第二章大气环境化学
大气环境化学

2、R和RO2等自由基的来源 R来源是乙醛和丙酮的光解: CH3- CHO + hγ→CH3 + HCO CH3- COCH3 + hγ→CH3 + CH3CO O和HO与烃类发生H摘除: R-H + O →R + HO R-H + HO →R + H2O RO2由烷基与空气中的O2结合而形成的: R + O2 → RO2
例如:大气中氯化氢的光化学反应过程: HCl + hγ → H + Cl ① H + HCl → H2 + Cl ② Cl + Cl → Cl2 (M) ③ ① 为初级过程 ②、③为次级过程
2、大气中重要光物质的光离解
大气中的光物质主要包括: O2、N2、O3、NO2、HNO2、HNO3、SO2、H2CO 和氯代烃。 (1)氧分子和氮分子的光离解:
⑤大气在以太阳为能源的庞大的蒸馏室中起冷凝器的作用, 形成降雨,从而把水从海洋输送到陆地,为陆地生物提 供了必要的生活条件。 ⑥大气还吸收来自外层空间的宇宙射线和来自太阳的大部 分电磁辐射,滤掉了被长小于290纳米的紫外辐射,使 地球上的生物兔受其伤害。
酸雨、温室效应、臭氧空洞是人们关注的主要环境问题。 一、大气层的结构 围绕地球的大气总质量约为5.5x105吨; 地球的总表面积约为5.1x1014平方米; 地球表面的压力,大致为1千克每平方厘米。 1、大气质量在铅直方向的分布: 大气质量在铅直方向的分布是极不均匀的。
环境化学把光化学反应分为: 初级过程和次级过程。 初级过程 : (相当于引发过程) 步骤为: A + hγ → A* 式中:A*—物种A的激发态; hγ—光量子。 次级过程:(传播和终止过程)
环境化学第二章

气在上升时温度降低值与上升高度的比。
Γd=0.98℃/100m≈1 ℃/100m
空气移动,高压区→低压,膨胀降温,压缩升温。 当气团在水平方向运动,非绝热过程。 当气团作垂直升降运动时,近似为绝热过程
第一节 大气中污染物的迁移
四、大气稳定度:指大气中某一高度上的气块在垂直方
第一节 大气中污染物的迁移
平流层(stratosphere) (12-48km) ①气温随高度增加而升高,Γ<0 ,层顶接近0℃, 20km-25km臭氧浓度最高; ②气体状态稳定,垂直对流很小,污染物成一薄层 ③空气稀薄,大气透明度高
民航:最高飞行10km左右 人造卫星:30-50km以上
第一节 大气中污染物的迁移 中间层(mesosphere )(48-78km) ①气温随高度增加而降低,气温可达-92℃; ②垂直运动剧烈; ③发生光化学反应。 热层(thermosphere)/电离层(80-800km) ①气温随高度增加而迅速升高,顶部可达1200℃ ②空气密度很小,气体电离。
第一节 大气中污染物的迁移
地理地势的影响
➢ 海风:白天陆地上空的气温增加得比海面上空快,在 海陆之间形成指向大陆的气压梯度,较冷的空气从海 洋流向大陆而形成海风。
➢ 陆风:夜间海水温度降低得较慢,海面的温度较陆地 高,在海陆之间形成指向海洋的气压梯度,于是陆地 上空的空气流向海洋,形成陆风。
冷
气
光物理过程
辐射跃迁: A* A h
通过辐射磷光或荧光失活
碰撞失活:A* M A M
为无辐射跃迁,即碰撞失活
光化学过程
光离解: A* B1 B2 生成新物质
与其它分子反应生成新物种:
第2章大气环境化学24

KH
KH
[ SO2 H 2 O] p SO2
[SO2· H2O]=KHpso2
2
[ H ][HSO3 ] [ HSO ] K s1[SO2 H 2 O] K H K s1 pSO 3 K s1 [H ] [H ] [SO2 H 2 O]
K s2 [ H ][SO3 ] [ HSO3 ]
K s1 K s1K s 2 ɑ2= [ SO2 H 2O] 1 [ H ] [ H ]2 [ S (V)]
1
看图20,得到什么结果?
可见,可溶态SO2、HSO3-和SO32-四价硫形态的浓度分数与pH有一 定的函数关系(图2-20)。
由图中可见,在高 pH 范围[S(Ⅳ)]以 SO3 2-为主,中间 pH以 HSO 3 为主,而低pH时以SO· H2O为主。实际上,由于[S(Ⅳ)]在不同化学反 应中存在着不同的形态,如液相反应中出现 HSO3-或SO32-时,那么其 反应速度将依赖于pH。
稳态时,并且已知k4<<k1或k2,得到: [O] 又因为: 可以解得: 所以
d [ SO2 ] k 4 [O][SO2 ] dt
[SO2 ]t ln [SO ] k 4 [O]t 2 0
[SO2 ]t [SO2 ]0 exp(k 4 [O]t )
项目
伦敦烟雾(硫酸型烟雾)
3、硫酸烟雾型污染
硫酸烟雾也称为伦敦烟雾,因为其最早发生在英国伦敦。
主要是由于燃煤排放的二氧化硫、颗粒物、以及由于二
氧化硫氧化生成的硫酸盐颗粒物所造成的大气污染现象。 这种污染一般发生在冬季、气温低、湿度高和日光弱的
天气条件下。 硫酸烟雾形成过程中,二氧化硫转化为三氧化硫的氧化
环境化学 第二章 大气环境化学

大气中重要吸光物质的光离解
4 3
(1) O2和N2的光离解
2
1 O2键能493.8KJ/mol。相 应波长为243nm。在紫外区 lgε 0 120-240nm有吸收。
O2 + hν
λ < 240 nm
-1 -2
O· + O·
N2键能:939.4KJ/mol。 对应的波长为127nm。
-3
-4
HNO
3
h ν HO NO
2
2
HO CO CO
H
2
H O 2 M HO 2HO
2
M
(有CO存在时)
H 2O 2 O 2
产生过氧自由基和过氧化氢
(5) SO2对光的吸收
SO2的键能为545.1kJ/mol, 吸收光谱 中呈现三条吸收带,键能大,240 - 400 nm 的光不能使其离解,只能生成激发态:
思考题:
太阳的发射光谱 和地面测得的太阳光 谱是否相同?为什么?
3.3大气中重要自由基来源
自由基 由于在其电子壳层的外层有
一个不成对的电子,因而有很高的活 性,具有强氧化作用。如:
CH 3 C(O)H hv H 3 C HCO
由于高层大气十分稀薄,自由基的半 衰期可以是几分钟或更长时间。自由基参 加反应,每次反应的产物之一是自由基, 最后通过另一个自由基反应使链终止,如:
SO 2 h SO 2
*
240 400 nm
SO2*在污染大气中可参与许多光化学反应。
( P73,图2-32)
(6) 甲醛的光离解
HCHO中H-CHO的键能为 356.5 kJ/mol, 它对 240 – 360 nm 范围内的光有吸收, 吸光后的光解反应为:
第二篇大气环境化学4大气颗粒物

4.1 大气颗粒物的分类
总悬浮颗粒物(Total Suspended Particulate TSP):
用标准大容量颗粒采样器在滤膜上所收集的颗粒物的总质量 作为大气质量评价中的一个通用的重要污染指标。
长期飘 泊 在 大气中 颗 粒 直径小 于 l0m的 悬 浮 物 称为飘 尘 (Airborne particle),大于l0m的微粒,由于自身的重力作用而 很快沉降下来的这部分微粒称为降尘(Dustfall)。
19
4.6 大气中的放射性核素
2、人工产生的放射性核素
(1)核武器 (2)核电站 (3)燃煤的排放物
二、放射性核素对健康的效应
具中等半衰期的放射性核素危害最大 。
20
4.7 颗粒物对人体健康的影响
颗粒物通过呼吸道进入人体,较大的粒子可能停留在鼻腔及 鼻咽部,很小的颗粒可以进入并停留在肺部。
目前,世界上对可吸入粒子的粒径大小有两种意见,一种定 为l0m以下,一种定为l5m以下。
由于中国城市空气污染以煤烟型污染为主,目前计入空气污 染指数的项目暂定为二氧化硫、氮氧化物和总悬浮颗粒物(TSP)。
23
4.8 环境空气的质量
24
15min测验
问答题: 简述大气环境中臭氧的化学过程。
25
16
4.4 大气中的无机颗粒物
天然源
颗粒物的天然源一般大于人为源载带量。由于颗粒物是易消 失的粉尘和海浪溅沫,其中大颗粒占优势,沉降迅速,对环境影 响不大,除非在散发源附近如火山爆发将大量颗粒物散发达数公 里之遥。
17
4.5 大气颗粒物中的有机化合物
大气有机颗粒物的来源及类型
大气颗粒有机污染物是指吸附和沉积在各种大气颗粒上的有 机物,大气中的另一类有机物为挥发性有机物。
环境化学 第二章 大气环境化学

0 160 200 240 280 K
8
大气温度的垂直分布
高度(km)3000
散逸层
(+ )
500
400 热成层 300
(+ )
200
100 越往上氧、氦等气体的原子态越多
90 中间层顶
80
电离层
紫外线的强烈照
射,N2和O2产生 不同程度的离解
度 高 k( m)
70 中间层
60
对流层
16
2.平流层(Stratosphere)
范围:高度12~50km 特征: ① 温度随高度增加而上升, 温度大约为220~260K, 在
12~20km处温度基本不变。 ②由于高能电磁辐射比对流层强烈,所以光化学反应很
重要。 ③O3层即存在于此层下部,高度为15~35km处,其中
25km处浓度最高。
擦层边界层低层大气(1-2km)污染物 80
集中;自由层:自然现象对流层顶层:
水变冰,阻止氢的损失
60
X(km)
B、平流stratosphere
O2→O· + O · O · +O2→O3
O3→O · + O2 O3+ O · →2O2
40
吸收紫外线
C、中间层mesosphere
20
D、热层(电离层)thermosphere
1、要在江南地区顺利育苗,可采取哪些有效的措施?
夜间在秧田里灌水;人造烟雾的办法
2、温室内气温高于室外的原因是什么? 温室内二氧化碳的浓度较高,水分充足,能更多的吸收红外线长波辐射, 保温效应好
3、农民在冬季采用塑料大棚发展农业,是对哪些自然条件进行改造? 热量条件和水分条件
2019 环境化学 第02章 大气环境化学_05-大气-光化学烟雾与硫酸型烟雾_网络教学

光化学反应中自由基的传递
hv
O2
RCHO
RCO
NO RC(O)O2
NO2 RC(O)O
hv
NO2 O
CO2
NO NO2
NO NO2
RH
R
RO2
RO
HO2
HO
O2
O2
27
3.6.4 光化学烟雾形成的化学机制
光化学烟雾的日变化特征 烟雾箱模拟试验 光化学烟雾形成的简化机制-12个反应方程式★
28
3.6.4 光化学烟雾形成的化学机制
光化学烟雾形成的简化机制
引发反应:
1. NO2 + hv → NO + O (λ<430nm) 2. O + O2 + M → O3 + M 3. NO + O3 → NO2 + O2
29
3.6.4 光化学烟雾形成的化学机制
自由基传递反应 1. RH+HO →O2 RO2+H2O 2. RCHO+OH →O2 RC(O)O2+H2O 3. RCHO+ hv →2O2RO2 +HO2 +CO 4. HO2 +NO → NO2+OH 5. RO2 +NO → NO2+R’CHO+HO2 6. RC(O)O2+NO → NO2+RO2+Cቤተ መጻሕፍቲ ባይዱ2
日本东京光化学烟雾
1970年,日本东京光化学烟雾,2万人患红眼病。
4
第二章 大气环境化学
第三节 大气中污染物的转化
3.6 光化学烟雾污染
3.6.1 光化学烟雾定义及实例 3.6.2 光化学烟雾特征及形成条件 3.6.3 危害 3.6.4 形成的化学机制★★ 3.6.5 控制对策
5
3.6.2 光化学烟雾特征及形成条件
2019 环境化学 第02章 大气环境化学_08-臭氧破坏_网络教学

第二章 / 第三节 / 3.10 臭氧层的形成与损耗
3.10.4 氟氯烃对臭氧的破坏 二、氟氯烃的用途
用途:清洗剂、制冷剂、喷雾剂、发泡剂
作为清洗剂,使用范围广 有机污物,无机污物
沸点低(CFC-113: 47.6℃)—节省 难燃烧—安全 稳定—使用和保存方便
34
氟利昂的生产和使用情况
3
中间层 平流层
90%臭氧 平流层
高度(km)
对流层
臭氧浓度(个分子/立方厘米)
在大气圈中,臭氧主要分布在平流层
4
第二章 / 第三节 / 3.10 臭氧层的形成与损耗
3.10.1 臭氧分布及南极臭氧空洞 二、什么是臭氧空洞?
1. 测量臭氧总量的单位-道布森
0℃,1个大气压下(标准海平面压力),形成 0.01mm厚纯臭氧层所需要的臭氧分子数,定义 为1个道布森单位(Dobson Unit, D.U.)
(3)O3+ h →O2+O (210nm<λ<290nm)
(4)O3+O →2O2 在没有其它物质存在时, 生成与破坏速度大致相
同;动态平衡, 平均浓度与分布状况基本恒定。
31
第二章 / 第三节 大气中污染物的转化
3.10 臭氧层的形成与耗损
3.10.1 臭氧分布及南极臭氧空洞 3.10.2 臭氧分子结构及性质
第二章 大气环境化学
第三节 大气中污染物的转化
3.10 臭氧层的形成与耗损
(p.122-128)
1
第二章 / 第三节 大气中污染物的转化
3.10 臭氧层的形成与耗损
3.10.1 臭氧分布及南极臭氧空洞 3.10.2 臭氧分子结构及性质
3.10.3 平流层臭氧生成与破坏的化学机理 ★ ★ 3.10.4 氟氯烃对臭氧的破坏 ★ ★
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 大气环境化学4.影响大气中污染物迁移的主要因素是什么?主要有:(1)空气的机械运动如风和大气湍流的影响; (2)天气和地理地势的影响; (3)污染源本身的特性。
5.大气中有哪些重要的吸光物质?其吸光特征是什么?大气组分如N2、O2、O3、H2O 和CO2等能吸收一定波长的太阳辐射。
波长小于290 nm 的太阳辐射被N2、O2、O3分子吸收,并使其解离。
故波长小于290 nm 的太阳辐射不能到达地面,而800~2000 nm 的长波辐射则几乎都被水分子和二氧化碳所吸收。
因此,只有波长为300~800 nm 的可见光能透过大气到达地面,这部分约占太阳光总能量的41%。
7.大气中有哪些重要的自由基?其来源如何?大气中存在的重要自由基有HO 、HO 2、R (烷基)、RO (烷氧基)和RO 2(过氧烷基)等。
它们的来源如下: (1)HO 来源对于清洁大气而言,O 3的光离解是大气中HO 的重要来源:23O O hv O +→+HO O H O 22→+对于污染大气,如有HNO 2和H 2O 2存在,它们的光离解也可产生HO :NO HO hv HNO +→+2 HO hv O H 222→+其中HNO 2的光离解是大气中HO 的重要来源。
(2)HO 2的来源大气中HO 2主要来源于醛的光解,尤其是甲醛的光解:HCO H hv CO H +→+2 M HO M O H +→++22 CO HO O HCO +→+22任何光解过程只要有H 或HCO 自由基生成,它们都可与空气中的O 2 结合而导致生成HO 2。
亚硝酸酯和H 2O 2 的光解也可导致生成HO 2:NO O CH hv ONO CH +→+33 CO H HO O O CH 2223+→+HO hv O H 222→+ O H HO O H HO 2222+→+如体系中有CO 存在:H CO CO HO +→+2 22HO O H →+(3)R 的来源大气中存在量最多的烷基是甲基,它的主要来源是乙醛和丙酮的光解:HCO CH hv CHO CH +→+33 CO CH CH hv COCH CH 3333+→+这两个反应除生成CH 3外,还生成两个羰基自由基HCO 和CH 3CO 。
O 和HO 与烃类发生H 摘除反应时也可生成烷基自由基:HO R O RH +→+O H R HO RH 2+→+(4)RO 的来源大气中甲氧基主要来源于甲基亚硝酸酯和甲基硝酸酯的光解:NO O CH hv ONO CH +→+33 2323NO O CH hv ONO CH +→+(5)RO 2的来源大气中的过氧烷基都是由烷基与空气中的O 2结合而形成的:22RO O R →+9.叙述大气中NO 转化为NO2的各种途径。
① NO + O 3 NO 2 + O 2 ② HO + RH R + H 2O R + O 2 RO 2 NO+RO 2 NO 2 + ROO 2 R`CHO + HO 2 (R`比R 少一个C 原RO +子)NO+ HO 2 NO 2 + HO10.大气中有哪些重要的碳氢化合物?它们可发生哪些重要的光化学反应?甲烷、石油烃、萜类和芳香烃等都是大气中重要的碳氢化合物。
它们可参与许多光化学反应过程。
(1)烷烃的反应:与HO 、O 发生H 摘除反应,生成R 氧化成RO 2与NO 反应RH + OH → R + H 2O RH + O → R + HO R + O 2 → RO 2 RO 2 + NO → RO + NO 2(2)烯烃的反应:与OH 主要发生加成、脱氢或形成二元自由基加成:RCH=CH 2 + OH → RCH(OH)CH 2RCH(OH)CH 2 + O 2 → RCH(OH)CH 2O 2 RCH(OH)CH 2O 2 + NO → RCH(OH)CH 2O + NO 2 脱氢:RCH=CH 2 + HO → RCHCH 2 + H 2O 生成二元自由基:C C R 3R4R 2R1O 3+C O R R 1+C4R 3OO C C R34R 2R 1O O OCR 2R 1O O+O C R 34二元自由基能量很高,可进一步分解为两个自由基以及一些稳定产物。
另外,它可氧化NO和SO2等:R1R2COO + NO →R1R2CO + NO2R1R2COO + SO2→R1R2CO + SO3(3)环烃的氧化:以环己烷为例+ HO + H2O+ O2OOOO+ NO O+ NO2(4)芳香烃的氧化(a)单环芳烃:主要是与HO发生加成反应和氢原子摘除反应。
CH3+ HO表示用生成的自由基可与NO2反应,生成硝基甲苯:+ NO2CH3NO2+ H2O 加成反应生成的自由基也可与O2作用,经氢原子摘除反应,生成HO2和甲酚:+ O 2CH 3OH+ HO 2生成过氧自由基:OH HOO H 3CCH 3OH OOH H CH 3OHHOOHCH 3OH H 表示用+ O 2OO+ NO+ NO 2CH 3OH H OOCH 3OHH O+ O 2+ CH 3C(O)CHOCH 3OHH OHC CH CHOOHC(b )多环芳烃:蒽的氧化可转变为相应的醌+ O 2hvO O HH它可转变为相应的醌:O O HH OO(5)醚、醇、酮、醛的反应它们在大气中的反应主要是与HO发生氢原子摘除反应:CH3OCH3 + HO → CH3OCH2 + H2OCH3CH2OH + HO → CH3CHOH + H2OCH3COCH3 + HO → CH3COCH2 + H2OCH3CHO + HO → CH3CO + H2O上述四种反应所生成的自由基在有O2存在下均可生成过氧自由基,与RO2有相类似的氧化作用。
13.说明烃类在光化学烟雾形成过程中的重要作用。
烷烃可与大气中的HO和O发生摘氢反应。
RH + HO R + H2ORH + O R + HOR + O2RO2RO2+ NO RO + NO2RO + O2R`CHO + HO2RO + NO2RONO2另外:RO2+ HO2ROOH + O2RO + HOROOH +hr稀烃可与HO发生加成反应,从而生成带有羟基的自由基。
它可与空气中的O2结合成相应的过氧自由基,由于它有强氧化性,可将NO氧化成NO2,自身分解为一个醛和CH2OH。
如乙烯和丙稀。
CH = CH + HO CH2CH2OHCH3CH = CH2CH3CHCH2OH + CH3CH(OH)CH2CH2CH2OH + O2CH2(O2)CH2OHCH2(O2)CH2OH + NO CH2(O)CH2OH + NO2CH2(O)CH2OH CH2O + CH2OH CH2(O)CH2OH + O2HCOCH2OH + HO2CH2OH + O2H2CO + HO2稀烃还可与O3发生反应,生成二元自由基,该自由基氧化性强,可氧化NO和SO2等生成相应的醛和酮。
光化学反应的链引发反应主要是NO2的光解,而烷烃和稀烃均能使NO转化为NO2,因此烃类物质在光化学反应中占有很重要的地位。
18.确定酸雨pH界限的依据是什么?pH为5.6作为判断酸雨的界限。
依据以下过程得出:在未污染大气中,可溶于水且含量比较大的酸性气体是CO2,所以只把CO2作为影响天然降水pH的因素,根据CO2的全球大气浓度330ml/m3与纯水的平衡:CO2 (g) + H2O K HCO2 + H2OCO2 + H2O K1H+ + HCO3-HCO3-K2H+ + CO32-根据电中性原理:[H+]=[OH-] + [HCO3-] + 2[CO32-],将用K H、K1、K2、[H+]表达的式子代入,得:[H+]3– (K W + K H K1p CO2) [H+ ] – 2K H K1K2p CO2=0在一定温度下,K W、K H、K1、K2、p CO2都有固定值,将这些已知数值带入上式,计算结果是pH=5.6。
19.论述影响酸雨形成的因素。
影响酸雨形成的因素主要有:(1)酸性污染物的排放及其转化条件。
(2)大气中NH3的含量及其对酸性物质的中和性。
(3)大气颗粒物的碱度及其缓冲能力。
(4)天气形势的影响。
20.什么是大气颗粒物的三模态?如何识别各种粒子模?Whitby等人依据大气颗粒物表面积与粒径分布的关系得到了三种不同类型的粒度模。
按这个模型,可把大气颗粒物表示成三种模结构,即爱根(Aitken)核模(D p<0.05μm)、积聚模(0.05μm<D p<2μm)和粗粒子模(D p>2μm)。
(1)爱根核模主要源于燃烧产生的一次颗粒物以及气体分子通过化学反应均相成核而生成的二次颗粒物。
由于它们的粒径小、数量多、表面积大而很不稳定,易于相互碰撞结成大粒子而转入积聚模。
也可在大气湍流扩散过程中很快被其他物质或地面吸收而去除。
(2)积聚模主要由核模凝聚或通过热蒸汽冷凝再凝聚长大。
这些粒子多为二次污染物,其中硫酸盐占80%以上。
它们在大气中不易由扩散或碰撞而去除。
积聚模与爱根核模的颗粒物合称细粒子。
(3)粗粒子模的粒子称为粗粒子,多由机械过程所产生的扬尘、液滴蒸发、海盐溅沫、火山爆发和风沙等一次颗粒物所构成,因此它的组成与地面土壤十分相近,主要靠干沉降和湿沉降过程而去除。