上海侨光中学七年级下册数学期末试卷-百度文库
上海七年级第二学期数学期末数学考试试卷(答案)

第二学期初中七年级数学期末质量调研1参考答案与评分意见一、填空题(本大题共有14题,每题2分,满分28分)1.4±;2.34;3.0.79;4.>;5.20;6.235-;7.50 ;8.70 ;9.()5,3-;10.10>c >6;11.54 ;12.△ABD 与△ADC 或△DCO 与△ABO 或△ABC 与△DBC ;13.130 ;14.60 或120 ;二、单项选择题(本大题共有4题,每题3分,满分共12分)15.B;16.D;17.B;18.A.三、(本大题共有4题,第19、20题各5分,第21、22题各6分,满分22分)19.解:原式(25255⎡=-⎢⎣……………………………………………………1分2555⎡⎤=-⨯⎢⎥⎣⎦…………………………………………………1分25555=……………………………………………1分52=-…………………………………………………………………2分【说明】没有过程,直接得结论扣2分.20.解法一:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分4562⎛⎫= ⎪⎝⎭……………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分3102不扣分.解法二:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分42322=⨯…………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分21.(1)画图正确2分,标注字母正确1分,结论1分;(2)画图正确1分,标注字母正确1分.22.(1)()2,4-,7;……………………………………………………………(1+1)分(2)()5,3-,等腰直角三角形;…………………………………………(1+1)分(3)画图正确1分,标注字母正确1分.四、(本大题共有5题,第23、24题各6分,第25、26题各8分,第27题10分,满分38分)23.解:根据题意:设A ∠、B ∠、C ∠的度数分别为3x 、4x 、5x .……1分因为A ∠、B ∠、C ∠是△ABC 的三个内角(已知),所以180A B C ∠+∠+∠= (三角形的内角和等于180 ),……………1分即345180x x x ++=.…………………………………………………1分解得15x =.……………………………………………………………2分所以45A ∠= ,60B ∠= ,75C ∠= .………………………………1分24.解:(1)因为AB AC =(已知),所以△ABC 是等腰三角形.由AD BC ⊥(已知),得112BAC ∠=∠(等腰三角形的三线合一).……………………………2分由110BAC ∠= (已知),得11110552∠=⨯= .……………………………………………………2分(2)因为△ABC 是等腰三角形,AD BC ⊥(已知),所以BD CD =(等腰三角形的三线合一).……………………………2分【说明】在用“等腰三角形的三线合一”性质时,前面两个条件有漏写的,要扣1分.25.解:两直线平行,内错角相等…………………………………………………1分EBA FCD ∠=∠…………………………………………………………1分等角的补角相等……………………………………………………………1分AB CD =.………………………………………………………………1分在△ABE 和△DCF 中,,,(AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△ABE ≌△DCF (S.A.S ),……………………………………1分得A D ∠=∠(全等三角形的对应角相等), (1)分所以//AE DF (内错角相等,两直线平行).…………………………1分26.(1)三角形的一个外角等于与它不相邻的两个内角和…………………………1分12∠=∠………………………………………………………………………1分因为AB AC =(已知),所以B C ∠=∠(等边对等角).……………………………………………1分在△BFD 和△CDE 中,12,,(B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△BFD ≌△CDE (A.A.S ),………………………………………1分(2)因为△BFD ≌△CDE ,所以DF DE =(全等三角形的对应边相等).……………………………1分因为△ABC 是等边三角形(已知),所以60B ∠= (等边三角形的每个内角等于60 ).因为FDE B ∠=∠(已知),所以60FDE ∠= (等量代换).……………………………………………1分所以△DEF 是等边三角形(有一个内角等于60 的等腰三角形是等边三角形).……………………………………………………………………………1分27.解:(1)a >2的理由是“垂线段最短”【说明】1.如果学生写出“直角三角形的斜边大于直角边”也同样给分.2.如果学生想法正确,但表达不够清楚,酌情扣1分.(2)()12,0P a --,△1P AB 的面积为a;()22,0P a -,△2P AB 的面积为a ;()32,0P ,△3P AB 的面积为4;()40,0P ,△4P AB 的面积为2.(每个结论各1分)。
2020-2021学年上海市七年级下学期期末数学试卷(有答案)-精品试卷

最新上海市七年级(下)期末数学试卷一、填空题(共14小题,每小题2分,满分28分)1.-27的立方根是.2.把玉算表示成幕的形式是.3.数轴上点A B表示的数分别是-巫,-1,那么A B两点间的距离是.4.计算:回引亏二 _________ .5.比较大小:-3 (用d {”号填空).6.用科学记数法表示近似数29850 (保留三位有效数字)是 .7.已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是cm.8. 一个三角形三个内角度数的比是2: 3: 4,那么这个三角形是三角形.9.如图,在△ ABC中,D在边AC上,如果AB=BD=DC且/ C=40°,那么/ A=°,B10.如图,已知BE=CD要使AAB®AACD,要添加一个条件是.(只填一种情况)11•点A的坐标为(4, - 3),把点A向左平移5个单位到点A',则点A'的坐标为12.如图,AD是4ABC的中线,E是AD的中点,如果S AABD=12,那么S ACDE=.13.已知点A (-2, - 1),点B(a, b),直线AB// y轴,且AB=3,则点B的坐标是.14.如图,4ABC中,AB=AC AD是/ BAC的平分线,若^ ABD的周长为12, 4ABC的周长为16,则AD的长为.、单项选择题(本大题共有4题,每题3分,满分12分)15.在实数聒、/、0. 寸以2.1234567891011121314一(自然数依次排列)、牛豆中,无理数有()A. 2个B. 3个C. 4个D. 5个16.点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A. ( — 4, 3)B. (4, -3)C. ( 3, -4)D. (-3, 4).17.下列说法正确的是(A. 周长相等的锐角三角形都全等B. 周长相等的直角三角形都全等C. 周长相等的钝角三角形都全等D. 周长相等的等边三角形都全等18.点A在直线m外,点B在直线m上,A、B两点的距离记作a,点A到直线m的距离记作b,则a与b的大小关系是()A. a>bB. a<bC. ai> bD. a<b三、简答题(本大题共有5题,每小题6分,满分30分)19.计算:(8>27)T-(兀-1) 0-(卜)1.20.计算:(通+V2)2- (n/5-V2)2.21.利用幕的性质进行计算:班十眄X后.22.如图,点P在CD上,已知/ BAP+Z APD=180, / 1=/ 2,请填写AE// PF的理由.解:因为/ BAP+Z APD=180ZAPC-+Z APD=180所以/ BAP=Z APC又 / 1 = /2所以/ BAP- / 1 = /APC- / 2即 / EAP=Z APF所以AE// PF .23.如图,在△ ABC中,AB=AC AD是中线,CE// AD交BA的延长线于点E,请判断△ AEC的形状,并说明理由.结论:4AEC是三角形.解:因为AB=AC BD=CD (已知),所以/ BAD=.因为CE// AD (已知),所以/ BAD=./ CAD=.所以/=/.所以= .即4AEC是三角形.四、解答题(本大题共有4题,第24、25题各7分,第26、27题各8分,满分30分)24.如图,已知点A、E、F、C在同一直线上,AE=FC过点A、C作AD// BC,且AD=CB(1)说明4人5*4CEB的理由;(2)说明DF// BE的理由.25.如图,在直角坐标平面内,已知点A的坐标(-2, 0),(1)图中点B的坐标是;(2)点B关于原点对称的点C的坐标是;点A关于y轴对称的点D的坐标是(3)四边形ABDC的面积是;(4)在直角坐标平面上找一点E,能?f足S AAD FS AABC的点E有个;(5)在y轴上找一点F,使S AADF=S A ABC,那么点F的所有可能位置是.26.如图,在△ ABC中,BD=DC /1 = /2,求证:AD是/ BAC的平分线.27.如图,在直角坐标平面内有两点A (0, 2)、B ( -2, 0)、C (2, 0).(1) △ ABC的形状是等腰直角三角形;(2)求△ ABC的面积及AB的长;(3)在y轴上找一点P,如果△ PAB是等腰三角形,请直接写出点P的坐标.参考答案与试题解析一、填空题(共14小题,每小题2分,满分28分)1. - 27的立方根是-3 .【考点】立方根.【分析】根据立方根的定义求解即可.【解答】解::(- 3) 3=-27,• • '= - 3故答案为:-3.2.把好表示成幕的形式是_g_.【考点】立方根.【分析】表示为被开方数的指数除以根指数的形式即可.【解答】解:把博表示成幕的形式是寺.4故答案为:匚了.53.数轴上点A、B表示的数分别是-72,-1,那么A、B两点间的距离是我的【考点】实数与数轴.【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:A、B两点间的距离是:-1-(-*)=-i+n=n-1,故答案为:V2- 1.4.计算:W5= 3^5 .【考点】二次根式的乘除法.【分析】直接利用二次根式乘除运算法则化简求出答案.[解答]解:后汹蓝斗片=15+.=75^75=班.故答案为:3「.5.比较大小:-3 > ~\p[5(用夕" d孝号填空).【考点】实数大小比较.【分析】要比较的两个数为负数,则先比较它们绝对值的大小,在比较3和板的大小时,先比较它们平方值的大小.【解答】解:V 32=9< 1VTO)2=10, .•-3 - 则-3 >71, 故填空答案:>.6.用科学记数法表示近似数29850 (保留三位有效数字)是2.99M04 .【考点】科学记数法与有效数字.【分析】首先用科学记数法的表示形式为aX0n的形式,其中10间<10, n为整数.确定n的值是易错点,再保留有效数字,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:29850=2.985M04 = 2.99X04, 故答案为:2.99X04.7.已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是17 cm. 【考点】等腰三角形的性质;三角形三边关系.【分析】根据题意分两种情况:第一种是底边长为7时构不成三角形要排除,第二种情况是底边长为3,然后再将三边长相加即可求得答案.「•当此三角形的腰长为3cm时,3+3< 7,不能构成三角形,故排除,;此三角形的腰长为7cm,底边长为3cm,・.•此等腰三角形的周长=7+7+3=17cm故答案为:17.8. 一个三角形三个内角度数的比是2: 3: 4,那么这个三角形是锐角三角形.【考点】三角形内角和定理.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180 列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k。
【3套打包】上海市最新七年级下册数学期末考试试题(含答案)(8)

新七年级下学期期末考试数学试题及答案人教版七年级下学期期末考试数学试题(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B考点:实数的概念。
解析:无限不循环的小数为无理数,无理数有:1.010010001…,π,共2个,其它为有理数。
2.下列运算正确的是()A、3a+2a=5a2B、2a2b﹣a2b=a2b C.3a+3b=3ab D、a5﹣a2=a3答案:B考点:整式的运算。
解析:A、3a+2a=5a,故错误;B、正确;C、不是同类项,不能合并;D、不是同类项,不能合并;3.下列调查中,最适合采用全面调查的是()A、对全国中学生睡眠时间的调查B.了解一批节能灯的使用寿命C.对“中国诗词大会”节目收视率的调查D.对玉免二号月球车零部件的调查答案:D考点:统计。
解析:A、B、C容量大,不能做全面调查,只有D适合做全面调查。
4.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A、90°B、110°C、108°D、100°答案:D考点:两直线平行的性质。
解析:如下图,因为l 1∥l 2, 所以,∠3=∠1=50°, ∠3+∠2+30°=180°,∠2=180°-50°-30°=100°5.买1本笔记本和3支水笔共需14元,买3本笔记本和1支水笔共需18元,则购买1本笔记本和1支水笔共需( )A 、3元B 、5元C 、8元D 、13元 答案:C考点:二元一次方程组。
解析:购买1本笔记本和1支水笔分别需x 、y 元,则有314318x y x y ⎧⎨+=⎩+=,解得:53x y =⎧⎨=⎩, x +y =5+3=86.将点A (2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B ,则点B 的坐标是( ) A 、(-1,3) B 、(5,3) C 、(﹣1,﹣5) D 、(5,﹣5) 答案:A考点:平移。
2020-2021下海侨光中学初一数学下期末试卷附答案

C.1 a 2
7.如图所示,下列说法不正确的是( )
D.1 a 2
A.∠1 和∠2 是同旁内角 C.∠3 和∠4 是同位角 8.下列图中∠1 和∠2 是同位角的是( )
B.∠1 和∠3 是对顶角 D.∠1 和∠4 是内错角
A.(1)、(2)、(3)
B.(2)、(3)、(4)
C.(3)、(4)、(5)
D.(1)、(2)、(5)
9.将点 A(1,﹣1)向上平移 2 个单位后,再向左平移 3 个单位,得到点 B,则点 B 的坐
标为( )
A.(2,1) B.(﹣2,﹣1) C.(﹣2,1) D.(2,﹣1)
10.如图所示,点 P 到直线 l 的距离是( )
A.线段 PA 的长度 B.线段 PB 的长度 C.线段 PC 的长度 D.线段 PD 的长度 11.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为 A(﹣2, 1)和 B(﹣2,﹣3),那么第一架轰炸机 C 的平面坐标是( )
2.D
解析:D 【解析】 试题分析:根据题意可知:本题中的等量关系是“黑白皮块 32 块”和因为每块白皮有 3 条边 与黑边连在一起,所以黑皮只有 3y 块,而黑皮共有边数为 5x 块,依此列方程组求解即 可. 解:设黑色皮块和白色皮块的块数依次为 x,y. 则, 解得 , 即黑色皮块和白色皮块的块数依次为 12 块、20 块. 故选 D.
【详解】
∵ 4< 7< 9, ∴2< 7 <3,
∵a> 7 ,a 为正整数,
20. 5 的绝对值是______. 三、解答题
21.如图,三角形 ABO 中,A(﹣2,﹣3)、B(2,﹣1),三角形 A′B′O′是三角形 ABO 平移之后得到的图形,并且 O 的对应点 O′的坐标为(4,3).
上海七年级第二学期数学期末数学考试试卷.doc

上海七年级第二学期数学期末数学考试试卷 (1)一、填空题1.25 的平方根是________________. 2=________________. 3.计算:2)3(=_______________.4.比较大小: 3________10(填“>”,“=”,“<” ).5=______________.6.计算:5253-=______________.7.三峡三期围堰于今年6月6日成功爆破.围堰的混凝土总量约186000立方米.保留两个有效数字,近似数186000用科学记数法可表示为______________. 8.点(2P -在第___________象限.9.在△ABC 中,30B ∠=︒,50C ∠=︒,那么根据三角形按角分类,可知△ABC 是_________三角形(按角分类).10.如图,已知:AB // CD ,∠A =58°,那么∠BCD =________度. 11.已知等腰三角形的底角为65°,那么这个等腰三角形的顶角等于___________度.12.如图,在△ABC 中,∠BAC =80°,∠C = 45°,AD 是△ABC的角平分线,那么∠ADB =__________度.13.在直角坐标平面内,将点(3,2)A -向下平移4个单位后,所得的点的坐标是________________.13.在△ABC 中,AB = AC ,要使△ABC 是等边三角形需添加一个条件,这个条件可以是________________(只需写出一种情况).ABCD(第12题图)AC D BE (第10题图)14.在等腰三角形ABC 中,AB = 6cm ,BC = 10cm ,那么AC =_________cm . 二、选择题15.下列说法正确的是………………………………………………………………( )(A )41的平方根是12; (B )41的平方根是12-;(C )18的立方根是12; (D )18的立方根是12-.16.下列长度的三根木棒,不能构成三角形框架的是……………………………( )(A )5cm 、7cm 、10cm ; (B )5cm 、7cm 、13cm ; (C )7cm 、10cm 、13cm ; (D )5cm 、10cm 、13cm .17.下列语句中,错误的语句是………………………………………………………( )(A )有两个角及它们的夹边对应相等的两个三角形全等; (B )有两个角及其中一个角的对边对应相等的两个三角形全等; (C )有两条边及它们的夹角对应相等的两个三角形全等; (D )有两条边及其中一条边的对角对应相等的两个三角形全等.18.如图,在△ABC 中,已知AB = AC ,∠ABC 的平分线BE 交AC 于点E ,DE ∥BC ,点D 在AB 上,那么图中等腰三角形的个数是…………………………………( )(A )2; (B )3; (C )4; (D )5. 三、计算题AB(第18题图)EDC19.计算:2(+. 662284÷⨯(利用幂的性质进行计算)21.在△ABC 中,已知∠A ∶∠B ∶∠C = 2∶3∶5,求∠A 、∠B 、∠C 的度数.四、操作题22.画图(不要求写画法):(1)画△ABC ,使∠A=60°,AB=2cm ,AC=3cm ; (2)画出△ABC 边AC 上的高.23.已知△ABC 的顶点坐标是A (-1,5)、B (-5,5)、C (-6,2).(1)分别写出与点A 、B 、C 关于原点O 对称的点A ' 、B '、C '的坐标; A '____________, B '____________, C ' ____________;(2)在坐标平面内画出△C B A ''';(3)△C B A '''的面积的值等于____________.五、解答题 24.阅读并理解:如图,在△ABC 和△A B C '''中,已知AB A B ''=,A A '∠=∠,AC A C ''=,那么△ABC ≌△A B C '''.说理过程如下:把△ABC 放到△A B C '''上,使点A 与点A '重合, 由于AB=__________,因此点B 与点__________重合.又因为∠A=__________,所以射线AC 能落在射线__________上. 因为__________=____________,所以点________与___________重合. 这样△ABC 和△A B C '''重合,即△ABC ≌△A B C '''. 25.阅读并填空:如图:在△ABC 中,已知AB =AC ,AD BC ⊥,垂足为点D ,点E 在AD 上,点F 在AD 的延长线上,且CE // BF ,试说明DE =DF 的理由. 解:因为AB = AC ,AD BC ⊥(已知),所以BD = __________ ( ) . 因为CE // BF (已知),所以∠CED = ( ) . 在△CED 和△BFD 中,EDC BDF∠=∠⎧⎪⎨⎪⎩(对顶角相等), = , = , 所以△CED ≌△BFD ( ) .因此DE =DF ( ) .ABCA 'B 'C 'ABCD E F26.如图,在△ABC 中,已知AB = AC ,∠BAD =∠CAE ,点D 、E 在BC 上,试说明△ADE 是等腰三角形的理由.27.如图,在△ABC 中,已知AB = AC = 2,点A 的坐标是(1,0),点B 、C 在y 轴上.试判断在x 轴上是否存在点P ,使△PAB 、△PAC 和△PBC 都是等腰三角形.如果存在这样的点P 有几个?写出点P 的坐标;如果不存在,请说明理由.ABCD E。
2021沪教版(上海)初中数学七年级(下)期末考试模拟试卷及部分答案(共五套)

写出你的猜想并加以证明.
26.把两个大小不同的等腰直角三角形三角板按照一定的规则放置:“在同一平面内将直角 顶点叠合”.
(1)图 1 是一种放置位置及由它抽象出的几何图形, B 、 C 、 D 在同一条直线上,连接 EC .请找出图中的全等三角形(结论中不含未标识的字母),并说明理由;
(2)图 2 也是一种放置位置及由它抽象出的几何图形, A 、C 、 D 在同一条直线上,连接 BD 、连接 EC 并延长与 BD 交于点 F .请找出线段 BD 和 EC 的位置关系,并说明理
①如果 a / /b , b / /c ,那么 a / /c ;②如果 a b , b c ,那么 a c ;
③如果 a / /b , b c ,那么 a c ;④如果 a / /b , b c ,那么 a / /c .
A.1 个
B.2 个
C.3 个
D.4 个
3.如图,在 ABC 中,点 D 、 E 分别在边 AB 、 AC 上, BE 与 CD 相交于点 O ,如果已知
A.14°
B.15°
C.16°
6、(4 分) 计算(6x3-2x)÷(-2x)的结果是( )
A.-3x2
B.-3x2-1
C.-3x2+1
D.17° D.3x2-1
7、(4 分)
不等式组
2x >− 1 的所有整数解的和是( − 3x + 9 ≥ 0
)
A.4
B.6
C.7
D.8
8、(4 分) 关于 x 的方程3x−2- m =2 有增根,则 m 的值是( )
23.如图,已知线段 AB ,其中点 A(2, 0) ,点 B(1, 2) . (1)如果存在点 C ,使 ABC 为等腰直角三角形,且以 AB 为直角边,写出点 C 的坐标; (2)如图 2,若有 D(4, 2) 、 E(1, 4) ,求四边形 ABDE 的面积.
完整版上海市七年级第二学期期末考试数学练习试卷
七年级第二学期期末考试数学练习试卷(3)班级姓名学号成绩一、填空题(本大题共14 题,每题 2 分,满分28 分)1. 64 的立方根是.2. 若是x =4,那么 x =.3. 在数轴上,若是点A、点 B 所对应的数分别为7 、 2 7 ,那么A、B两点的距离AB=.4. 5 在两个连续整数 a 和 b 之间( a < b ),那么 a b=.5.3计算: 3 =.16. 计算:9 2=.7. 崇明越江通道建设中的地道工程全长约为103米,其中9.0 103有个有效数字.8. 三角形的两边长分别为 3 和 5,那么第三边a的取值范围是.9. △ ABC 中, AB=3,∠ A= ∠ B = 60°,那么 BC=.10. 如图, AD∥ BC ,△ ABD 的面积是5,△ AOD 的面积是 2 ,那么△ COD 的面积是.11.将一副三角板以下列图摆放(其中一块三角板的一条直角边与另一块三角板的斜边摆放在素来线上),那么图中∠α=度.12.经过点P(-1,5)且垂直于x 轴的直线可以表示为直线.13.如图,点 P 在∠ MON 的均分线上,点 A、B 分别在角的两边,若是要使△ AOP ≌△ BOP,那么需要增加的一个条件是(只写一个即可,不增加辅助线).14.等腰三角形一腰上的高与另一腰的夹角为 50°,那么这个等腰三角形的底角为.MAD APOB C OB N第 10 题图第11题图第13题图二、选择题(本大题共 4 题,每题 3 分,满分 12 分)(每题只有一个选项正确)15. 以下法中正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )无量不循小数是无理数;(B )一个无理数的平方必然是有理数;(C)无理数包括正无理数、无理数和零;(D )两个无理数的和、差、、商仍是无理数.第 1616. 将素来角三角板与两平行的条如所示放置,以下:( 1)∠ 1=∠ 2;( 2)∠ 3=∠ 4;( 3)∠ 2+∠ 4= 90°;(4)∠ 4+∠5= 180°,其中正确的个数是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) 1;(B)2;(C)3;(D)4.17.如,已知棋子“ ”的坐(-2,3),棋子“ ”的坐( 1,3),那么棋子“炮”的坐⋯⋯⋯⋯⋯⋯⋯()( A )( 3,0);( B )( 3, 1);( C)( 3, 2);( D)( 2,2).第 1718. 如, AOB 是一架,且∠ AOB=10°,加固架,需要在其内部增加一些管EF 、FG 、 GH 、⋯,增加的管度都与OE 相等 , 那么最多能增加管的根数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()( A ) 6;(B)7;(C)8;(D)9. EMA GOF H B第18三、简答题(本大题共 4 题,每题 6 分,满分 24 分)19.5 6 2 15 3 15 .20. 3 168 6 32.21.如,若是AB= AD ,∠ ABC=∠ ADC ,明BC 与 CD 相等的原由.解:AB DC第2122.在△ ABC 中,若是∠ A、∠ B、∠ C 的外角的度数之比是4∶ 3∶ 2,求∠ A 的度数...三、解答题(本大题共 4 小题, 23 题 8 分, 24 题 9 分, 25 题 7 分, 26 题 12 分,)23.( 1)在以下列图中画出表示点P 到直线 a 距离的垂线段PM;P (2)过点 P 画出直线 B 的平行线 c,与直线 a 交于点 N;(3)若是直线 a 与 b 的夹角为 35°,求出∠ MPN 的度数.第 23 题图24.如图,在直角坐标平面内,已知点A 的坐标(- 5,0),(1)图中 B 点的坐标是;(2)点 B 关于原点对称的点 C 的坐标是;点 A 关于 y 轴对称的点 D 的坐标是;(3)△ABC 的面积是;(4)在直角坐标平面上找一点E,能满足S ADE=S ABC的点 E 有个;第 24 题图(5)在 y 轴上找一点 F ,使S ADF=S ABC,a b那么点 F 的所有可能地址是;(用坐标表示,并在图中画出)25.如图,已知AC=BC=CD ,BD 均分∠ ABC,点 E 在 BC 的延长线上. D(1)试说明 CD ∥ AB 的原由;A(2) CD 是∠ ACE 的角均分线吗?为什么?B C E第 25 图26.把两个大小不同样的等腰直角三角形三角板依照必然的规则放置:“在同一平面内将直角极点叠合”.(1)图 1 是一种放置地址及由它抽象出的几何图形,B、C、D 在同一条直线上,联系 EC.请找出图中的全等三角形(结论中不含未表记的字母),并说明原由;(2)图 2 也是一种放置地址及由它抽象出的几何图形,A、 C、D 在同一条直线上,联系、BD 联系 EC 并延长与 BD交于点 F.请找出线段 BD 和 EC 的地址关系,并说明原由;(3)请你:①画出一个吻合放置规则且不同样于图1 和图 2 所放地址的几何图形;②写出你所画几何图形中线段BD 和 EC 的地址和数量关系;③上面第②题中的结论在依照规则放置所抽象出的几何图形中都存在吗?。
上海市七年级下学期期末考试数学试题
【点睛】
本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
15.m>−1
【解析】
【分析】
两方程相加可得x+y=m+1,根据题意得出关于m的不等式,解之可得.
9.C
【解析】
【分析】
先依据绝对值的性质求得x、y的值,再代入计算即可.
【详解】
解:∵|x|=6,|y|=7,
∴x=±6,y=±7.
又∵xy>0,
∴x=6,y=7或x=-6,y=-7.
当x=6,y=7时,x-y=6-7=-1.
当x=-6,y=-7时,x-y=-6-(-7)=1.
故选:C.
【点睛】
本题主要考查的是绝对值的性质、有理数的乘法和有理数的减法运算,分类讨论是解题的关键.
(2)点A1的坐标是,△ABA1的面积是.
23.如图所示,AD、AE分别是△ABC的高和角平分线,∠B=20°,∠C=80°,
求∠EAD的度数.
24.2021年12月5日,镇海区爆发新冠疫情,广大居民捐资捐物,经过全区人民的共同努力,镇海区用两周的时间解除了疫情.某商店也将商品两周的盈利捐出用于购买抗疫物资.经市场调查发现,该商品的周销售量y(件)关于售价x(元/件)的一次函数为y=﹣2x+200,当售价为40元时,周销售利润为2400元.
解:∵∠AOC与∠BOD是对顶角,
∴∠AOC=∠BOD=41°,
∵射线OM平分∠BOD,
∴∠BOM=∠DOM=20°30′,
∴∠COM=180° ∠DOM=180° 20°30′=159°30′.
上海侨光中学七年级数学下册期末试卷选择题汇编精选培优复习考试试题
一、选择题1.如图,点A 表示的数可能是( )A 21B 6C 11D 17答案:C解析:C【分析】先确定点A 表示的数在3、4之间,再根据夹逼法逐项判断即得答案.【详解】解:点A 表示的数在3、4之间,A 、因为122<,所以2213<<,故本选项不符合题意;B 469263<<,故本选项不符合题意;C 91116,所以3114<,故本选项符合题意;D 161725,所以4175<<,故本选项不符合题意;故选:C .【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键.2.已知关于x ,y 的方程组343x y a x y a +=-⎧⎨-=⎩,其中31a -≤≤,下列结论: ①当2a =-时,x ,y 的值互为相反数;②51x y =⎧⎨=-⎩是方程组的解;③当1a =-时,方程组的解也是方程1x y +=的解;④若14y ≤≤,则30a -≤≤.其中正确的是( ) A .①② B .②③ C .②③④ D .①③④ 答案:D解析:D【分析】将原方程求解,用a 表示x 和y ,然后根据a 的取值范围,求出x 和y 的取值范围,然后逐一判断每一项即可.【详解】由343x y a x y a +=-⎧⎨-=⎩,解得121x a y a =+⎧⎨=-⎩∵31a -≤≤∴53x -≤≤,04y ≤≤①当2a =-时,解得33x y =-⎧⎨=⎩,故①正确; ②51x y =⎧⎨=-⎩不是方程组的解,故②错误; ③当1a =-时,解得12x y =-⎧⎨=⎩,此时1x y +=,故③正确; ④若14y ≤≤,即114a ≤-≤,解得30a -≤≤,故④正确;故选D .【点睛】本题考查了二元一次方程组,解一元一次不等式,熟练掌握二元一次方程组的解法和不等式的解法是本题的关键.3.如图,在平面直角坐标系上有点A(1.O),点A 第一次跳动至点A 1(-1,1).第四次向右跳动5个单位至点A 4(3,2),…,依此规律跳动下去,点A 第100次跳动至点A 100的坐标是( )A .(50,49)B .(51, 49)C .(50, 50)D .(51, 50) 答案:D解析:D【解析】分析:根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.详解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n +1,n ),∴第100次跳动至点的坐标是(51,50).故答案选:D.点睛:坐标与图形性质, 规律型:图形的变化类.4.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒答案:D解析:D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF =180°,再根据两直线平行,内错角相等可得∠3=∠AOC ,而通过∠AOF =∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB ∥EF ,∴∠1+∠AOF =180°,∵CD ∥AB ,∴∠3=∠AOC ,又∵∠AOF =∠AOC −∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D .【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键. 5.如图,在平面直角坐标系上有个点P (1,0),点P 第一次向上跳运1个单位至P 1(1,1),紧接着第二次向左跳动2个单位至点P 2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是( )A .(-24,49)B .(-25,50)C .(26,50)D .(26,51) 答案:C解析:C【详解】经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100÷2=50;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,依此类推可得到:n P 的横坐标为n÷4+1(n 是4的倍数). 故点100P 的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P 第100次跳动至点100P 的坐标是(26,50).故答案为(26,50).6.如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2) 答案:C解析:C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P 的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P 的坐标是(2021,1).故选:C .【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律. 7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则运动到第2021秒时,点P 所处位置的坐标是( )A .(2020,﹣1)B .(2021,0)C .(2021,1)D .(2022,0) 答案:C解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P 的坐标.【详解】半径为1个单位长度的半圆的周长为:1212ππ⨯⨯=, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 1秒走12个半圆, 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0),…,可得移动4次图象完成一个循环,∵2021÷4=505…1,∴点P 运动到2021秒时的坐标是(2021,1),故选:C .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.8.已知{}min ,,a b c 表示取三个数中最小的那个数.例如:当2x =-时,()(){}23min 2,2,28---=-,当{}21min ,,16x x x =时,则x 的值为( )A .116B .18C .14D .12 答案:C解析:C【分析】本题分别计算2111161616x x x ===,,的x 值,找到满足条件的x 值即可. 【详解】解:当116x =时,1256x =,x x <,不合题意; 当2116x =时,14x =±,当14x =-时,2x x <,不合题意; 当14x =时,12x =,2x x x <<,符合题意; 当116x =时,21256x =,2x x <,不合题意, 故选:C .【点睛】本题主要考查了实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用.9.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是( )A .pB .qC .mD .n答案:C解析:C【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.【详解】解:∵0p q m n +++=结合数轴可得:()-=p q m n ++,即原点在q 和m 之间,且离m 点最近,∴绝对值最小的数是m ,故选:C .【点睛】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 10.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个答案:D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D .【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提. 11.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有( )A .0个B .1个C .2个D .3个答案:C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C .【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点. 12.如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(–1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,–2),……,按这样的运动规律,动点P第2018次运动到点A.(2018,0)B.(2017,0)C.(2018,1)D.(2017,–2)答案:B解析:B【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2018除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解: ∵2018÷4=504余2,∴第2014次运动为第505循环组的第2次运动,横坐标为504×4+2-1=2017,纵坐标为0,∴点的坐标为(2017,0).故选B.【点睛】本题是对点的坐标变化规律的考查,观察出每4次运动为一个循环组循环是解题的关键,也是本题的难点.13.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+p=0,则m,n,p,q四个有理数中,绝对值最大的一个是()A.p B.q C.m D.n答案:B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.14.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y -1,-x -1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,,这样依次得到各点.若A 2020的坐标为(-3,2),设A 1(x ,y ),则x +y 的值是( )A .-5B .-1C .3D .5答案:C解析:C【分析】列出部分An 点的坐标,根据坐标的变化寻找规律,规律和A 2020的坐标结合起来,即可得出答案.【详解】解:∵设A 1(x ,y ),∴A2(y-1,-x-1),∴A3(-x-1-1,-y+1-1),即A3(-x-2,-y ),∴A4(-y-1,x+2-1),即A4(-y-1,x+1),∴A5(x+1-1,y+1-1),即A5(x ,y )与A1相同,可以观察到友好点是4个一组循环的,∵2020÷4=505,∴A 2020(-3,2)与A4是相同的,1312y x --=-⎧∴⎨+=⎩, 解得12x y =⎧⎨=⎩, ∴x+y=1+2=3;故答案为:C .【点睛】本题考查了规律型中点的坐标变化,解题的关键是找出变化的规律,规律找到之后即可解答本题.15.设n 为正整数,且n n+1,则n 的值为( )A .5B .6C .7D .8答案:D解析:D【分析】n 的值.【详解】解:∵∴8<65<9,∵n <65<n+1,∴n=8,故选;D .【点睛】此题主要考查了估算无理数,得出64<65<81是解题关键.16.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若//CD BE ,若1∠=α,则2∠的度数是( )A .3αB .1803α︒-C .4αD .1804︒-α 答案:D解析:D【分析】由折叠的性质可知∠1=∠BAG ,2∠BDC +∠2=180°,根据BE ∥AG ,得到∠CFB =∠CAG =2∠1,从而根据平行线的性质得到∠CDB =2∠1,则∠2=180°-4∠1.【详解】解:由题意得:AG ∥BE ∥CD ,CF ∥BD ,∴∠CFB =∠CAG ,∠CFB +∠DBF =180°,∠DBF +∠CDB =180°∴∠CFB =∠CDB∴∠CAG =∠CDB由折叠的性质得∠1=∠BAG ,2∠BDC +∠2=180°∴∠CAG =∠CDB =∠1+∠BAG =2α∴∠2=180°-2∠BDC =180°-4α故选D.【点睛】本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.17.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒答案:B解析:B【分析】过点P 作MN ∥AB ,结合垂直的定义和平行线的性质求∠EPF 的度数.【详解】解:如图,过点P 作MN ∥AB ,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB ∥CD,PF ⊥CD 于F ,∴PF ⊥MN ,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键. 18.如图,已知AB ∥CD, EF ∥CD ,则下列结论中一定正确的是( )A .∠BCD= ∠DCE;B .∠ABC+∠BCE+∠CEF=360︒;C .∠BCE+∠DCE=∠ABC+∠BCD;D .∠ABC+∠BCE -∠CEF=180︒.答案:D解析:D【解析】分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断.详解:延长DC 到H∵AB ∥CD ,EF ∥CD∴∠ABC+∠BCH=180°∠ABC=∠BCD∠CE+∠DCE=180°∠ECH=∠FEC∴∠ABC+∠BCE+∠CEF=180°+∠FEC∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°.故选D.点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等.19.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个答案:D解析:D【解析】根据平行线的判定,由题意知:①∵68∠=∠,48∠=∠,∴46∠=∠,∴a b ∥,故①对.②∵13∠=∠,17∠=∠,∴37∠=∠,∴a b ∥,故②对.③∵26∠=∠,∴a b ∥,故③对.④∵47180∠+∠=︒,34180∠+∠=︒,∴37∠=∠,∴a b ∥,故④对.故选D.点睛:此题主要考查了平行线的判定,关键是利用图形中的条件和已知的条件,构造两直线平行的条件.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.20.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10°答案:C解析:C【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数.【详解】解:90F ∠=︒,45D ∠=︒,45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒,30BAC ∴∠=︒,//AB DC ,45BAE DEF ∴∠=∠=︒,453015CAE BAE BAC ∴∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质.21.如下图,在“A ”字型图中,AB 、AC 被DE 所截,则A ∠与4∠是( )A .同位角B .内错角C .同旁内角D .邻补角 答案:A解析:A【分析】根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“A ”字型图中,两条直线AB 、AC 被DE 所截形成的角中,∠A 与∠4都在直线AB 、DE 的同侧,并且在第三条直线(截线)AC 的同旁,则∠A 与∠4是同位角. 故选:A .【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.22.下列命题是真命题的有( )(1)相等的角是对顶角;(2)两条直线被第三条直线所截,同位角相等;(3)在同一平面内,过两点有且只有一条直线与已知直线垂直;(4)经过直线外一点,有且只有一条直线与已知直线平行;(5)一个角的余角一定大于这个角.A .0个B .1个C .2个D .3个答案:B解析:B【分析】根据对顶角与同位角的定义、垂线的性质、平行公理、余角的定义逐个判断即可得.【详解】解:(1)相等的角不一定是对顶角,则原命题是假命题;(2)两条平行线被第三条直线所截,同位角相等,则原命题是假命题;(3)在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题; (4)经过直线外一点,有且只有一条直线与已知直线平行,则原命题是真命题;(5)一个角的余角不一定大于这个角,如70︒角的余角等于20︒,则原命题是假命题; 综上,是真命题的有1个,故选:B .【点睛】本题考查了对顶角与同位角的定义、垂线的性质、平行公理、余角,熟练掌握各定理与性质是解题关键.23.如图,C 为AOB ∠的边OA 上一点,过点C 作//CD OB 交AOB ∠的平分线OE 于点F ,作CH OB ⊥交BO 的延长线于点H ,若EFD α∠=,现有以下结论:①COF α∠=;②1802AOH α∠=︒-;③CH CD ⊥;④290OCH α∠=-︒.结论正确的个数是( )A .1个B .2个C .3个D .4个答案:D解析:D【分析】根据平行线的性质可得EOB EFD α∠=∠=,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.【详解】解://CD OB ,EFD α∠=,EOB EFD α∴∠=∠=, OE 平分AOB ∠,COF EOB α∴∠=∠=,故①正确;2AOB α∠=,180AOB AOH ∠+∠=︒,1802AOH α∴∠=︒-,故②正确;//CD OB ,CH OB ⊥,CH CD ∴⊥,故③正确;90HCO HOC ∴∠+∠=︒,180AOB HOC ∠+∠=︒,290OCH α∴∠=-︒,故④正确.正确为①②③④,故选:D .【点睛】本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.24.如图,直线//EF MN ,点A ,B 分别是EF ,MN 上的动点,点G 在MN 上,ACB m ∠=︒,AGB ∠和CBN ∠的角平分线交于点D ,若52D ∠=︒,则m 的值为( ).A .70B .74C .76D .80答案:C【分析】先由平行线的性质得到∠ACB =∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m 即可.【详解】解:过C 作CH ∥MN ,∴∠6=∠5,∠7=∠1+∠2,∵∠ACB =∠6+∠7,∴∠ACB =∠5+∠1+∠2,∵∠D =52°,∴∠1+∠5+∠3=180°−52°=128°,由题意可得GD 为∠AGB 的角平分线,BD 为∠CBN 的角平分线,∴∠1=∠2,∠3=∠4,∴m °=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D =∠1+52°,∴∠3=∠4=∠1+52°,∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m °+52°,∴m °+52°=128°,∴m °=76°.故选:C .【点睛】本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用. 25.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒答案:B解析:B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 26.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个答案:B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数. 27.已知点()3,2A m m --在第三象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D .解析:B【分析】根据点A 所在的象限得到m 的不等式组,然后解不等式组求得m 的取值范围即可解答.【详解】解:已知点()3,2A m m --在第三象限,3m -<0且2m -<0,解得m <3,m >2,所以2<m <3,故选:B .【点睛】本题考查了点的坐标特征,在数轴上表示不等式的解集,熟练掌握相关知识是解题的关键.28.如图,已知正方形ABCD ,定点A (1,3),B (1,1),C (3,1),规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 017次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(-2015,2)B .(-2015,-2)C .(-2016,-2)D .(-2016,2) 答案:B解析:B【解析】由正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2),继而求得把正方形ABCD 连续经过2017次这样的变换得到正方形ABCD 的对角线交点M 的坐标. 解答:∵正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).∴对角线交点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2−1,−2),即(1,−2),第2次变换后的点M 的对应点的坐标为:(2−2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2−3,−2),即(−1,−2),第n 次变换后的点M 的对应点的为:当n 为奇数时为(2−n ,−2),当n 为偶数时为(2−n ,2), ∴连续经过2017次变换后,正方形ABCD 的对角线交点M 的坐标变为(−2015,−2). 故选:B.点睛:本题是一道找规律问题.解题本题的关键在于要通过操作、观察得出操作次数与点的坐标之间的内在联系,并归纳得出符合规律的字母公式.29.小敏和小捷两人玩“打弹珠”游戏,小敏对小捷说:“把你珠子的一半给我,我就有 30颗珠子”.小捷却说:“只要把你的12给我,我就有 30 颗”,如果设小捷的弹珠数为 x 颗,小敏的弹珠数为 y 颗,则列出的方程组正确的是( )A .230260x y x y +=⎧⎨+=⎩B .230230x y x y +=⎧⎨+=⎩C .260230x y x y +=⎧⎨+=⎩D .260260x y x y +=⎧⎨+=⎩ 答案:D解析:D【解析】【分析】根据题中的等量关系:①把小捷的珠子的一半给小敏,小敏就有30颗珠子;②把小敏的12给小捷,小捷就有30颗.列出二元一次方程组即可. 【详解】解:根据把小捷的珠子的一半给小敏,小敏就有30颗珠子,可表示为y+2x =30,化简得2y+x=60;根据把小敏的12给小捷,小捷就有30颗.可表示为x+y 2=30,化简得2x+y=60. 故方程组为:260260x y x y +=⎧⎨+=⎩故选:D.【点睛】本题首先要能够根据题意中的等量关系直接表示出方程,再结合答案中的系数都是整数,运用等式的性质进行整理化简.30.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( )A .40B .41C .45D .46答案:B解析:B【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可.【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩ 解得:3725a b =-⎧⎨=⎩ ∴59*=3752591-⨯+⨯+=41故选B .【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.31.关于x 、y 的方程组731x y a x y a +=+⎧⎨-=+⎩的解恰好是第二象限内一个点的坐标(,)x y ,则a 的取值范围是( )A .3a <B .2a <-C .23a -<<D .32a -≤≤ 答案:B解析:B【分析】先解不等式组求出x 、y ,然后根据第二象限内点坐标的特点列式求解即可.【详解】解:解不等式组731x y a x y a +=+⎧⎨-=+⎩,得243x a y a =+⎧⎨=-+⎩ ∵点(,)x y 在第二象限∴24030a a +⎧⎨-+⎩<>,解得:2a <-. 故选B .【点睛】本题主要考查了解二元一次方程组和解不等式组,根据点的特点列出不等式是解答本题的关键.32.把不等式组21123x x +>-⎧⎨+≤⎩的解集表示在数轴上,正确的是( ) A . B .C .D .答案:B解析:B【分析】先分别求出每一个不等式的解集,再求出它们的公共部分即可.【详解】解: 21123x x +>-⎧⎨+≤⎩①②,∵解不等式①得:x >−1,解不等式②得:x≤1,∴不等式组的解集是−1<x≤1, 在数轴上表示为:故选:B .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键. 33.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x yb x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩ B .71x y =⎧⎨=-⎩ C . 3.50.5x y =⎧⎨=-⎩ D . 3.50.5x y =⎧⎨=⎩答案:C解析:C【详解】分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得.详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩. 故选C .点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x 、y 的方程组.34.喜迎建党100周年,某校举行党史知识竞赛,共30道题,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于80分得奖,那么得奖至少应选对的题数是( )A .23B .24C .25D .26答案:B解析:B【分析】设选对x 道题,则不选或选错(30﹣x )道题,根据得分=4×选对题目数-2×不选或选错题目数结合得分不低于80分,即可得出关于x 的一次不等式,解之取得最小值即可得出结论.【详解】解:设选对x 道题,则不选或选错(30﹣x )道题,依题意,得:4x﹣2(30﹣x)≥80,解得:x≥703.∵x为正整数,∴要得奖至少应选对24道题,故选:B.【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确的列出一元一次不等式是解题的关键.35.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则m+3n的值为()A.7 B.9 C.14 D.18答案:B解析:B【分析】将21xy=⎧⎨=⎩代入方程组81mx nynx my+=⎧⎨-=⎩,得到方程组2821m nn m+=⎧⎨-=⎩,再将此方程组中的两个方程相加即可求解.【详解】解:由题意,将21xy=⎧⎨=⎩代入方程组81mx nynx my+=⎧⎨-=⎩,得2821m nn m+=⎧⎨-=⎩①②,①+②得,39n m+=,故选:B.【点睛】本题考查二元一次方程组的解,理解二元一次方程组的解与二元一次方程组的关系是解题的关键.36.如图,按下面的程序进行运算,规定程序运行到“判断结果是否大于30”为一次运算.若某运算进行了3次才停止,则x的取值范围是()A.393342x<≤B.513984x≤≤C.393342x≤<D.513984x<≤答案:D 解析:D【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围.【详解】解:根据题意可知:()()22333022233330x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩ , 解得:513984x <≤. 故选:D .【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.37.若关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩的解为正数,则满足条件的所有整数a 的和为( )A .14B .15C .16D .17答案:B解析:B【分析】先将二元一次方程组128x y a x y +=+⎧⎨+=⎩的解用a 表示出来,然后再根据题意列出不等式组求出 的取值范围,进而求出所有a 的整数值,最后求和即可.【详解】解:解关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩,得267x a y a=-⎧⎨=-⎩, ∵关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩的解为正数, ∴26070a a ->⎧⎨->⎩, ∴3<a <7,∴满足条件的所有整数a 的和为4+5+6=15.故选:B .【点睛】本题考查了二元一次方程组的解法、一元一次不等式组等知识点,根据题意求得a 的取值范围是解答本题关键.38.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .6答案:B解析:B【分析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩ ,再根据其解集是x≤a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可.【详解】解:由不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩,解得:5x a x ⎧⎨<⎩ ∵解集是x≤a ,∴a<5;由关于的分式方程24111y a y y y---=-- 得得2y-a+y-4=y-1 32a y +∴= 又∵非负整数解,∴a≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选B.【点睛】本题综合考查了含参一元一次不等式,含参分式方程的问题,需要考虑的因素较多,属于易错题.39.如图,在数轴上,已知点A ,B 分别表示数1,23x -+,那么数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边D .数轴的任意位置 答案:B解析:B【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;根据不等式的性质,可得点在A 点的右边,根据作差法,可得点在B 点的左边.【详解】解:由数轴上的点表示的数右边的总比左边的大,得:-2x +3>1,解得x <1;-x >-1.-x +2>-1+2,解得-x +2>1.所以数轴上表示数-x +2的点在A 点的右边;作差,得:-2x +3-(-x +2)=-x +1,由x <1,得:-x >-1,-x +1>0,-2x +3-(-x +2)>0,∴-2x +3>-x +2,所以数轴上表示数-x +2的点在B 点的左边,点A 的右边.故选B .【点睛】本题考查了一元一次不等式,解题的关键是利用数轴上的点表示的数右边的总比左边的大得出不等式.40.已知关于x 、y 的方程组343x y a x y a +=-⎧⎨-=⎩其中31a -≤≤,给出下列说法:①当1a =时,方程组的解也是方程2x y a +=-的解;②当2a =-时,x 、y 的值互为相反数;③若1x ≤,则14y ≤≤;④43x y =⎧⎨=-⎩是方程组的解,其中说法正确的是( ) A .①②③④ B .①②③ C .②④ D .②③答案:D解析:D【分析】①②④将a 的值或方程组的解代入方程组,通过求解进行判断,③解方程组,用含a 的代数式表示x ,y ,根据x 的取值范围求出a 的取值范围,进而可得y 的取值范围.【详解】①当1a =时,方程组为333x y x y +=⎧⎨-=⎩, 解得,30x y =⎧⎨=⎩, ∴321x y +=≠-,故错误;②当2a =-时,方程组为366x y x y +=⎧⎨-=-⎩, 解得,33x y =-⎧⎨=⎩,即x 、y 的值互为相反数,故正确; ③343x y a x y a +=-⎧⎨-=⎩,。
上海侨光中学七年级数学下册期末试卷选择题汇编精选模拟考试试题
一、选择题1.若1a >,则a ,a -,1a的大小关系正确的是( ) A .1a a a>->B .1a a a>-> C .1a a a>>- D .1a a a->>答案:C解析:C 【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a,再比较即可求得它们的关系. 【详解】 解:设a=2, 则|a|=2,-a=-2,112a =, ∵2>12>-2,∴|a|>1a>-a ;故选:C . 【点睛】此类问题运用取特殊值的方法做比较简单.2.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点()11,1P ,第二次运动到点()22,0P ,第三次运动到()33,2P -,…,按这样的运动规律,第2022次运动后,动点2022P 的坐标是( )A .()2022,1B .()2022,2C .()2022,2-D .()2022,0答案:D解析:D 【分析】观察图象,结合动点P 第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,分别得出点P运动的纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P的纵坐标是0,故选:D.【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键.3.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.15答案:C解析:C【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=()12n n+.当100≤S n,即100≤()12n n+,解得:122012n +≤﹣(舍去),或22012n ≥﹣1.∵2201142﹣113<<, 故选:C . 【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12n n n S +=”.4.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒答案:C解析:C 【分析】首先证明a ∥b ,推出∠4=∠5,求出∠5即可. 【详解】 解:∵∠1=∠2, ∴a ∥b , ∴∠4=∠5,∵∠5=180°﹣∠3=55°, ∴∠4=55°,故选:C . 【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 5.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(00),运动到(0)1,,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A.(0,9)B.(9,0)C.(0,8)D.(8,0)答案:C解析:C【解析】【分析】由题目可以知道,质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n,n),用n2+n秒,这样可以先确定,第80秒钟时所在的点所在正方形,然后就可以进一步推得点的坐标.【详解】质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n,n),用n2+n秒,∵当n=8时,n2+n=82+8=72,∴当质点运动到第72秒时到达(8,8),∴质点接下来向左运动,运动时间为80-72=8秒,∴此时质点的横坐标为8-8=0,∴此时质点的坐标为(0,8),∴第80秒后质点所在位置的坐标是(0,8),故选C.【点睛】本题考查了规律题——点的坐标,解决本题的关键是读懂题意,并总结出一定的规律,难度较大.6.如图,已知正方形ABCD,定点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 017次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2015,2)B.(-2015,-2)C.(-2016,-2)D.(-2016,2)答案:B解析:B【解析】由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2),继而求得把正方形ABCD 连续经过2017次这样的变换得到正方形ABCD 的对角线交点M 的坐标. 解答:∵正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1). ∴对角线交点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2−1,−2),即(1,−2), 第2次变换后的点M 的对应点的坐标为:(2−2,2),即(0,2), 第3次变换后的点M 的对应点的坐标为(2−3,−2),即(−1,−2),第n 次变换后的点M 的对应点的为:当n 为奇数时为(2−n ,−2),当n 为偶数时为(2−n ,2), ∴连续经过2017次变换后,正方形ABCD 的对角线交点M 的坐标变为(−2015,−2). 故选:B.点睛:本题是一道找规律问题.解题本题的关键在于要通过操作、观察得出操作次数与点的坐标之间的内在联系,并归纳得出符合规律的字母公式.7.如图,在平面直角坐标系上有个点P (1,0),点P 第一次向上跳运1个单位至P 1(1,1),紧接着第二次向左跳动2个单位至点P 2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是( )A .(-24,49)B .(-25,50)C .(26,50)D .(26,51)答案:C解析:C 【详解】经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100÷2=50;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,依此类推可得到:n P 的横坐标为n÷4+1(n 是4的倍数). 故点100P 的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P 第100次跳动至点100P 的坐标是(26,50). 故答案为(26,50).8.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .M ND .M N ≥解析:B 【分析】 设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=, ∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•;()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()M N pq p x pq q x -=+•-+• =2019()x p q •- =201910x x •>; ∴M N >; 故选:B. 【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.9.设记号*表示求a 、b 算术平均数的运算,即*2a ba b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+; ③*()(*)(*)a b c a b a c +=+;④()()**22aa b c b c +=+. A .①②③B .①②④C .①③④D .②④答案:B解析:B 【详解】 ①中(*)2b c a b c a ++=+,()*()22a b a c b ca b a c a ++++++==+,所以①成立;②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b ca b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选B.10.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12B .24C .27D .30解析:C 【分析】根据新定义的公式代入计算即可. 【详解】∵()*23m n m n =+⨯-, ∴()6*3-=()623(3)27+⨯--=, 故选C . 【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.11.如示意图,小宇利用两个面积为1 dm 2的正方形拼成了一个面积为2 dm 2的大正方形,并通过测量大正方形的边长感受了2dm 的大小. 为了感知更多无理数的大小,小宇利用类似拼正方形的方法进行了很多尝试,下列做法不能实现的是( )A .利用两个边长为2dm 8的大小B .利用四个直角边为3dm 18的大小C 2的正方形以及一个直角边为2dm 6dm 的大小D .利用四个直角边分别为1 dm 和3 dm 的直角三角形以及一个边长为2 dm 的正方形感知10的大小答案:C解析:C 【分析】在拼图的过程中,拼前,拼后的面积相等,所以我们只需要分别计算拼前,拼后的面积,看是否相等,就可以逐一排除. 【详解】A :222=8⨯,2(8)=8,不符合题意;B :4×(3×3÷2)=18,2(18)=18,不符合题意;C :2(2)2224+⨯÷=,2(6)6=,符合题意;D :24(132)210⨯⨯÷+=,2(10)10=,不符合题意. 故选:C . 【点睛】本题考查了利用二次根式计算面积,解题的关键是在拼图的过程中,拼前,拼后的面积相等.12.如图,直线m//n ,点A 在直线m 上,BC 在直线n 上,构成ABC ,把ABC 向右平移BC 长度的一半得到A B C '''(如图①),再把A B C '''向右平移BC 长度的一半得到A B C ''''''△(如图②),再继续上述的平移得到图③,…,通过观察可知图①中有4个三角形,图②中有8个三角形,则第2020个图形中三角形的个数是( )A .4040B .6060C .6061D .8080答案:D解析:D 【分析】探究规律,利用规律解决问题即可. 【详解】解:观察图可得,第1个图形中大三角形有2个,小三角形有2个, 第2个图形中大三角形有4个,小三角形有4个, 第3个图形中大三角形有6个,小三角形有6个,… 依次可得第n 个图形中大三角形有2n 个,小三角形有2n 个. 故第2019个图形中三角形的个数是:2×2020+2×2020=8080. 故选:D . 【点睛】本题考查规律型问题,平行线的性质,平移变换等知识,解题的关键是学会探究规律的方法,属于中考常考题型.13.数轴上A ,B ,C ,D 四点中,两点之间的距离最接近于6的是( )A .点C 和点DB .点B 和点CC .点A 和点CD .点A 和点B答案:A解析:A 【分析】6的范围,结合数轴可得答案. 【详解】 解:∵4<6<9, ∴26<3,∴6的是点C 和点D . 故选:A . 【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么A2018的坐标为()A.(2018,0) B.(1008,1) C.(1009,1) D.(1009,0)答案:C解析:C【分析】先确定A2、A6、A10、414、…的坐标,然后归纳点的坐标的变化规律“A4n+2(1+2n,1)(n 为自然数)”,按此规律解答即可.【详解】解:由题意得:A2(1,1),A6(3,1),A10(5,1),A14 (7,1),…∴A4n+2(1+2n,1)(n为自然数).∵2018=504×4+2,∴n=504.∵1+2×504=1009,∴A2018(1009,1).故选C.【点睛】本题考查了点坐标的规律,根据点的变化特点、归纳出“A4n+1(2n,1)(n为自然数)”的规律是解答本题的关键.15.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是()A.-130 B.-131 C.-132 D.-133答案:C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;第三行:239=;第四行:2416=;……第n行:2n;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C.【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.16.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③答案:C解析:C【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.17.如图a 是长方形纸带,∠DEF=26°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .102°B .108°C .124°D .128°答案:A解析:A【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE ,∠CFE=∠CFG-∠EFG 即可.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BFE=∠DEF=26°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,故选A .【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.18.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个答案:D解析:D【解析】根据平行线的判定,由题意知:①∵68∠=∠,48∠=∠,∴46∠=∠,∴a b ∥,故①对.②∵13∠=∠,17∠=∠,∴37∠=∠,∴a b ∥,故②对.③∵26∠=∠,∴a b ∥,故③对.④∵47180∠+∠=︒,34180∠+∠=︒,∴37∠=∠,∴a b ∥,故④对.故选D.点睛:此题主要考查了平行线的判定,关键是利用图形中的条件和已知的条件,构造两直线平行的条件.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.19.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂直为点O ,∠BOD =50°,则∠COE =( )A .30°B .140°C .50°D .60°答案:B解析:B【详解】试题解析:EO ⊥AB ,90,AOE ∴∠=50,AOC BOD ∠=∠=5090140.COE AOC AOE ∴∠=∠+∠=+=故选B.20.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160° 答案:D解析:D【详解】试题分析:如图,∵∠A=20°,∠A 的两边分别和∠B 的两边平行,∴∠B 和∠A 可能相等也可能互补,即∠B 的度数是20°或160°,故选D.21.如图,////OP QR ST 下列各式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠=答案:D解析:D【详解】试题分析:延长TS ,∵OP ∥QR ∥ST ,∴∠2=∠4,∵∠3与∠ESR 互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR 的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D .考点:平行线的性质.22.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒答案:B解析:B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 23.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70°答案:A解析:A【分析】根据平行线的性质得出∠2=∠D ,进而利用邻补角得出答案即可.【详解】解:如图,∵AB ∥CD ,∴∠2=∠D ,∵∠1=140°,∴∠D =∠2=180°−∠1=180°−140°=40°,故选:A .【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.24.如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )A .①②③B .①②④C .②③④D .①②③④ 答案:B解析:B【分析】 根据角平分线的性质可得12ACB ACD ∠=∠,12ACF ACG ∠=∠,,再利用平角定义可得∠BCF =90°,进而可得①正确;首先计算出∠ACB 的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE 的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.【详解】解:如图,∵BC 平分∠ACD ,CF 平分∠ACG ,∴1122ACB ACD ACF ACG ∠=∠∠=∠,, ∵∠ACG +∠ACD =180°,∴∠ACF +∠ACB =90°,∴CB ⊥CF ,故①正确,∵CD ∥AB ,∠BAC =50°,∴∠ACG =50°,∴∠ACF =∠4=25°,∴∠ACB =90°-25°=65°,∴∠BCD =65°,∵CD ∥AB ,∴∠2=∠BCD =65°,∵∠1=∠2,∴∠1=65°,故②正确;∵∠BCD =65°,∴∠ACB =65°,∵∠1=∠2=65°,∴∠3=50°,∴∠ACE =15°,∴③∠ACE =2∠4错误;∵∠4=25°,∠3=50°,∴∠3=2∠4,故④正确,故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.25.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个答案:D解析:D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB //CD ,∴∠1=∠2,∵AC 平分∠BAD ,∴∠2=∠3,∴∠1=∠3,∵∠B =∠CDA ,∴∠1=∠4,∴∠3=∠4,∴BC //AD ,∴①正确;∴CA 平分∠BCD ,∴②正确;∵∠B =2∠CED ,∴∠CDA =2∠CED ,∵∠CDA =∠DCE +∠CED ,∴∠ECD =∠CED ,∴④正确;∵BC //AD ,∴∠BCE +∠AEC = 180°,∴∠1+∠4+∠DCE +∠CED = 180°,∴∠1+∠DCE = 90°,∴∠ACE = 90°,∴AC ⊥EC ,∴③正确故其中正确的有①②③④,4个,故选:D .【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.26.已知T 132,T 276,T 31312,⋯,T n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022 B .202120222022 C .120212021 D .120222021答案:A解析:A【分析】根据数字间的规律探索列式计算【详解】解:由题意可得:T 1312+1=212⨯⨯,T 2723+1=623⨯⨯,T 31334+1=1234⨯⨯∴T ()()1+11n n n n ++ ∴T 2021=20212022+120212022⨯⨯∴S 2021=T 1+T 2+T 3+⋯+T 2021 =371320212022+1+++ (261220212022)⨯+⨯ =11111++1++1++...1+261220212022+⨯ =11112021++++...+261220212022⨯ =11112021++++...+12233420212022⨯⨯⨯⨯ =11111112021+1++...+2233420212022⎛⎫-+--- ⎪⎝⎭ =12021+12022⎛⎫- ⎪⎝⎭=202120212022故选:A .【点睛】本题考查实数数字类的规律探索,探索规律,准确计算是解题关键.27.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( )A .40B .41C .45D .46答案:B解析:B【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可.【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩ ∴59*=3752591-⨯+⨯+=41故选B .【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.28.不等式组26,x x x m-+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =答案:A解析:A【分析】先求出不等式的解集,再根据不等式组的解集得出答案即可.【详解】26x x x m -+<-⎧⎨>⎩①② 解不等式①,得:x 4>∵不等式组 26x x x m-+<-⎧⎨>⎩ 的解集是x 4> ∴m 4≤故选择:A.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.29.若关于x 的不等式132(2)x a x x >-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( ) A .12a ≤≤ B .12a ≤< C .12a << D .2a < 答案:B解析:B【分析】首先解不等式组确定不等式组的解集,然后根据不等式组有四个整数解即可得到关于a 的不等式组,求得a 的值.【详解】解:()1322x a x x >-⎧⎪⎨+⎪⎩①②, 解①得:1x a >-,解②得:4x ,则不等式组的解集是:14a x -<.不等式组有四个整数解,则是1,2,3,4.则011a -<.解得:12a <.故选:B .【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.30.如图,在数轴上,已知点A ,B 分别表示数1,23x -+,那么数轴上表示数2x -+的点应落在( )A.点A的左边B.线段AB上C.点B的右边D.数轴的任意位置答案:B解析:B【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.【详解】解:由数轴上的点表示的数右边的总比左边的大,得:-2x+3>1,解得x<1;-x>-1.-x+2>-1+2,解得-x+2>1.所以数轴上表示数-x+2的点在A点的右边;作差,得:-2x+3-(-x+2)=-x+1,由x<1,得:-x>-1,-x+1>0,-2x+3-(-x+2)>0,∴-2x+3>-x+2,所以数轴上表示数-x+2的点在B点的左边,点A的右边.故选B.【点睛】本题考查了一元一次不等式,解题的关键是利用数轴上的点表示的数右边的总比左边的大得出不等式.31.如果关于x的不等式组3021x ax b-≥⎧⎨+<⎩的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(),a b共有()A.4个B.6个C.8个D.9个答案:B解析:B【分析】解不等式组,然后根据不等式组的整数解仅有1,2即可确定a,b的范围,即可确定a,b的整数解,即可求解.【详解】解:3021x ax b-⎧⎨+<⎩①②,解不等式①,得:3a x , 解不等式②,得:12bx -<, ∴不等式组的解集为132a b x -<, 不等式组的整数解仅有1、2,013a ∴<,1232b-<, 解得:03a <,53b -<-,∴整数a 有1;2;3,整数b 有4-;3-,整数a 、b 组成的有序数对(,)a b 有(1,4)-;(2,4)-;(3,4)-;(1,3)-;(2,3)-;(3,3)-,共6个, 故选:B . 【点睛】此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a ,b 的取值范围是解决问题的关键.32.若关于x 的不等式31x m 的正整数解是1,2,3,则整数m 的最大值是( ) A .10B .11C .12D .13答案:D解析:D 【分析】 先解不等式得到x <()113m -,再根据正整数解是1,2,3得到3<()113m -≤4时,然后从不等式的解集中找出适合条件的最大整数即可. 【详解】解不等式31x m 得x <()113m -, 关于x 的不等式31x m 的正整数解是1,2,3,∴ 3<()113m -≤4,解得10 < m ≤ 13, ∴整数m 的最大值为13.故选:D . 【点睛】本题考查了一元一次不等式的整数解,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的最大整数解.33.喜迎建党100周年,某校举行党史知识竞赛,共30道题,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于80分得奖,那么得奖至少应选对的题数是( )A .23B .24C .25D .26答案:B解析:B 【分析】设选对x 道题,则不选或选错(30﹣x )道题,根据得分=4×选对题目数-2×不选或选错题目数结合得分不低于80分,即可得出关于x 的一次不等式,解之取得最小值即可得出结论. 【详解】解:设选对x 道题,则不选或选错(30﹣x )道题, 依题意,得:4x ﹣2(30﹣x )≥80,解得:x ≥703. ∵x 为正整数,∴要得奖至少应选对24道题, 故选:B . 【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确的列出一元一次不等式是解题的关键.34.设[x )表示大于x 的最小整数,如[3)=4,[-1.2)=-1,下列结论:①[0)=0;②[x )-x 的最小值是0;③[x )-x 的最大值是1;④存在实数x ,使[x )-x =0.5成立,其中正确的是( ) A .①②B .③④C .①②③D .②③④答案:B解析:B 【分析】利用题中的新定义计算即可求出值. 【详解】解:由题意可知:∵[x )表示大于x 的最小整数, ∴设[x )=n ,则n -1≤x <n , ∴[x )-1≤x <[x ), ∴0<[x )-x ≤1, ∴①[0)1=,故①错误;②[)x x -可无限接近0,但取不到0,无最小值,故②错误; ③[)x x -的最大值是1,当x 为整数时,故③正确; ④存在实数x ,使[)0.5x x -=成立,比如x =1.5,故④正确, 故选:B . 【点睛】此题考查了解一元一次不等式,读懂新定义,并熟练掌握运算法则是解本题的关键. 35.已知关于x 的不等式(2)50a b x a b -+->的解集为107x <,则关于x 的不等式ax b a >-的解集为( ) A .3x <-B .5x >-C .25x <-D .25x >-答案:C解析:C 【分析】先根据题意得:35b a =且20a b -<,可得0a <,即可求解. 【详解】解:∵(2)50a b x a b -+->, ∴(2)5-+>-a b x b a ,∵关于x 的不等式(2)50a b x a b -+->的解集为107x <, ∴51027b a a b -=- ,且20a b -< ,∴3572010b a a b -=- ,解得:35b a = , ∵20a b -<, ∴3205a a -< , ∴0a < , ∵ax b a >-, ∴35ax a a >- ,即25ax a >- , ∴25x <- .故选:C . 【点睛】本题主要考查了一元一次不等式的解集的定义,解不等式,不等式的性质,熟练掌握一元一次不等式的解集的定义,解不等式的基本步骤是解题的关键.36.在平面直角坐标系中,对于点P(x,y),我们把点Q(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,A 2的伴随点为A 3……这样依次得到点A 1,A 2,A 3……A n ,若点A 1(2,2),则点A 2019的坐标为( ) A .(-2,0)B .(-1,3)C .(1,-1)D .(2,2)答案:A解析:A 【分析】根据伴随点的定义找出部分A n 的坐标,根据坐标的变化找出变化规律“A 4n +1(2,2),A 4n +2(﹣1,3),A 4n +3(﹣2,0),A 4n +4(1,﹣1)(n 为自然数)”.依此规律即可得出结论. 【详解】解:观察,发现规律:A1(2,2),A2(﹣1,3),A3(﹣2,0),A4(1,﹣1),A5(2,2),…,∴A4n+1(2,2),A4n+2(﹣1,3),A4n+3(﹣2,0),A4n+4(1,﹣1)(n 为自然数).∵2019=504×4+3,∴点A2016的坐标为(-2,0).故选A.【点睛】本题考查了规律型中点的坐标,解题的关键是根据坐标的变化找出变化规律“A4n+1(2,2),A4n+2(﹣1,3),A4n+3(﹣2,0),A4n+4(1,﹣1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标的变化找出变化规律是关键.37.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生()人.A.38 B.40 C.42 D.45答案:A解析:A【分析】根据题意,分别假设未知数,再根据对话内容列出方程组,即可求解答案.【详解】解:设得3分,4分,5分和6分的共有x人,它们平均得分为y分,分两种情况:(1)得分不足7分的平均得分为3分,xy+3×2+5×1=3(x+5+3),xy﹣3x=13①,(2)得3分及以上的人平均得分为4.5分,xy+3×7+4×8=4.5(x+3+4),4.5x﹣xy=21.5②,①+②得1.5x=34.5,解得x=2.3,故七(1)班共有学生23+5+3+3+4=38(人).故选:A.【点睛】考查了二元一次方程组的应用,解题的关键是了解题意,根据数量关系列出方程组,即可求出结果.38.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点A 1(-1,1),第二次点A 1向右跳到A 2(2,1),第三次点A 2跳到A 3(-2,2),第四次点A 3向右跳动至点A 4(3,2),…,依此规律跳动下去,则点A 2 019与点A 2 020之间的距离是( )A .2021B .2020C .2019D .2 018答案:A解析:A 【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点2017A 与点2018A 的坐标,进而可求出点2019A 与点2020A 之间的距离. 【详解】解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4),⋯第2n 次跳动至点的坐标是(1,)n n +, 则第2020次跳动至点的坐标是(1011,1010), 第2019次跳动至点2019A 的坐标是(1010,1010). 点2019A 与点2020A 的纵坐标相等,∴点2019A 与点2020A 之间的距离1011(1010)2021,故选:A . 【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.39.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值,x ,y 的值不可能是互为相反数; ③x ,y 都为自然数的解有4对. 正确的有几个( ) A .1B .2C .3D .4答案:C解析:C 【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a +1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解;③根据试值法求二元一次方程x +y =3的自然数解即可得结论. 【详解】解:①将a =1代入原方程组,得233x y x y +=⎧⎨-=⎩ 解得30x y =⎧⎨=⎩,将x =3,y =0,a =1代入方程x +y =2a +1的左右两边, 左边x +y =3,右边2a +1=3,当a =1时,方程组的解也是x +y =2a +1的解;故①正确;②解原方程组,得2122x a y a=+⎧⎨=-⎩,若x ,y 是互为相反数,则x +y =0, 即2a +1+2-2a =0,方程无解.无论a 取何值,x ,y 的值不可能是互为相反数;故②正确; ③∵x +y =2a +1+2-2a =3,∴x 、y 为自然数的解有03x y =⎧⎨=⎩,12x y =⎧⎨=⎩,21x y =⎧⎨=⎩,30x y =⎧⎨=⎩.∴x 、y 为自然数的解有4对,故③正确; 故选:C . 【点睛】本题考查了消元法解二元一次方程组,确定二元一次方程的自然数解,解题关键是用含字母的式子表示方程组的解.40.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个①当5a =时,方程组的解是1020x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a = ③不存在一个实数a 使得x y =; ④若23722a y -=,则2a =. A .1B .2C .3D .4答案:B解析:B 【分析】①把a =5代入方程组求出解,即可作出判断;②由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ③若x =y ,代入方程组,变形得关于a 的方程,即可作出判断; ④根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:①把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故①错误;②当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩,整理,得82(3)35(4)x a x a =⎧⎨=-⎩,由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故②正确;③若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∴不存在一个实数a 使得x =y ,故③正确;④352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∴原方程组的解为2515x ay a =-⎧⎨=-⎩,∵23722a y -=, ∴2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故④错误; ∴正确的选项有②③两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.41.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点()2,0A 同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A .()2,0B .()1,1-C .()2,1-D .()1,1--答案:D解析:D 【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 【详解】∵ 矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC 边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A 点相遇;…。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下海侨光中学七年级下册数学期末试卷-百度文库一、选择题1.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 2.以下列各组数据为边长,可以构成等腰三角形的是( ) A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm3.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--4.计算23x x 的结果是( )A .5xB .6xC .8xD .23x5.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .6.计算a •a 2的结果是( ) A .a B .a 2C .a 3D .a 4 7.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .8.下列运算中,正确的是( )A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 69.下列等式由左边到右边的变形中,因式分解正确的是( ) A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-10.比较255、344、433的大小( ) A .255<344<433 B .433<344<255C .255<433<344D .344<433<255 二、填空题11.已知5x m =,4y m =,则2x y m +=______________.12.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.13.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.14.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 15.已知一个多边形的每个外角都是24°,此多边形是_________边形.16.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .17.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.18.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.三、解答题21.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )22.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.23.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.24.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.25.已知△ABC中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.(1)如图1,连接CE ,①若CE ∥AB ,求∠BEC 的度数;②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.26.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.27.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”.(2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.28.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c的下侧,且∠1和∠2在直线a、b之内∴∠1和∠2是同旁内角的关系故选:C.【点睛】本题考查同旁内角的理解,紧抓定义来判断.2.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A、C、D不能构成三角形,错误B中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B.【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.3.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是22-+-=--.其他不是因式分解:A,C右边不是积的形式,B左边不是多项8x8x22(2x1)式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.4.A解析:A【分析】根据同底数幂相乘,底数不变,指数相加即可求解.【详解】解:∵23235x x x x +==,故选A .【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.5.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x >2+1,-3x >3,x <-1, 在数轴上表示为:,故选B .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键. 6.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a •a 2=a 1+2=a 3.故选:C .【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.7.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象. 8.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A、a8÷a2=a4不正确;B、(-m)2·(-m3)=-m5正确;C、x3+x3=x6合并得2x3,故本选项错误;D、(a3)3=a9,不正确.故选B.【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.9.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A、属于因式分解,故本选项正确;B、因式分解不彻底,故B选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、是整式的乘法,故D不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.10.C解析:C【分析】根据幂的乘方的知识,可得255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,再比较底数的大小,即可得结论.【详解】解:∵255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,又∵32<64<81,∴255<433<344.故选C.【点睛】本题考查了幂的乘方,解题的关键是根据幂的乘方的公式,转化为底数相同的幂.二、填空题11.100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把,代入进行计算即可.【详解】解:,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积解析:100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把5x m =,4y m =代入进行计算即可.【详解】解:2x y m +=()()2254100xy m m ⨯=⨯=,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积的乘方法则,先根据同底数幂的乘法法则把所求代数式进行化简是解答此题的关键. 12.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.14.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 15.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.16.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程. 17.4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,解析:4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x +75y =1500,解得:y =20−45x . ∵x ,y 均为正整数,∴x 是5的倍数,∴516x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,158x y =⎧⎨=⎩,204x y =⎧⎨=⎩ ∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.18.【分析】先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:,把①②式相加得到:,即: ,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】 解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】 本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;19.a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b=﹣4①,3a+2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a+2(2a+4)>1,解得:a>﹣1.故答案为:a>﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.20.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.三、解答题21.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.22.68︒【分析】根据已知首先求得∠BAD的度数,进而可以求得∠BAE,而∠CAE=∠BAE,在△ACD中利用内角和为180°,即可求得∠C.【详解】解:∵AD是△ABC的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE平分∠BAC,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.23.a2-a,2【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a的值代入化简后的式子计算即可.【详解】解:(a-1)(2a+1)+(1+a)(1-a)=2a2-a-1+1-a2= a2-a,当a=2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.24.(1)见解析;(2)平行且相等;(3)28【分析】''';(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】'''即为所求;解:(1)如图,ΔA B C(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.25.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.26.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.27.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.28.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。