EMI辐射信号强度计算
辐射强度计算公式

辐射强度计算公式1辐射强度辐射强度是指一个物理量,它描述的是物体给出的发射的物体的能量的强度,并用牛顿/立方米表示。
它通常用于衡量放射射线源的功率,包括太阳辐射,人造放射源或其他射线源的放射强度。
2计算辐射强度计算辐射强度的基本公式是:I=E/A,其中I是辐射强度,E是发射的能量,A是作为单位面积收到辐射能量的面积。
该方程式可以表示为一个物理量,例如质量或数量,以表明每一个物理量传输的平均能量,即辐射强度。
3计算步骤计算辐射强度需要知道以下信息:发射的能量E和收到辐射能量的面积A。
首先,获得取样面积的球体半径(r),球体面积可以按照以下公式计算:A=4πr2其次,获得发射的能量E。
要计算发射的能量,您必须将其与收到的能量进行比较。
收到的能量与放射源距离的平方成反比。
收到的能量越远,能量损失越多。
然后,将发射的能量与收到的能量进行比较,并用下面的公式计算发射的能量:E=E0/d2,其中,E0是圆球发射源的能量,d是接收点距离发射源的距离。
最后,辐射强度可以用以下公式计算:I=E/A。
4应用实例电离辐射是一种放射性的辐射,它可以被用于检测宇宙射线、威胁分析和核医学。
许多宇宙射线探测器基于电离辐射测量技术,例如螺旋束和采样阵列,实现了三维监测技术。
辐射强度可以用来检测威胁,并向秩序员提供安全建议,确定危险指示灯及其周围空气中辐射浓度的变化。
此外,辐射安全技术也可以用来监测核设施内的核材料,以确保安全。
5结论辐射强度是放射的量化数值,用来衡量源的放射能量的强度,计算辐射强度的基本公式是:I=E/A,其中,I是辐射强度,E是发射的能量,A是作为单位面积收到辐射能量的面积。
辐射强度经常被用于许多科学领域,如宇宙射线探测、威胁分析以及核医学,以确保安全。
辐射功率与场强换算公式

知识创造未来
辐射功率与场强换算公式
辐射功率(P)与场强(E)之间的换算公式可以根据电磁辐射的基本关系推导得到。
根据辐射功率的定义,它等于单位时间内通过某个垂直表面的能量流量。
而场强代表电磁场中的能量密度,它与辐射功率的关系可以表示为:
P = σ * E^2
其中,σ是辐射常数。
在国际单位制中,辐射常数σ的数值为4π × 10^{-7} W/(A^2)。
根据这个换算公式,通过已知的场强值可以计算辐射功率,或者通过已知的辐射功率值可以计算出对应的场强值。
这个公式适用于电磁辐射的计算,可以用于无线电、光学等领域的辐射功率与场强的换算。
1。
EMI-RFI

EMI/RFI随着电子系统的日益精密、复杂及多功能化,电子干扰问题日趋严重,它可使系统的性能发生变化、减弱,甚至导致系统完全失灵。
特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年电子产业的热点。
为此,不少国家的专业委员会相继制定了法规,对电子产品的电磁波不泄露、抗干扰能力提出了严格规定,并强制执行。
美国联邦通信委员会(FCC)于1983年颁布了20780文件,对计算机类器件的EMI进行限制;德国有关部门颁布了限制EMI的VDE规范,在放射和辐射方面的约束比FCC规范更严格;欧洲共同体又在VDE规范中增加了RF抗扰性、静电泄放和电源线抗扰性等指标。
FCC、VDE规范将电子设备分为A(工业类设备)和B(消费类设备)两类,具体限制如表1所示。
此外,还有一系列适用于电子EMI/RFI防护的标准文件:MIL-STD-461、MIL-STD -462、MIL-STD-463、MIL-STD-826、MIL-E-6051、MIL-I-6181、MIL-I-11748、MIL-I-26600、MSFC-SPEC279等,所有这些法规性文件对电子系统的干扰防护起到了重大的作用。
本文详细讨论了电子线路及系统中EMI/RFI的特征及其抑制措施。
2EMI/RFI特性分析电子系统的干扰主要有电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,每个电子电气设备均可看作干扰源,这种干扰源不胜枚举。
EMI是在电子设备中产生的不需要的响应;RFI则从属于EMI;EMP是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电、核爆炸等)引起,能耦合到任何导线上,如电源线和电话线等,而与这些导线相连的电子系统将受到瞬时严重干扰或使系统内的电子电路受到永久性损坏。
图1给出了常见EMI/RFI的干扰源及其频率范围。
2.1干扰途径任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。
EMI辐射信号强度计算

EM I辐射信号强度计算需要距离辐射源多远才能使辐射信号不干扰系统呢?要想知道这个问题的答案,需要思考下面两个问题: 1) 辐射源的辐射能量大小; 2) 系统的EMI 保护电路性能如何。
呈辐射状的电磁干扰(EMI) 信号会从辐射源传播至某个接收单元。
根本而言,这些信号“的功率或者电压强度在 触及“ 敏感的电路时,取决于发送器的功率/天线增益以及辐射源和接收器之间的距离(请参见图1) 。
E r (V l:m) = 5,,5,八Ps)/d厂P八W/m::i!)= Psi(知d勺图1辐射源和接收器之间的EMI电场和功率密度关系在进行EMI评估时,可能会利用电场强度或者辐射功率密度参数。
电场强度量化了辐射源干扰电压的大小。
这种窄带或者宽带EMI信号测量单位为伏每米(V/m)。
您可以根据F1C C a nd 1C l8PR 飞Ima__ , 501EAN 云P l41 .6 u a 1Qs·1 P11 a1勹1 10 ""11劝25,III。
·,oo10叩l fi re que n可fM H,一f比Q每A一C IS阳U郘sA F红;1C1邸s B一C ISPR口晒SB图2FCC和CISPR辐射限制—30MHz到1GHz,测量距离10m图2中,A类限制针对商业、工业或者企业环境下使用的电子设备。
B类限制针对家用电子设备。
A类限制也可能适用于家用电子设备。
B类限制更加严格,因为这类设备可能会靠近TV和无线电接收设备放置。
来源:电子工程专辑日O更多精彩内容看这里广播百科超高清视肺应急广播抟术标准发布,各地广申,应急广捅硉设“如火如荼”广播百科线损如何解决SG中肺与卫旱C润段的冲突?广播百科001—100期广播百科101—200期广电术语词汇(—)广电术语词汇(二)。
信号强度从百分比到分贝的转换

信号强度从百分比到分贝的转换Radio Frequency(RF)信号强度测量单位有四种测量单位可以用来表示RG信号强度。
分别为:nw(milliwatts),dBm(db-milliwatts),RSSI(Received Signal Strength Indicator,接收的信号强度指示)以及百分比。
所以的测量单位都是两两相关的,而且可以相互转换(存在不同程度的精度)。
mw和dBm的测量单位相信这个大家并不陌生。
通常我们衡量RF能量大小都是以 mw 为单位的,但并不方便,着不仅是以为信号强度值不是呈线性衰减,而是符合平方反比定律(inverse square law)。
即如果移动2倍的距离,对应的信号强度将衰减为原来的1/4。
这也是为什么引入指数的测量方式的其中一个原因。
分贝,就是对信号强度的对数测量方式。
mw值将转换为以10为底的对数,而因为其值很小,所以把结果再乘以10。
举例:转换公式为:RSSI(接收的信号强度指示)IEEE标准定义了一种机制来衡量无线网卡接收到的RF能量值。
其数值为0~255的整数,即我们所说的RSSI.当然没有厂商真把信号值分成256个不同等级,但是每个厂商都指明了自己NIC的最大RSSI值(RSSI_MAX),比如Symbol使用RSSI_MAX=31(Atheros的为60)。
注意这里说的完全跟 mw和dBm没有关系。
RSSI是定义在802.11标准的任意整数,供本地/内部(Internally)使用,比如用于设备驱动开发等。
比如,当适配器要发送一个包,它必须检查当前信道是否可用(clear),如果RSSI值小于某个值,那么芯片就知道信号时可用的,这个值就成为"Clear Channel Threshold",并赋予某个具体RSSI值。
同样还有"Roaming Threshold“,不同的厂商,这两个值是不同的,因为它们定义了不同的RSSI_MAX.所以RSSI值只能以一种相对方式使用,没有决定的精确值。
emi指标

EMI,全称为Electromagnetic Interference(电磁干扰),是指任何可能引起电子设备、系统或网络性能下降或失效的电磁现象。
以下是一些与EMI相关的指标:1. 辐射发射(Radiated Emission):这是测量设备在运行过程中产生的电磁能量向周围空间的传播情况。
通常使用特定的天线和频谱分析仪来测量在指定频率范围内的电磁场强度。
2. 传导发射(Conducted Emission):这是测量设备通过电源线、信号线或其他导体向外部环境传输的电磁能量。
通常使用电流探头和频谱分析仪进行测量。
3. 敏感度(Susceptibility)或抗扰度(Immunity):这是测量设备抵抗外部电磁干扰的能力。
包括辐射敏感度(Radiated Susceptibility)和传导敏感度(Conducted Susceptibility)。
4. 谐波和闪烁(Harmonics and Flicker):谐波是电源电流中高于基波频率的整数倍频率分量,闪烁则是由于电压波动引起的光亮度不稳定。
5. 共模干扰(Common-Mode Emission)和差模干扰(Differential-Mode Emission):在传导发射中,共模干扰是指沿着电路的两个导体对地的干扰电流相同,而差模干扰是指沿着电路的两个导体之间的干扰电流相等但极性相反。
6. 脉冲群抗扰度(Pulse Group Immunity)和浪涌抗扰度(Surge Immunity):这些是测量设备抵抗快速瞬态电压和电流变化的能力。
7. 静电放电抗扰度(ESD Immunity):测量设备抵抗静电放电影响的能力。
8. 磁场抗扰度(Magnetic Field Immunity)和电场抗扰度(Electric Field Immunity):测量设备抵抗外部静态或交变电磁场影响的能力。
每个国家和地区都有自己的EMI标准和法规,如欧洲的EN 55022和美国的FCC Part 15等,这些标准规定了不同类型的电子设备在各个EMI指标上的限值和测试方法。
电磁辐射照射的场强单位及其换算

电磁辐射照射的场强单位及其换算一、电磁干扰场强的基本单位高频、微波电磁干扰场强有三种基本单位:电场强度V/m、磁场强度A/m和功率通量密度W/m2。
在测量电场时,若仪器的表头刻度用的是电场强度单位时,则用V/m单位表示之。
所测干扰场强小于1V/m时,可用m V /m、µV/m单位。
当使用环天线、框天线或磁性天线等来测量磁场,且仪器的表头刻度按磁场强度单位A/m刻度时,则可用A/m、 mA /m、µA/m单位表示之。
当电磁场频率高至微波段时,由于对电场、磁场的单独测量在技术上有一定困难;或者功率密度测量比电场、磁场测量要方便,所以可采用功率通量密度测量。
功率通量密度的单位为W/ m2。
国外生产的全向宽带场强仪、辐射危险计,因其工频率范围极宽,从260KHZ~26GHZ、,故测试电路中实现|E|2、|H|2较为方便。
因此,大多采用功率通量密度测量,并以mW /Cm2为表头刻单位。
强场仪测得的功率通量密度是Poyn-ting向量模的时间平均值,亦代表电磁场的强度。
它的单位W/m2和电场强度单位V /m、磁场强度单位A/m同为电磁干扰场强的基本单位。
它们的地位是等同的。
一、电磁干扰场强单位间的相互换算在一般情况下,V/m、A/m和mW /Cm之间不能相互换算。
只有在被测场为平面波情况下,三者间才能相互换算。
否则,只能“等效换算”。
何谓平面波?凡远离发射天线,在自由空间中传播的电磁波,皆为平面波。
根据电磁场理论,在平面波情况下,S=ZoH2=E2/Zo在自由空间中,Z=120π≈376.7Ω,代入上式后可得:E单位为V/m2,S单位为mW /C m2。
值得指出的是:通常A、B波段(10Khz~30MHZ)的干扰场强测量仪(例如德R/S公司的ESH3、日本Anritu公司的ML428B)使用环形天线进行测量。
虽然环形天线只对磁场分量起作用,但在自由空间中,由于E=Z0H(称等效电场分量),故表头可用等效电场分量刻度。
电磁辐射照射的场强单位及其换算

电磁辐射照射的场强单位及其换算电磁干扰场强单位及其换算,是广大电磁兼容工作者经常遇到的、关切的问题之一。
电磁干扰场强既有电场强度、磁场强度和功率通量密度等基本单位,又有分贝制导出。
在某些情况下,单位之间还可相互换算。
本文将就这些单位的使用及换算作一简要的介绍。
一、电磁干扰场强的基本单位高频、微波电磁干扰场强有三种基本单位:电场强度V/m、磁场强度A/m 和功率通量密度W/m2。
在测量电场时,若仪器的表头刻度用的是电场强度单位时,则用V/m单位表示之。
所测干扰场强小于1V/m时,可用m V /m、μV/m单位。
当使用环天线、框天线或磁性天线等来测量磁场,且仪器的表头刻度按磁场强度单位A/m刻度时,则可用A/m、mA /m、μA/m单位表示之。
当电磁场频率高至微波段时,由于对电场、磁场的单独测量在技术上有一定困难;或者功率密度测量比电场、磁场测量要方便,所以可采用功率通量密度测量。
功率通量密度的单位为W/ m2。
国外生产的全向宽带场强仪、辐射险计,因其工频率范围极宽,从260KHZ~26GHZ、,故测试电路中实现|E|2、|H|2较为方便。
因此,大多采用功率通量密度测量,并以mW /Cm2为表头刻单位。
强场仪测得的功率通量密度是Poyn-ting向量模的时间平均值,亦代表电磁场的强度。
它的单位W/m2和电场强度单位V /m、磁场强度单位A/m同为电磁干扰场强的基本单位。
它们的地位是等同的。
二、电磁干扰场强单位间的相互换算在一般情况下,V/m、A/m和mW /Cm之间不能相互换算。
只有在被测场为平面波情况下,三者间才能相互换算。
否则,只能“等效换算”。
何谓平面波?凡远离发射天线,在自由空间中传播的电磁波,皆为平面波。
根据电磁场理论,在平面波情况下,S=ZoH2=E2/Zo在自由空间中,Z=120π≈376.7Ω,代入上式后可得:E单位为V/m2,S 单位为mW /C m2。
值得指出的是:通常A、B波段(10Khz~30MHZ)的干扰场强测量仪(例如德R/S公司的ESH3、日本Anritu公司的ML428B)使用环形天线进行测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EMI辐射信号强度计算
嘉兆科技
需要距离辐射源多远才能使辐射信号不干扰系统呢?要想知道这个问题的答案,需要思考下面两个问题:1)辐射源的辐射能量大小;2)系统的EMI 保护电路性能如何。
本文中,我们将首先讨论第一个问题。
呈辐射状的电磁干扰(EMI) 信号会从辐射源传播至某个接收单元。
根本而言,这些信号的功率或者电压强度在“触及”敏感的电路时,取决于发送器的功率/天线增益以及辐射源和接收器之间的距离(请参见图1)。
图1 辐射源和接收器之间的EMI 电场和功率密度关系
在进行EMI 评估时,可能会利用电场强度或者辐射功率密度参数。
电场强度量化了辐射源干扰电压的大小。
这种窄带或者宽带EMI 信号测量单位为伏每米(V/m)。
您可以根据喜好,对这种电场强度单位进行修改,将它们转换成dBμV/m,其中dBμV = 20 log (V) + 120μV。
窄带EMI 信号一般为重复信号或者脉冲序列。
利用图1 所示简单公式,可以在距离EMI 辐射源的某个地方,迅速计算出辐射电压的极端估计情况Er。
宽带EMI 信号一般为单个脉冲,例如:闪电、一次ESD 事件或者火花隙。
这些脉冲类型事件都包含多个频率。
宽带信号难以测量,因为它们不重复且速度快。
辐射功率密度单位也可用于描述窄带事件。
EMI 窄带的测量单位(辐射功率密度)可以为瓦特每平方米,即W/m2。
通信工程师使用功率密度表示EMI 信号,用于解决其窄带EMI 问题。
可以将辐射功率密度单位转换成dBm/m2,其中dBm (dB milliwatts) = 10 log (W)。
在实验室中,可以在时域和频域中对EMI信号进行预分析。
使用一台示波器对信号进行时域观察,然后再使用一台频谱分析仪对信号进行频域评估。
但是,通过联邦通信委员会(FCC) 和欧洲国际特别委员会(CISPR) 无线电干扰认证的一些公司,必须在产品上市以前就进行所有辐射EMI 测量。
这种要求可以确保测试结果完全符合FCC 和/或CISPR 规定。
测试方法包括使用环境测试,并使用经过校准的EMI 测试设备和天线。
FCC 和CISPR 要求设备发射的辐射信号必须在规定值以下。
FCC 和CISPR 相关文件包括EN 55011、EN 55013、EN 55014、EN 55015、EN 55022和EN 50081-1.2(通用辐射标准)。
图2 FCC 和CISPR 辐射限制—30MHz到1GHz,测量距离10m
图2 中,A 类限制针对商业、工业或者企业环境下使用的电子设备。
B 类限制针对家用电子设备。
A 类限制也可能适用于家用电子设备。
B 类限制更加严格,因为这类设备可能会靠近TV和无线电接收设备放置。