射线OC .则OC 就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC 就是∠AOB 的平分线.小华的思路是连接DC 、EC ,可证△ODC ≌△OEC ,就能得到∠AOC=∠BOC .其中证明△ODC ≌△OEC 的理由是 .12. 已知:如图,∠B =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“ASA ”为依据,还缺条件(2)若以“AAS ”为依据,还缺条件三、解答题13.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?14. 已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分.15. 已知:如图, AB ∥CD, OA = OD, BC 过O 点, 点E 、F 在直线AOD 上, 且∠E =∠F. 求证:EB=CF.全等三角形判定二(SAS )(基础)要点一、全等三角形判定4——“边角边”1. 全等三角形判定4——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、判定方法的选择已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS要点三、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.要点四、全等三角形证明方法1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.类型一、全等三角形的判定4——“边角边”1、在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.2、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.举一反三:【变式】(2014•雁塔区校级模拟)如图,由∠1=∠2,BC=DC、AC=EC,最后推出△ABC≌△EDC 的根据是()A.SAS B. ASA C. AAS D. SSS类型二、全等三角形的性质和判定综合3、(2014•如东县模拟)如图1,已知△ABC的六个元素,则图2甲、乙、丙三个三角形中和图1△ABC全等的图形是()A.甲乙B.丙C.乙丙D.乙举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【巩固练习】一、选择题1.在△ABC 中,∠B=∠C,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A. ∠AB. ∠BC. ∠CD. ∠B 或∠C2.(2015•莆田)如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .AB=CDB . EC=BFC . ∠A=∠D D . AB=BC3.(2016•东城区一模)如图,有一池塘,要测池塘两端A ,B 间的距离,可先在平地上取一个不经过池塘可以直接到达点A 和B 的点C ,连接AC 并延长至D ,使CD=CA ,连接BC 并延长至E ,使CE=CB ,连接ED .若量出DE=58米,则A ,B 间的距离为( )A .29米B .58米C .60米D .116米4.如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5.如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6.如图,已知AB⊥BD 于B ,ED⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8.(2016春•灵石县期末)如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第块去配,其依据是根据定理(可以用字母简写)9.(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)10.如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12.已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13.(2015•重庆校级三模)如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.14.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【课后作业】1.(2020•徐州)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm2.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°3.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是()A.SAS B.AAS C.SSS D.ASA4.(2020秋•滦南县期末)如图,已知AC=DB,下列四个条件:①∠A=∠D;②∠ABD=∠DCA;③∠ACB=∠DBC;④∠ABC=∠DCB.其中能使△ABC≌△DCB的有()A.1个B.2个C.3个D.4个5.(2020秋•天河区期末)如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF6.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)7.(2020秋•花都区期末)如图,D、C、F、B四点在同一条直线上,BC=DF,AC⊥BD于点C,EF⊥BD于点F,如果要添加一个条件,使△ABC≌△EDF,你添加的条件是(注:只需写出一个条件即可).8.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.9.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE,求证:△ABC≌△DCE.。

13.2.4三角形全等的判定(角边角或角角边)

用符号语言表达为:
B E ∵BC EF C F
在△ABC和△DEF中,
A
D
B
\
C
E
\
F
练习
∴ △ABC≌△DEF (A.S.A.)
例1、已知:点D在AB上,点E在AC上,BE和 CD相交于点O,AB=AC,∠B=∠C。 求证: △ABE≌△ACD
A
证明:在△ABE和△ACD中 ∠A=∠A(公共角) ∵ AB=AC(已知)
C
A
O
B
D
探究2
在△ABC和△DEF中,∠A=∠D,∠B=∠E , BC=EF,△ABC与△DEF全等吗?能利用角边 角条件证明你的结论吗?
A D
C E B
F
探究反映的规律是:
有两角和其中一个角的对边分别对应相等的 两个三角形全等(简写成“角角边”或 “A.A.S.”)
用数学符号表示
在△ABC和△A`B`C`中 ∠A=∠A` A
例2.如图,已知AB=AC,∠ADB= ∠AEC,求证:△ABD≌△ACE
证明:∵ AB=AC, ∴ ∠B= ∠C(等边对等角) ∵ ∠ADB= ∠AEC, AB=AC,
A
∴ △ABD≌△ACE(A.A.S.)
B
D
E
C
练习:
1.如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
2:如图,已知∠ABC=∠D, ∠ACB=∠CBD判断图中的 两个三角形是否全等, 并说明理由.
不全等。因为虽然有两组内角相等, 且BC=BC,但BC不都是两个三角形两 组内角的夹边,所以不全等。
作业:
1.如图已知∠ABC=∠DCB, ∠ACB= ∠DBC, 求证:△ABC≌△DCB, AB=DC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴ △_A_E_C__≌△__A_D_B__( SAS )
全等三角形的判定条件和边角边
探究新知
A B
因铺设电线的需要,要 在池塘两侧A、B处各埋 设一根电线杆(如图), 因无法直接量出A、B两 点的距离,现有一足够的 米尺。请你设计一种方案, 粗略测出A、B两杆之间 的距离。。
全等三角形的判定条件和边角边
∵ AD=CD,∠ADB=∠CDB,BD=BD
∴ ⊿ADB≌⊿CDB(SAS)
∴ ∠A=∠ C (全等三角形对应角相等)
全等三角形的判定条件和边角边
D C
2、点M是等腰梯形ABCD底边AB的中点,求证 △AMD≌△BMC.
证明:∵点M是等腰梯形 ABCD底边AB的中点
∴AM=BM,∠A=∠B, DA=CB
所以△ABD≌△ACD (SAS)B D C
从△ABD≌△ACD中你还能证得哪些结论?
提示:全等三角全形等三角对形的判应定条边件和边、角边对应角相等.
做一做:以2.5cm,3.5cm为三角
形的两边,长度为2.5cm的边所对的
角为40° ,情况又怎样?动手画一画,
你发现了什么?
C
F
A 40°
B
40°
(第 2 题)
∴△AMD≌△BMC(SAS)
全等三角形的判定条件和边角边
3、 如图,在△AEC和△ADB中,已知 AE=AD,AC=AB。请说明△AEC ≌ △ADB 的理由。
解:在△AEC和△ADB中
C
AE =_A__D_(已知)
D
_∠__A_= _∠__A__(公共角)
A
E
B
_A_C___= AB ( 已知 )
第19章 全等三角形 19.2 三角形全等的判定
全等三角形的判定条件和边角边
回忆:怎样的两个三 角形全等?
全等三角形的判定条件和边角边
1、能够完全重合的两 个三角形全等。 2、边、角分别对应相 等的两个三角形全等。
全等三角形的判定条件和边角边
1、如果两个三角形有一个相等 的部分(边或角),那么有几种 可能的情况?这两个三角形一定 全等吗? 结论:两个三角形有一个相等 的部分(边或角),这两个三 角形 不一定全等 。
全等三角形的判定条件和边角边
《课课练》P42-P43 第1课时边角边 全做
全等三角形的判定条件和边角边
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
小明的设计方案:先在池塘旁取一个能直接到 达A和B处的点C,连结AC并延长至D点,使 AC=DC,连结BC并延长至E点,使BC=EC,连 结CD,用米尺测出DE的长,这个长度就等于A, B两点的距离。请你说明理由。
AC=DC ∠ACB=∠DCE BC=EC △ACB≌△DCE(SAS) AB=DE
全等三角形的判定条件和边角边
2、如果两个三角形有两个相等的部分(边或角), 那么有几种可能的情况?每种情况下作出的三角 形一定全等吗? 结论:两个三角形有两个相等的部分(边或 角),这两个三角形 不一定全等 。
最终结论: 判定两个三角形全等至少 需要 三个条件 。
全等三角形的判定条件和边角边
做一做:画△ABC,使AB=3cm,AC=4cm。 ∠A=45°
CF
全等三角形的判定条件和边角边
三角形全等判定方法1
两边和它们的夹角对应相等的两个三角
形全等。简写成“边角边”或“SAS”
用符号语言表达为:
A
在△ABC与△DEF中
AB=DE ∠B=∠E
B
C
D
BC=EF
E
F
∴△ABC≌△DEF(SAS)
全等三角形的判定条件和边角边
分别找出各题中的全等三角形
A
B
40°
A
B
DC
D
C
(2)
F
△ADC≌△CBA 根据“SAS”
E (1)
△ABC≌△EFD 根据“SAS” 全等三角形的判定条件和边角边
例1
如图,在△ABC中,AB=AC,AD平分 ∠BAC,试说明△ABD≌△ACD
解: 在△ABD和△ACD因为
A
AB=AC,∠BAD=∠CAD,
又因为AD为公共边,
BC=EF=5 ㎝ 则它们完全重合吗?即
△ABC≌△ DEF ?
A
D
3㎝
3㎝
300
300
B 5㎝
C E 5㎝
F
全等三角形的判定条件和边角边
问:如图△ABC和△ DEF 中,
AB=DE=3 ㎝,∠ B=∠ E=300 , BC=EF=5 ㎝
则它们完全重合,即 △ABC≌△ DEF .
AD
3㎝
300
BE 5㎝
全等三角形的判定条件和边角边
小明做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条 件标注在图中,小明不用测量就能知道 EH=FH吗?与同桌进行交流。
D E
△EDH≌△FDH F 根据“SAS”,
所以EH=FH
H
全等三角形的判定条件和边角边
小结:
这节课你记忆最 深刻的(或最感兴趣 的)是什么?
画法: 1. 画∠MAN=45° 2. 在射线AM上截取AB= 3cm 3. 在射线AN上截取AC=4cm 4.连接BC
∴△ABC就是所求的三角形 把你们所画的三角形剪下来与同桌所画的 三角形进行比较,它们能互相重合吗?
全等三角形的判定条件和边角边
问:如图△ABC和△ DEF 中, AB=DE=3 ㎝,∠ B=∠ E=300 ,
D
E
结论:两边及其一边所对的角相等,
两个三角形不一定全等 全等三角形的判定条件和边角边
“SSA”不是定理
不能用作判定三角形全等
全等三角形的判定条件和边角边
1、已知:AD=CD, BD 平分∠ ADC 。 问
∠A=ห้องสมุดไป่ตู้ C 吗?
A
解:∵ BD 平分∠ ADC
∴∠ADB=∠CDB
B
在⊿ADB与⊿CDB中,
相关文档
最新文档