(华师大版)九年级数学上册课件:221一元二次方程
合集下载
华师大版九年级数学上册《一元二次方程根的判别式》课件

(2)解:mx2-(m+2)x+2=0,即(x-1)(mx-2)=0,∴x1=1,x2=
2 m
.
∵x1=1为整数,∴必须x2=m2 为整数即可,∴正整数m的值为1或2
19.(12分)(2014·株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a -c)=0,其中a,b,c分别为△ABC三边的长.
根,那么c的取值范围是__c_>_9____.
8.(6分)已知m<-
1 4
,判定方程x2+(2m+3)x+(m-1)2=0的根的情
况.
解:原方程无实数根
9.(7分)若关于x的一元二次方程x2+4x+2k=0有两个实数根,求k的 取值范围及k的非负整数值.
解:k≤2,k的非负整数值为0,1,2
10.(2014·益阳)一元二次方程x2-2x+m=0总有实数根,则m应满 足的条件是( D )
3.(3分)已知一元二次方程x2+2x-1=0,则b2-4ac=___8___, 原方程根的情况是_有__两__个__不__相__等__的__实__数__根__.
4.(9分)不解方程,判定下列一元二次方程根的情况. (1)16x2+8x=-3; 解:此方程没有实数根 (2)9x2+6x+1=0; 解:此方程有两个相等的实数根 (3)3(x2+1)-5x=0. 解:此方程没有实数根
谢谢观赏
You made my day!
我们,还在路上……
12.若关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,则k的
最小整数值是( B )
A.1
B.2
C.3
Hale Waihona Puke D.413.(2014·潍坊)等腰三角形一条边的边长为3,它的另两条边的边长
华东师大版九年级数学上册《22章 一元二次方程 22.2 一元二次方程的解法 根的判别式》精品课件_1

根的判别式情况
写出根
根的情况
△>0 △=0 △<0
x1 = -b +
b 2 - 4ac 2a
x2 = -b -
b 2 - 4ac 2a
-b? 0 b
x1 =x2 =
2a
=2a
方程有两个不相等的实数根 方程有两个相等的实数根
b 2 - 4ac <0 x1,x2不存在 方程没有实数根
你能迅速判断下列方程根的情况吗? (1)x2 + 3x +2=0 (2)x2 - 4x + 4=0 (3)x2 + 2x + 3=0
判断方没程有化根成一的般形情式况: 3x2 + 5x =4
解:化为一般形式,得
解:∵a=3,b=5,c=4 3x2 + 5x -4=0
∴ △=52-4×3×4 = 25-48 =-24<0
∵a=3,b=5,c=-4 ∴ △=52-4×3×(-4)
= 25+48 =73>0
∴方程没有实数根 ∴方程有两个不相等的实数根
选做题:
说明不论k取何值,关于x的方程x2+(2k+1)x+k-1=0.
总有两个不相等的实根
A.x2+1=0
B. x2+x-1=0
C. x2+2x+3=0 D. 4x2-4x+1=0
2、关于x的一元二次方程kx2-6x+1=0有两个
不相等的实数根,则k的取值范围是( D )
A.k<9 C. k≤9且且k≠0
B.k >9 D. k<9且k≠0
必做题:
1、不解方程判定下列方程根的情况 (1)2x-x2-2=0 (2)4(y2-y)+1=0 2、当k取何值时,关于x的方程x2-(2k+1)x+k2=2没有实数根?
华东师大版数学九年级上册22章一元二次方程复习课件(第二课时共23张)

(2)有两个不等实根;m-1≠0且Δ>0
(3)有两个实数根; △≥0且m-1≠0
(4)无实数根;
△<0且m-1≠0
(5)只有一个实数根; m-1=0
(6)有实根.
△≥0或者m-1=0
*知识点二:一元二次方程的根与系数的关系
一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0) 的两个根为:
x1 b
数里,当且仅当b2-4ac≥0时,才能应用根与
系数的关系.
3.可以通过一元二次方程的系数判断方程根 的情况.
课后巩固
1、下列方程无实数根的是
。
①x-2=3+x;②x2+x+1=0;
③x2+bx-1=0;④ax2+bx+1=0(a>0);
⑤ 2 x2+ 6 x+1=0.
2、若关于x的一元二次方程(a-2)x2-2ax+a+1=0 没有实数根,求ax+3>0的解集(用含a的式子表示)
3、设x1、x2是方程2x2+3x-5=0的两个根, 求下式的值: (1)(x1-3)(x2-3);(2)|x1-x2|;
11 (3) x12 x22
4、不解方程,判断下列方程根的情况: ① x²-4x-1=0 ② x²+5=2x ③ x²-mx+m²+1=0
5、k取何值时,方程4x²-(k+2)x+(k-1)=0 ①有一个根是-1; ②有两个相等的实根.
配方法
x2
bx
b 2
2
x
b 2
2
cc
0
求根公式法 x b b2 4ac 0
2a
华师大版九年级数学上册22.1一元二次方程(2)课件

面积 ···600···1200···
面积 ···875···936···
突破 难点
宽 长 面积
···25.4···25.5··· ···35.4···35.5··· ···899.16···905.25···
宽 长 面积
···25.41···25.42··· ···35.41···35.42··· ···899.7681···900.3746···
灿若寒星
说教材
说目标
教学重点
一元二次方程的概念及一般形式。
说教学方法
教学难点
说教学程序 经历用试验的方法探索方程的解,并会 解释解的合理性。
说评价
灿若寒星
说教材
说目标
说教学方法 说教学程序
说评价
教学目标
1.知识目标:使学生充分了解一元二次方程
的概念;正确掌握一元二次方程的一般形式。
2.能力目标:经历抽象一元二次方程的过程,
• 5x2+10x-2.2=0。
灿若寒星
创设情境 自主探索 巩固练习 归纳小结 布置作业 导入新课 归纳新知 深化知识 反思提高 分层落实
比较一:
• x2+10x-900=0,
• x2-18x+45=0,
与一元一次方程 作纵向比较
• 5x2+10x-2.2=0。
一元二次方程的概念:
只含有一个未知数,并且未知数的最高次数是 2的整式方程叫做一元二次方程。
1.将下列方程化为一般形式,并分别指出它们 的二次项系数、一次项系数和常数项:
(1)3x2-x=2; (2)7x-3=2x2; (3)x(2x-1)-3x(x-2)=0; (4)2x(x-1)=3(x+5)-4。
华东师大版数学九年级上册22章一元二次方程复习课件(第一课时共30张)

故m=-1 二次项系数非零是一元二次方程存在 的前提条件!
及时反馈
1、下列方程是不是一元二次方程,若不是 一元二次方程,请说明理由:
(1) (x-1)2=4 (2) x2-2x=8 (3) x2=y+1
(4) x3-2x2=1 (5) ax2+bx+c=0 (6) 32x+x=1 (7) x2-3x+4=x2-7 (8) 3x2 1 2 0
华东师大版九年级上册
第22章 一元二次方程 章末复习 第一课时
学而不疑则怠,疑而不探则空
全章知识结构
一元二次方程 方程两边都是整式
的定义
只含有一个未知数
一 ax²+bx+c=0(a0) 未知数的最高次数是2
元
直接开平方法 (x a)2 b b 0
二
次 一元二次方程
方
的解法
程
因式分解法 (x a)(x b) 0
⑤(x-3)2=2(3-x) ⑥5(m+2)2=8 ⑦3y2-y-1=0
⑧2x2+4x-1=0 ⑨(x-2)2-16=0 ⑩x2-6x-9991=0
合适运用直接开平方法的
;
合适运用因式分解法的
;
合适运用公式法的
;
合适运用配方法的
.
3、将4个数a、b、c、d排成2行2列,两边各加
一条竖线记成 a
c
b ,定义 a
一元二次方程,则( C )
A、m=±2
B、m=2
C、m=-2
D、m≠ ±2
4、若 m 2x2 m 2x 2 0是关于x的一元
二次方程,则m 。
5、若方程 (m 2)xm2 2 (m 1)x 2 0 是 关于x的一元二次方程,则m的值为 。
及时反馈
1、下列方程是不是一元二次方程,若不是 一元二次方程,请说明理由:
(1) (x-1)2=4 (2) x2-2x=8 (3) x2=y+1
(4) x3-2x2=1 (5) ax2+bx+c=0 (6) 32x+x=1 (7) x2-3x+4=x2-7 (8) 3x2 1 2 0
华东师大版九年级上册
第22章 一元二次方程 章末复习 第一课时
学而不疑则怠,疑而不探则空
全章知识结构
一元二次方程 方程两边都是整式
的定义
只含有一个未知数
一 ax²+bx+c=0(a0) 未知数的最高次数是2
元
直接开平方法 (x a)2 b b 0
二
次 一元二次方程
方
的解法
程
因式分解法 (x a)(x b) 0
⑤(x-3)2=2(3-x) ⑥5(m+2)2=8 ⑦3y2-y-1=0
⑧2x2+4x-1=0 ⑨(x-2)2-16=0 ⑩x2-6x-9991=0
合适运用直接开平方法的
;
合适运用因式分解法的
;
合适运用公式法的
;
合适运用配方法的
.
3、将4个数a、b、c、d排成2行2列,两边各加
一条竖线记成 a
c
b ,定义 a
一元二次方程,则( C )
A、m=±2
B、m=2
C、m=-2
D、m≠ ±2
4、若 m 2x2 m 2x 2 0是关于x的一元
二次方程,则m 。
5、若方程 (m 2)xm2 2 (m 1)x 2 0 是 关于x的一元二次方程,则m的值为 。
华东师大版数学九年级上册2一元二次方程课件

整理可得
x2+10x-900=0.
(1)
2.问题二
学校图书馆去年年底有图书5万册,估计到明
年年底增加到7.2万册.求这两年的年平均增长率.
分析:设这两年的年平均增长率为x,去年年底的图
书数是5万册,则今年年底的图书数是5(1+x)万册;
同样,明年年底的图书数又是今年年底的(1+x)倍,
即5(1+x)(1+x)=5(1+x)2万册.
ax2 2 x 5x 2 1是一元二次方程?
课堂小结
1、只含有一个未知数,并且未知数的最高次数是2
的整式方程,叫做一元二次方程。
2、一元二次方程的一般情势为ax2+bx+c=0(a≠0),
一元二次方程的项及系数都是根据一般式定义的,
这与多项式中的项、次数及其系数的定义是一致的。
3、在实际问题转化为数学模型( 一元二次方程 )
2.什么叫做一元一次方程?
只含有一个未知数,并且未知数的次数为“1”
的整式方程,叫做一元一次方程。
1.问题一
创设情境
绿苑小区住宅设计,准备在每两幢楼房之间,
开辟面积为900平方米的一块长方形绿地,并且
长比宽多10米,那么绿地的长和宽各为多少?
分析:设长方形绿地的宽为x米,不难列出方程
x(x+10)=900
解:化为一般形式为: 2 + − 14 = 0
二次项系数为:1,一次项系数为:1,常数项为:-14
2
(
x
3
)(
3
x
4
)
(
x
2
)
3.
解:化为一般形式为:2 2 + − 16 = 0
二次项系数为:2,一次项系数为:1,常数项为:-16
x2+10x-900=0.
(1)
2.问题二
学校图书馆去年年底有图书5万册,估计到明
年年底增加到7.2万册.求这两年的年平均增长率.
分析:设这两年的年平均增长率为x,去年年底的图
书数是5万册,则今年年底的图书数是5(1+x)万册;
同样,明年年底的图书数又是今年年底的(1+x)倍,
即5(1+x)(1+x)=5(1+x)2万册.
ax2 2 x 5x 2 1是一元二次方程?
课堂小结
1、只含有一个未知数,并且未知数的最高次数是2
的整式方程,叫做一元二次方程。
2、一元二次方程的一般情势为ax2+bx+c=0(a≠0),
一元二次方程的项及系数都是根据一般式定义的,
这与多项式中的项、次数及其系数的定义是一致的。
3、在实际问题转化为数学模型( 一元二次方程 )
2.什么叫做一元一次方程?
只含有一个未知数,并且未知数的次数为“1”
的整式方程,叫做一元一次方程。
1.问题一
创设情境
绿苑小区住宅设计,准备在每两幢楼房之间,
开辟面积为900平方米的一块长方形绿地,并且
长比宽多10米,那么绿地的长和宽各为多少?
分析:设长方形绿地的宽为x米,不难列出方程
x(x+10)=900
解:化为一般形式为: 2 + − 14 = 0
二次项系数为:1,一次项系数为:1,常数项为:-14
2
(
x
3
)(
3
x
4
)
(
x
2
)
3.
解:化为一般形式为:2 2 + − 16 = 0
二次项系数为:2,一次项系数为:1,常数项为:-16
华师大九年级数学上册《 一元二次方程根的判别式》课件

• ∴ 5 2 4 3 2 2 5 2 4 1 0
• ∴方程有两个不相等的实数根.
l (2)∵ a=4 ,2b2=4 -4 2 ,1c =41 4 4 ,0
l∴
4
l ∴方程有两个相等的实数解.
(3)将方程化为一般形式:
4y27y40
• ∵a=4,b=7,c=4,
• ∴ 7 2 4 4 4 4 9 6 4 0
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
学习要注意到细处,不是粗枝大 叶的,这样可以逐步学习摸索,找到 客观规律。 —— 徐特立
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
• 一定有两个不相等实数根.
扩 展 : 若 关 于 x 的 方 程 (m 2 2 )x 2 2 (m 1 )x 1 0 有 实 数 根 , 求 m 的 取 值 范 围
解:(1) nm2-20,即m 2n,原方程n: -2( 21)x10nn方程nnn一元一次 方程,有解。
扩 展 : 若 关 于 x 的 方 程 (m 2 2 )x 2 2 (m 1 )x 1 0 有 实 数 根 , 求 m 的 取 值 范 围
• 2.已知方程 的2 3判别式的值是16,则m= _____.
• ∴方程有两个不相等的实数根.
l (2)∵ a=4 ,2b2=4 -4 2 ,1c =41 4 4 ,0
l∴
4
l ∴方程有两个相等的实数解.
(3)将方程化为一般形式:
4y27y40
• ∵a=4,b=7,c=4,
• ∴ 7 2 4 4 4 4 9 6 4 0
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
学习要注意到细处,不是粗枝大 叶的,这样可以逐步学习摸索,找到 客观规律。 —— 徐特立
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
• 一定有两个不相等实数根.
扩 展 : 若 关 于 x 的 方 程 (m 2 2 )x 2 2 (m 1 )x 1 0 有 实 数 根 , 求 m 的 取 值 范 围
解:(1) nm2-20,即m 2n,原方程n: -2( 21)x10nn方程nnn一元一次 方程,有解。
扩 展 : 若 关 于 x 的 方 程 (m 2 2 )x 2 2 (m 1 )x 1 0 有 实 数 根 , 求 m 的 取 值 范 围
• 2.已知方程 的2 3判别式的值是16,则m= _____.
一元二次方程的根与系数的关系课件初中数学华师大版九年级上册

(2)方程两边同除以 2 ,得 x2 3 x 5 0. 22
设两根为 x1、x2 ,可得
x1
x2
3 2
3 2
,x1
x2
5 .
2
例9 试探索一元二次方程 ax2 + bx + c = 0 (a ≠ 0,b2 – 4ac ≥ 0)的根与系数的关系.
解 方程两边同除以 a ,得
x2 b x c 0. aa
x1 + x2 = – p ,x1·x2 = q.
例8 不解方程,求出方程的两根之和和两 根之积:
(1)x2 + 3x – 5 = 0; (2)2x2 – 3x – 5 = 0;
解 (1)设两根为 x1、x2,由上述二次项 系数为 1 的一元二次方程根与系数的关系,可得
x1 + x2 = – 3 ,x1·x2 = – 5 .
22.2.5. 一元二次方程的根与系数的关系
华东师大版九年级上册
• 学习目标:
1. 能运用根的判别式,判断方程根的情况和进 行有关的推理论证;
2. 会运用根的判别式求一元二次方程中字母系 数的取值范围.
• 学习重点:
根的判别式的正确理解与运用.
• 学习难点:
含字母系数的一元二次方程根的判别式的应用.
3.已知 α,β 是方程 x2 – 3x – 5 = 0的两根,不解 方程,求下列代数式的值.
(1)1 + 1 (2) α2 + β2 (3) α – β
解:(1)1 + 1 = + = 3 = 3;
5 5
(2)α2 + β2 = (α + β)2 – 2αβ = 32 – 2× (–5) = 19;