二叉树的应用研究

合集下载

二叉树遍历算法的应用

二叉树遍历算法的应用

二叉树遍历算法的应用二叉树是一种常用的数据结构,它由节点和节点之间的链接组成。

每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树遍历算法是指按照一定的顺序访问二叉树中的所有节点,经典的二叉树遍历算法有前序遍历、中序遍历和后序遍历。

这些遍历算法在计算机科学中有广泛的应用。

一、前序遍历前序遍历算法的访问顺序是先访问根节点,然后依次访问左子树和右子树。

在实际应用中,前序遍历算法十分常见,具有以下几个应用:1.树的复制:如果需要复制一棵二叉树,可以使用前序遍历算法遍历原树,然后按照递归或迭代的方式创建新节点,并复制原节点的值。

2.表达式求值:对于一个二叉树表示的数学表达式,前序遍历算法可以用来计算表达式的值。

遍历到运算符节点时,先计算左子表达式的值,然后计算右子表达式的值,最后根据运算符进行计算。

3.文件系统遍历:文件系统可以被视为一个树状结构,前序遍历算法可以按照前序的顺序遍历文件系统中的所有文件和文件夹。

二、中序遍历中序遍历算法的访问顺序是先访问左子树,然后访问根节点,最后访问右子树。

中序遍历算法也有多个应用:1.二叉树的中序遍历得到的节点值是按照从小到大的顺序排列的。

因此,可以使用中序遍历算法验证一个二叉树是否为二叉树。

2.二叉树中序遍历的结果可以用来实现按照升序排列的有序集合的功能。

例如,在数据库中存储的数据可以通过中序遍历的结果进行排序。

3.中序遍历算法可以将一个二叉树转换为一个有序的双向链表。

在遍历过程中,维护一个前驱节点和一个后继节点,并进行链接操作。

三、后序遍历后序遍历算法的访问顺序是先访问左子树,然后访问右子树,最后访问根节点。

后序遍历算法也有多个应用:1.后序遍历算法可以用来计算二叉树的深度。

在遍历过程中,可以维护一个全局变量来记录最大深度。

2.后序遍历算法可以用来判断一个二叉树是否为平衡二叉树。

在遍历过程中,可以比较左右子树的高度差,判断是否满足平衡二叉树的定义。

3.后序遍历算法可以用来释放二叉树的内存。

二叉树的储存结构的实现及应用

二叉树的储存结构的实现及应用

二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。

二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。

本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。

一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。

通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。

顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。

1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。

通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。

在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。

1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。

二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。

哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。

二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。

每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。

链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。

2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。

通过指针来连接各个节点,形成一个二叉树的结构。

在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。

平衡二叉树用途

平衡二叉树用途

平衡二叉树用途平衡二叉树是一种特殊的二叉树结构,它具有良好的平衡性,能够提高二叉树的查找、插入和删除操作的效率。

平衡二叉树在计算机科学领域中广泛应用,特别是在数据结构和算法中。

下面将详细介绍平衡二叉树的用途。

1. 提高查找效率平衡二叉树的一个重要应用是提高查找效率。

在平衡二叉树中,每个节点的左子树和右子树的高度差不超过1,这保证了树的高度相对较低。

相比于普通的二叉搜索树,平衡二叉树的查找操作更加高效。

在平衡二叉树中查找一个元素的平均时间复杂度为O(log n),而在普通二叉搜索树中,最坏情况下的时间复杂度为O(n)。

因此,平衡二叉树适用于需要频繁进行查找操作的场景,如数据库索引、字典等。

2. 支持有序遍历平衡二叉树具有有序性的特点,可以支持有序遍历。

有序遍历是指按照节点的值从小到大或从大到小的顺序遍历二叉树。

平衡二叉树可以通过中序遍历实现有序遍历,这对于需要按照顺序获取数据的应用场景非常有用,比如按照字母顺序输出单词列表、按照时间顺序输出事件列表等。

3. 实现高效的插入和删除操作平衡二叉树对于插入和删除操作也具有很好的效率。

在普通的二叉搜索树中,如果插入或删除一个节点后导致树的不平衡,就需要通过旋转操作来重新调整树的结构,以保持平衡。

而平衡二叉树在插入和删除操作时会自动进行平衡调整,不需要额外的旋转操作。

这使得平衡二叉树在插入和删除操作上具有更好的性能表现。

4. 提供高效的范围查询平衡二叉树支持范围查询,即根据给定的范围查找满足条件的元素。

通过中序遍历平衡二叉树,可以按照节点值的顺序获取元素,然后根据范围进行筛选。

这对于需要根据范围查询数据的应用场景非常有用,比如查找某个时间段内的日程安排、查找某个价格区间内的商品等。

5. 实现高效的集合操作平衡二叉树可以用来实现高效的集合操作,如并集、交集、差集等。

通过遍历两个平衡二叉树,可以将它们的元素按照一定的规则进行合并或筛选,从而实现集合操作。

这对于需要对大量数据进行集合操作的应用场景非常有用,比如数据去重、数据合并等。

二叉树的遍历及其应用

二叉树的遍历及其应用

0引言
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次 且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。 遍历 在二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。二叉 树作为一种重要的数据结构是工农业应用与开发的重要工具。遍历是二 叉树算法设计中经典且永恒的话题。经典的算法大多采用递归搜索。递 归算法具有简练、清晰等优点,但因其执行过程涉及到大量的堆栈使 用,难于应用到一些严格限制堆栈使用的系统,也无法应用到一些不支 持递归的语言环境[9]。
由先序序列和中序序列来还原二叉树的过程算法思想[7]: (1)若二叉树空,返回空; (2)若不空,取先序序列第一个元素,建立根节点; (3)在中序序列中查找根节点,以此来确定左右子树的先序序列和中 序序列; (4)递归调用自己,建左子树; (5)递归调用自己,建右子树。
4二叉树的遍历的应用
根据二叉树的遍历算法, 可得出如下规律: 规律1: 前序序列遍历第一个为根结点, 后序遍历的最后一个结点为 根结点。 规律2: 前序序列遍历最后一个为根结点右子树的最右叶子结点, 中 序遍历的最后一个结点为根结点右子树的最右叶子结点。 规律3: 中序序列遍历第一个结点为根结点左子树的最左叶子结点,
1遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点, 使得每个结点仅被访问一次。这里提到的“访问”是指对结点施行某种 操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访
问不破坏它原来的数据结构。在本文中,我们规定访问是输出结点信息 data,且以二叉链表作为二叉树的存贮结构。由于二叉树是一种非线性 结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规 则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序 列[1]。

数据结构二叉树的实验报告

数据结构二叉树的实验报告

数据结构二叉树的实验报告数据结构二叉树的实验报告一、引言数据结构是计算机科学中非常重要的一个领域,它研究如何组织和存储数据以便高效地访问和操作。

二叉树是数据结构中常见且重要的一种,它具有良好的灵活性和高效性,被广泛应用于各种领域。

本实验旨在通过实际操作和观察,深入了解二叉树的特性和应用。

二、实验目的1. 理解二叉树的基本概念和特性;2. 掌握二叉树的创建、遍历和查找等基本操作;3. 通过实验验证二叉树的性能和效果。

三、实验过程1. 二叉树的创建在实验中,我们首先需要创建一个二叉树。

通过输入一系列数据,我们可以按照特定的规则构建一棵二叉树。

例如,可以按照从小到大或从大到小的顺序将数据插入到二叉树中,以保证树的有序性。

2. 二叉树的遍历二叉树的遍历是指按照一定的次序访问二叉树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历是先访问根节点,然后再依次遍历左子树和右子树;中序遍历是先遍历左子树,然后访问根节点,最后再遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。

3. 二叉树的查找二叉树的查找是指在二叉树中寻找指定的节点。

常见的查找方式有深度优先搜索和广度优先搜索。

深度优先搜索是从根节点开始,沿着左子树一直向下搜索,直到找到目标节点或者到达叶子节点;广度优先搜索是从根节点开始,逐层遍历二叉树,直到找到目标节点或者遍历完所有节点。

四、实验结果通过实验,我们可以观察到二叉树的特性和性能。

在创建二叉树时,如果按照有序的方式插入数据,可以得到一棵平衡二叉树,其查找效率较高。

而如果按照无序的方式插入数据,可能得到一棵不平衡的二叉树,其查找效率较低。

在遍历二叉树时,不同的遍历方式会得到不同的结果。

前序遍历可以用于复制一棵二叉树,中序遍历可以用于对二叉树进行排序,后序遍历可以用于释放二叉树的内存。

在查找二叉树时,深度优先搜索和广度优先搜索各有优劣。

深度优先搜索在空间复杂度上较低,但可能会陷入死循环;广度优先搜索在时间复杂度上较低,但需要较大的空间开销。

二叉树的现实中典型例子

二叉树的现实中典型例子

二叉树的现实中典型例子二叉树是一种常用的数据结构,它具有广泛的应用。

下面列举了十个二叉树在现实中的典型例子。

一、文件系统文件系统是计算机中常见的二叉树应用之一。

文件系统中的目录和文件可以组织成一棵树,每个目录称为一个节点,而文件则是叶子节点。

通过树的结构,我们可以方便地对文件和目录进行管理和查找。

二、组织架构企业或组织的组织架构通常可以用二叉树来表示。

每个部门可以看作是一个节点,而员工则是叶子节点。

通过组织架构树,我们可以清晰地了解到企业或组织内部的管理层级关系。

三、家谱家谱是一个家族的血缘关系的记录,一般可以用二叉树来表示。

每个人可以看作是一个节点,而父子关系则是节点之间的连接。

通过家谱树,我们可以追溯家族的历史和血缘关系。

四、编译器编译器是将高级语言转换为机器语言的程序。

在编译过程中,编译器通常会使用语法分析树来表示源代码的结构。

语法分析树是一种特殊的二叉树,它将源代码表示为一个树状结构,方便进行语法分析和编译优化。

五、数据库索引数据库中的索引是一种用于提高数据查询效率的数据结构。

常见的索引结构包括B树和B+树,它们都是二叉树的变种。

通过索引树,数据库可以快速地定位到需要查询的数据,提高数据库的检索性能。

六、表达式求值在数学计算中,表达式求值是一项重要的任务。

通过使用二叉树,我们可以方便地表示和计算表达式。

二叉树的叶子节点可以是操作数,而内部节点可以是运算符。

通过遍历二叉树,我们可以按照正确的顺序对表达式进行求值。

七、电路设计在电路设计中,二叉树也有广泛的应用。

例如,我们可以使用二叉树来表示逻辑电路的结构,每个门电路可以看作是一个节点,而连接线则是节点之间的连接。

通过电路设计树,我们可以方便地进行电路的布线和优化。

八、图像处理图像处理是一项常见的计算机技术,而二叉树在图像处理中也有重要的应用。

例如,我们可以使用二叉树来表示图像的像素信息,每个像素可以看作是一个节点,而像素之间的关系则是节点之间的连接。

二叉树算法的应用领域

二叉树算法的应用领域

二叉树算法的应用领域
二叉树算法在计算机科学和相关领域中有广泛的应用。

以下是一些常见的应用领域:
1. 数据库系统:二叉树被广泛用于数据库系统中的索引结构,如二叉搜索树(Binary Search Tree,BST)和平衡二叉树(如AVL树、红黑树)等,以提高数据的检索效率。

2. 文件系统:用于文件系统的目录结构,如B树和B+树,能够高效地组织和管理文件系统中的数据。

3. 编译器:语法分析阶段使用语法树(也是一种树结构)来表示源代码的语法结构,其中二叉树是语法树的一种常见形式。

4. 网络路由:路由表中的路由信息通常使用树状结构,如二叉树,以便高效地搜索和决定数据包的路由。

5. 图形学:在计算机图形学中,二叉树可以用于场景图(Scene Graph)的表示,用于管理和渲染三维场景中的对象。

6. 人工智能:决策树是一种特殊的二叉树,广泛应用于机器学习和数据挖掘中的分类和决策问题。

7. 操作系统:进程调度和资源管理中可能使用树结构来组织和管理进程。

8. 游戏开发:在游戏中,空间分区树(如四叉树和八叉树)常用于加速空间查询和碰撞检测。

9. 密码学:Merkle树是一种二叉树结构,被广泛用于区块链中的交易验证和Merkle证明。

10. 网络和通信:Huffman编码树用于数据压缩,而霍夫曼解码树用于解压缩。

这只是二叉树算法应用的一小部分。

它们在计算机科学的各个领域中都发挥着关键的作用,提高了数据结构和算法的效率和性能。

树和二叉树的实验报告

树和二叉树的实验报告

树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。

本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。

二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。

每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。

树的特点包括层次结构、唯一根节点和无环等。

2. 树的构建在本实验中,我们使用Python语言构建了一棵树。

通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。

3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。

三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。

2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。

通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。

3. 二叉树的应用二叉树在实际应用中有很多用途。

例如,二叉搜索树可以用于实现快速查找和排序算法。

AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。

我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。

四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。

通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。

树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。

同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。

这些问题需要进一步的研究和优化。

五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二叉树的应用研究苏雨洁(盐城工学院优集学院江苏盐城224001)摘要:课堂上学习可以知道,二叉树可以简单明了的表示很多繁琐的信息数据。

同时,二叉树在有很多方面有具体的应用。

通过搜集各方面的资料发现,越来越多的领域开始选择使用二叉树模型来进行设计投资决策,并以此为平台,实现了很多的功能,本文结合了多领域的知识,给出了在生活方面,学习方面,以及理财投资方面的多种实例,并且加以概括和介绍。

关键词:二叉树;数据结构;结点;数组;期权Study on the application of the binary treeSU Yujie(UGS College, Yancheng Institute of Technology, Yancheng, Jiangsu 224001) Abstract: Through learning in the classroom we can know, binary tree can be simple and clear to show many complicated data.At the same time,binary tree have specific applications in many aspects.Through the collection of information in many aspects,we can find that more and more fields start to use the binomial tree model to design,invest and making descisions. Use it as a platform ,achieving a lot of functions. This article incorporates knowledge from many fields and show a variety of examples in the aspects of living, learning, and financial investment.And summarize and introduce.Key words: Binary tree;Data structure; Node; Array; Option0引言在计算机科学中,二叉树是每个结点最多有两个子树的有序树。

通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。

二叉树常被用作二叉查找树和二叉堆。

二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。

逻辑上二叉树有五种基本形态:空二叉树,只有一个根结点的二叉树,右子树为空的二叉树,左子树为空的二叉树,完全二叉树;本文根据二叉树的性质形态,研究了二叉树在各个领域的应用实例,并且展望了二叉树在更多领域的应用。

1二叉树在学习上的应用1.1二叉树平面坐标网及其应用平面坐标系是把平面上的点映射为一对有序实数,坐标系是形数结合的桥梁。

在图形,图像处理中,要处理的点数很多,能都有效的表示点就成为能否有效地处理图形图像的基本问题。

数学上普遍使用切分方法,把一个复杂的几何对象近似表示成简单的几何对象的几何,集合中简单的几何对象位置就由其特征点(或点集)的坐标决定。

把复杂的几何对象近似的表示成一些矩形或者正方形,然后我们可以用二叉树来表示切分得到的一系列矩形或者正方形的位置关系,从而更简单的研究一个复杂的几何对象。

设正方形A 的边长为a ,以A 的左下角为原点建立直角坐标系。

左边界为y 轴,向上为正方向,下边界为x 轴,向右为正向,单位长度为a 。

坐标系原点(0,0)可以用二叉树表示,如图1所示。

设2个结点X 0,Y 0的坐标分布为x=0,y=0。

X 0的层号为1,Y 0的层号为2,如此类推,每一层关联着层步长。

1,2层的层步长为1,每一个结点关联着该结点所在层的层步长,称为该结点的步长。

例如X 0,Y 0的步长都是1.结点Y 0相应的正方形边长为1,即结点Y 0的步长。

经过正方形A 的中心,平行于y 轴的直线把正方形左右切分,为了叙述简便,可称为切分Y 0结点。

相应的,图1中的二叉树变成图2中的二叉树,X 11结点的坐标与X 0结点的坐标相同;而X 12的坐标等于X 0的坐标加上X 0结点的步长的一半。

X 11,X 12及第三层的步长都是1/2。

左面部分长方形左下角的坐标由结点X 11,Y 0的坐标决定,即(0,0)。

右面部分长方形左下角的坐标可由结点X 12,Y 0的坐标决定,即(1/2,0)。

如果用过这两个长方形的中心,平行于X 轴的直线分别把这两个长方形上下切分,就得到4个正方形。

把正方形切分得到长方形,把长方形切分得到正方形等等。

由于正方形属于长方形,所以为研究方便,以下采用长方形来研究。

该长方形左下角坐标由该节点及其父节点的坐标的决定,该长方形的边长分别是上述二个结点的步长。

X 11,X 12的坐标可以统一表示为x=1/2x 1。

从第一层开始,每增加2层,层步长为原来的一半。

按上述方法不断切分,直到生成一棵高为2(n+1)而以y 0为根的子树为满二叉树为止。

该二叉树的每一个叶节点相应的正方形的边长为1/2n 。

这些正方形构成平面坐标网,所以这样的二叉树成为平面坐标网二叉树。

2二叉树在生活实际上的应用2.1二叉树法在通风除尘风网设计中的应用目前,绝大部分工厂和仓库的通风除尘网设计计算仍采用人工手算进行,由于其中阻力计算部分工作量很大,这样在计算过程中不可避免的产生了误差,从而降低了工作效率,采用二叉树,连表,队列等多种数据结构,则可以准确快速地实现阻力平衡和有关的计算。

因此,利用二叉树法来解决通风除尘风网的设计计算问题,不仅能准确迅速地进行阻力计算,而且对于优化设计和风网的调试安装是十分有利的。

利用二叉树,在计算过程中就不可避免地产生误差,从而降低了工作效率,通风除尘风网设计计算系统是根据二叉树、连表、队列等多种数据结构,利用计算机来准确快速地实现X 0Y 0 X 0 Y 0X 11X 12 图1 平面坐标系原点相应的二叉树 图2 切分Y 0结点得到的二叉树阻力平衡和有关的计算。

主要功能包括风网组合的数据录入, 数据修改, 设计计算和计算结果打印。

这些功能具有如下特点:数据的录入和修改都采用“菜单”提示工作方式。

在运行时, 根据用户的选择, 进入不同的层次, 调用不同的子模块。

当较低层模块执行完时, 自动返回调用层, 继续等待用户新的请求。

本系统所用全部基本设计参考数据均以随机结构存入软盘, 从而大大加快了数据查找的速度, 提高了计算机资源的利用率和计算机的运行速度。

此系统总体结构如图3。

图3 总体结构3二叉树在网络中的应用3.1二叉树多类SVM在网络入侵检测中的应用[1]入侵检测作为网络安全领域的关键技术,如何迅速,有效地发现各种攻击企图,攻击行为或者攻击结果,对保证网络系统资源的安全起到了至关重要的作用。

支持向量机(SVM)是一种建立在统计学习理论基础上发展起来的机器学习方法。

传统的SVM算法仅仅对两类问题进行分割,但在实际应用中分类问题可能会多于两类样本,如何有效地将两类问题推广到多类问题,目前已有一些卓有成效的方法,但是在解决了多类问题分类之后如何消除不可分区域并提高测试分类的精度成为一个新的研究问题,于是有人提出了一种基于二叉树结构的多分类器融合方案,融合过程尽可能考虑到类别之前的区分度,从而建立一颗相对优化的二叉树SVM的多类分类算法,并把改进后的多类SVM应用于入侵检测中以提高系统性能。

二叉树多类SVM 用于入侵检测的步骤:设计一个二叉树需要选择一个合适的树结构, 即合理安排;树的结点和分支,必须在决策结点,以近似最优的方法将多类样本分为两组,使两组样本的聚类中心距离最大,且每组样本数据分歧最小(即“误差累积”,现象减少到最小),使上层中两个子类之间的可分性尽可能强。

各类之间可分性越好,则分类器的分类性能越好。

可见,结点分类器的类划分方案在很大程度上影响着二叉树SVM分类器的分类性能。

我们用类中心之间的距离来度量类与类之间可分性与先聚类再分类法结合进行,具体改进的算法设计如下。

给定具有k类c1,c2,…,ck的数据集D,假定为训练集中ci类的所有样本,表示集合的样本数,二叉树多类SVM模型的构造算法如下:Step1:计算每个类的类中心,i=1,2,…,k和任意两个类i,j之间的距离;Step2:计算类i与其他类的距离最小值,i=1,2,…,k;Step3:计算与其它类别距离最远的类编号,最远距离为;Step4:根据Step2中计算出的l i,合并l i中最小的两个类为一类,直到聚为两类为止,用Step1中的公式计算这两类之间的类距离;Step5:如果则转入Step6,否则转入Step8;Step6:分割出类别p为叶节点, 并把类别p的数据赋予标号+1,剩余的所有类别数据赋予标号-1,训练一个SVM作为二义树结构的一个中间节点;Step7:在分割出p类数据后余下的训练集中,重复计算和,并进行下一次比较,直到余下数据集只有一个类别则转入Step10;Step8:把聚为两类的数据分割为c1和c2两个子集,并对c1赋予标号+1,c2赋予标号-1,训练一个SVM作为中间节点;Step9:对子集c1和c2分别重复计算和,直到两个子集中的数据类别数都只有一类,则设该类标号为叶节点并转入Step10;Step10:训练终止,所有叶节点和中间节点组合构成优二叉树结构。

4二叉树在投资决策上的应用4.1二叉树模型在项目投资决策中的应用[5]传统的项目投资方法主要有DCF法,敏感分析法,决策树法,蒙特卡洛模拟法等,但是往往这些方法没有充分反映实际客观的情况,低估了项目真实的价值,从而导致了短期行为决策,于是,人们找寻到了一种更全面,客观地考虑项目灵活性的价值的方法。

利用二叉树实物期权定价模型对项目投资过程中的不确定性问题进行定性和定量分析,研究不确定性与项目投资价值的关系,同时也考虑到投资标的净现值和不确定的机会价值,最后结合了具体案例对实物期权模型分析和净现值分析进行了比较。

证明了该方法的灵活性。

实物期权定价的二叉树模型在项目决策中的应用案例:甲公司预计2009年开发一项目, 年初一次性投资为4500万元,根据项目当时风险大小,综合分析后确定项目风险调整贴现率k=20%,根据购买国家债券回报率,确定无风险收益率r= 8%,根据传统现金流折现方法, 项目各年净现金折现到2007年年初得现值S=4300万元,则V n, p=-200万元,故项目应予以取消,对于项目的不确定性,考虑期权的价值, a时间后如果项目产品市场更加明朗,上涨因子u=18,则项目寿命期内各期现金流贴现到2008年初的价值为5800万元;如果项目产品市场低迷,下降因子d=0.58,则现金流价值只有2500万元,市场明朗和市场低迷的概率均为05.根据上述,可得数据如下:I=4500万元,a时间后投资I’=I(1+r)=4500(1+0.08)=4860万元,S=4300万元,S u=7800万元,S d=2500万元,u=1.8,d=0.58,r=0.08.当市场有利时,项目目价值C u=max (S u-I,0)=max(5800-4860,0)=940万元;当市场不利时,项目价值C d=max(S d-I’,0)=max (2500-4860,0)=0万元;风险中性概率P=(1+r-d)/(u-d)=(1+0.08-0.58)/(1.8-0.58) =0.4,含有推迟期权灵活性价值的项目价值C=[PC u+(1-P)C d]/(1+r)=[0.4*940+(1-0.4)*0]/(1+0.08)=348.1万元; 所以,含有推迟期权灵活性价值的项目价值为348.1 万元。

相关文档
最新文档