等离子体表面处理技术

合集下载

等离子体表面处理

等离子体表面处理

等离子体表面处理
等离子体表面处理是一种技术,主要使用电介质形成的电场来改变表面的化学和物理性质。

等离子体表面处理技术可以应用于多种表面,包括金属、塑料、玻璃等,可以实现多种目的,如表面转化、清洁、活化、修复等。

一般来说,等离子体表面处理的方法包括气相技术、液相技术、电火花技术和激光技术等。

其中,气相技术是利用等离子体体系所产生的电场耦合效应而改变材料表面形貌、形状和结构,用于清洁、转化和活化表面,以满足不同应用要求。

液相技术是将表面物质浸入等离子体体系中,利用电场来改变物质表面,以此达到表面清洁、转化或活化的目的。

此外,还有电火花技术和激光技术等,也可以用于清洁、转化和活化材料表面。

等离子体表面处理有着广泛的应用领域。

在航空航天科技领域,等离子体表面处理技术可以有效改善结构零件表面形貌,制造出较高精度的零件;在电子行业,利用等离子体表面处理可以增加金属表面的导电性,避免抗静电污染;在生物医学及材料表面功能改性领域,等离子体表面处理可以用于改变表面结构和性质,增加材料的耐腐蚀性及生物相容性。

等离子体表面处理的研究近年来也在不断发展,未来等离子体表面处理技术可以应用于更广泛的领域,让更多的产品质量得到改善。

然而,等离子体表面处理也存在一定的不足和不完善,比如处理效率低、价格高、处理条件严格等,这些需要企业不断努力改进技术以提
高等离子体表面处理的效率和质量。

综上所述,等离子体表面处理技术是一种具有重要意义和广泛应用价值的技术,它可以帮助企业实现质量的提高,为制造商提供更好的生产力和更多的创造性。

在未来的发展中,等离子体表面处理技术将继续发挥重要作用,为企业提供更完善的表面处理解决方案。

等离子处理后表面附着力

等离子处理后表面附着力

等离子处理后表面附着力等离子处理是一种表面处理技术,它通过在材料表面产生等离子体来改善材料的表面性能。

其中一个重要的应用就是提高材料的附着力。

本文将从等离子处理的原理、影响附着力的因素、等离子处理对附着力的影响三个方面进行详细阐述。

一、等离子处理的原理等离子体是指由正负电荷相等的电离粒子和自由电子组成的气态物质。

在等离子处理中,将气体放置在高压下,加入能量使气体电离,形成等离子体。

这些带有能量和动量的粒子可以与材料表面反应,并改变其化学和物理性质。

二、影响附着力的因素1. 表面清洁度表面清洁度是影响附着力最重要的因素之一。

在接触角低于90度时,水滴会完全展开并覆盖整个表面,这意味着没有污染物防止涂层与基材之间产生粘结。

因此,在进行等离子处理之前必须彻底清洗表面以去除任何污染物。

2. 表面能表面能是指表面对液体或气体的吸引力。

高表面能意味着更好的润湿性和附着力。

等离子处理可以增加表面能,从而提高附着力。

3. 表面形貌表面形貌也会影响附着力。

在均匀的平滑表面上,涂层与基材之间的接触点很少,这会导致较低的附着力。

相反,在粗糙不平的表面上,涂层与基材之间的接触点更多,从而提高了附着力。

4. 涂层性质涂层本身的性质也会影响附着力。

例如,如果涂层过于硬或脆弱,则可能无法完全粘结到基材上。

三、等离子处理对附着力的影响等离子处理可以通过增加表面清洁度、提高表面能、改变表面形貌和改善涂层性质来提高附着力。

具体来说:1. 增加清洁度等离子处理可以去除污染物和氧化物,并激活基材表面以便更好地与涂料结合。

2. 提高表面能等离子处理可以增加表面能,从而提高涂层与基材之间的粘结力。

3. 改变表面形貌等离子处理可以使表面变得更加粗糙,从而增加涂层与基材之间的接触点,提高附着力。

4. 改善涂层性质等离子处理可以使涂层更加致密和均匀,并减少缺陷和孔洞,从而提高附着力。

综上所述,等离子处理是一种有效的提高材料附着力的技术。

通过增加清洁度、提高表面能、改变表面形貌和改善涂层性质,等离子处理可以显著提高材料的附着力。

等离子体清洗时塑料表面的现象

等离子体清洗时塑料表面的现象

等离子体清洗时塑料表面的现象等离子体清洗是一种常用的表面处理技术,可以在不损伤塑料表面的情况下去除污垢和异物。

在等离子体清洗过程中,塑料表面会出现一些特殊的现象。

等离子体清洗会使塑料表面变得更加光滑。

在清洗过程中,等离子体会释放出高能离子和活性物种,这些粒子能够与塑料表面上的污垢和杂质作用,使其迅速分解和脱落。

同时,等离子体还能改变塑料表面的化学性质,使其表面变得更加亲水,进而提高其光滑度。

这种现象使得塑料表面在清洗后能够更好地抵抗污染和附着。

等离子体清洗还会导致塑料表面发生化学反应。

等离子体清洗过程中释放出的高能离子和活性物种能够与塑料表面上的分子发生碰撞和反应。

这些反应可以改变塑料表面的化学组成和结构,使其表面性质发生变化。

例如,等离子体清洗可以引入氧、氮等元素到塑料表面,从而增加其化学活性和附着力。

这种现象使得清洗后的塑料表面更容易与其他物质进行粘合和涂覆。

等离子体清洗还会使塑料表面产生微观结构的改变。

在清洗过程中,高能离子和活性物种会对塑料表面进行物理和化学的打击,使其微观结构发生变化。

例如,塑料表面的分子排列可能会被扰乱和重新排列,形成新的结构和纹理。

这种微观结构的改变可以增加塑料表面的机械强度和耐磨性,提高其在使用过程中的稳定性和耐久性。

等离子体清洗还会使塑料表面变得更加干净和无菌。

等离子体清洗可以有效去除塑料表面的污垢、油脂、细菌和病毒等有害物质。

通过高能离子和活性物种的作用,这些污垢和微生物可以被彻底分解和去除,从而使塑料表面达到更高的卫生和安全要求。

这种现象使得等离子体清洗成为医疗器械、食品包装等领域的重要表面处理技术。

等离子体清洗对塑料表面的影响是多方面的。

它可以使塑料表面变得更加光滑、改变化学性质、产生微观结构的改变,同时还可以使其更加干净和无菌。

这些现象使得等离子体清洗成为一种广泛应用的表面处理技术,为塑料制品的生产和应用提供了有效的解决方案。

等离子体表面处理

等离子体表面处理

等离子体表面处理等离子体表面处理是一种常用的表面处理技术,它使用等离子体(plasma)系统将物料以物理、化学或其结合的方式处理,改变其表面性质。

由于其加工效率高,精度高,可进行大面积的加工,所以越来越受到行业的关注和重视。

等离子体表面处理主要由以下几个部分组成:表面预处理、表面清洗、表面改性、表面涂装、表面抛光等。

表面预处理可以通过化学或机械方式处理;表面清洗涉及到清洁度检验,清洗液的选择;表面改性可以提高表面粗糙度、光学性质;表面涂装可以改变表面的着色效果;表面抛光可以消去表面缺陷和提高产品外观。

等离子体表面处理的特点是一氧化氮、一氧化碳、温度和氧气的混合,得到的处理效果比化学和机械处理效果更好。

等离子体表面处理可以产生纳米尺度的表面结构,这在一定程度上可以提高产品的力学性能和光学性能;改变表面基体的化学组成,可以增加材料表面抗氧化和耐腐蚀性;同时等离子体处理可以有效增加表面粗糙度,从而使材料具有更好的抗摩擦性能。

等离子体表面处理的实际应用也越来越广泛,包括但不仅限于:汽车表面涂装,使表面具有抗污能力;航空航天行业,改善表面结构特性、涂层结构,提升力学和光学性能;电子产品制造,表面粗糙度的改变和抗氧化性的增强;电子零部件的制造,提高产品的导电性,改善噪声衰减性能;医疗行业,等离子体改性可以用于制备生物材料,实现细胞修复等。

等离子体表面处理尽管在近几年中受到了广泛的重视,但是实际应用中也存在一定的局限性,主要以下几点:由于其高温、高压条件,等离子体表面处理对金属材料具有较强的破坏性;处理过程中,等离子体产生的大量热量会使结构发生变形;处理过程中,表面有电压差时会出现电极物质的混入;如果处理后表面粗糙度异常,会引起表面质量问题等。

因此,等离子体表面处理在实际应用中需要仔细考虑后再行采用,针对不同的使用场景要掌握不同的处理工艺要点,以保证表面质量,可以满足终端用户的应用需求。

综上所述,等离子体表面处理的出现改变了表面处理的方式,它的多种特点使它在汽车表面涂装、航空航天行业、电子产品制造、电子零部件的制造以及医疗行业的应用时,有着重要的意义和价值,但是在实际应用中也存在一定的局限性,需要在使用前仔细考虑每一个细节。

低温等离子体处理表面处理

低温等离子体处理表面处理

低温等离子体处理表面处理
引言:
在现代制造业中,表面处理是非常重要的环节。

近年来,低温等离子
体处理技术在表面处理中得到了广泛的应用。

本文将从理论、特点、
应用等方面进行详细阐述。

一、理论
低温等离子体处理是在常压下,利用高压电场把气体转化为等离子体,并加以利用其高能量来溅射和清洗物体表面的一种表面处理方法。

其中,气体离子和反应性粒子与固体表面发生吸附、反应和注入等作用,从而使得表面性质发生变化,起到一定的表面处理效果。

二、特点
1. 低温等离子体处理是一种低温表面处理技术,处理温度一般在室温下。

2. 低温等离子体处理对待处理物品的形状和材料的种类没有限制。

3. 低温等离子体处理具有无污染、高效率、易操作等优点。

4. 低温等离子体处理可以为待处理物表面赋予各种功能,如改善表面
质量、增加接触角、提高附着力、增强耐磨性和热稳定性等。

三、应用
1. 材料表面处理:低温等离子体处理可以用于金属薄膜、陶瓷、高分
子材料等材料表面处理,可使材料表面达到一定的光洁度和超疏水性。

2. 微电子制造:低温等离子体处理可以清洗电子元件表面附着的杂质
和氧化铜等污染物,从而提高元件的可靠性和寿命。

3. 聚合物的改性:低温等离子体处理可以用于改性聚合物的表面处理,改善聚合物表面的润滑性、耐热性、吸附性等性质。

结尾:
总的来说,低温等离子体处理作为一种新兴的表面处理技术,具有很
高的应用价值和发展前景。

随着待处理物种类的不断扩大和技术的不
断进步,低温等离子体处理必将在制造业中发挥越来越重要的作用。

等离子体技术在材料表面处理中的应用

等离子体技术在材料表面处理中的应用

等离子体技术在材料表面处理中的应用一、引言材料在工业生产和科学研究中起到至关重要的作用。

然而,材料的表面特性直接影响着材料的性能和寿命。

为了改善材料的表面性能,科学家和工程师们一直在不断探索新的表面处理技术。

等离子体技术作为一种新兴的表面处理技术,具有广泛的应用前景。

本文将深入探讨等离子体技术在材料表面处理中的应用。

二、等离子体技术的基本原理等离子体是一种电离气体,其中包含了带正电荷和带负电荷的粒子,也被称为等离子体体系。

等离子体的形成可以通过加热气体或施加高压电场等方式实现。

等离子体态具有多种性质,如高能量、高温度和活跃的粒子。

这些性质使得等离子体技术成为一种强大的表面处理工具。

三、等离子体技术在表面清洁中的应用等离子体技术可以有效地清除材料表面的杂质和有机污染物。

等离子体致使杂质和有机分子碰撞激发并离开材料表面。

此外,等离子体技术还可以去除氧化层和腐蚀性物质,恢复材料表面的纯度和光洁度。

四、等离子体技术在表面改性中的应用等离子体技术能够改变材料表面的化学和物理性质。

通过等离子体处理,可以在材料表面形成陶瓷涂层、金属薄膜和硬质涂层等。

这些涂层能够提高材料的耐磨性、抗腐蚀性和导热性等性能。

此外,等离子体技术还可以在材料表面形成微纳结构,从而改善材料的光学、电学和磁学性能。

五、等离子体技术在涂层制备中的应用等离子体技术在涂层制备中发挥着重要作用。

等离子体喷涂技术能够快速均匀地在材料表面形成涂层。

这种涂层具有高致密性、高附着力和良好的耐磨性。

与传统的涂层技术相比,等离子体喷涂技术具有更高的效率和更低的成本。

六、等离子体技术在微电子制造中的应用等离子体技术在微电子制造中的应用日益广泛。

等离子体刻蚀技术可以将材料表面的一部分物质去除,从而形成微电子器件的图案。

等离子体沉积技术可以在材料表面形成薄膜层,用于制造微电子器件。

等离子体技术在微电子制造中的应用不仅提高了器件的性能,而且还降低了生产成本。

七、等离子体技术的挑战和发展方向尽管等离子体技术在材料表面处理中展现出了巨大的潜力,但仍面临着一些挑战。

等离子体表面处理技术的原理

等离子体表面处理技术的原理

等离子体表面处理技术的原理理论说明1. 引言1.1 概述等离子体表面处理技术是一种改变材料表面性质的有效方法,通过利用等离子体对材料表面进行激发和修改,可以实现润湿性能提升、去除污染物、改善粘附性能等目标。

这项技术已经在多个领域得到广泛应用,如电子器件制造、材料加工和生物医学等。

1.2 文章结构本文主要围绕等离子体表面处理技术的原理和理论进行探讨,以及相关的实验验证和应用案例分析。

文章共分为五个部分:引言、等离子体表面处理技术的原理、等离子体表面处理技术的理论说明、实验验证与应用案例分析以及结论与未来展望。

1.3 目的本文的目的在于深入探讨等离子体表面处理技术的原理和机制,并通过对相关实验研究和应用案例的分析来评估该技术的可行性和效果。

同时,本文还将探讨该技术所面临的挑战并展望其在相关行业中的未来发展前景。

通过本文的撰写,旨在增进读者对该技术的了解和认识,促进其在实际应用中的推广和发展。

2. 等离子体表面处理技术的原理2.1 等离子体介绍等离子体是由加热至高温状态下电离而成的气体,其中包含了正离子、负离子和自由电子。

等离子体在物理、化学和工程领域中广泛应用,尤其在表面处理方面有着重要的作用。

2.2 等离子体表面处理的基本原理等离子体表面处理技术是利用含能量较高的等离子体对材料表面进行物理和化学改变的过程。

通过将某种气体加热至高温并施加电场或直接暴露在电弧中,可形成稳定的等离子态。

这些带电粒子与材料表面相互作用时会产生各种效应,包括清洁、去除污染物、增强润湿性能、提升附着力等。

2.3 受控等离子体处理技术的发展和应用随着科技进步和相关研究的不断深入,受控等离子体处理技术在多个领域得到了广泛运用。

例如,在纳米制造、光电器件加工、涂层改性、材料表面改良等方面都有广泛的应用。

受控等离子体处理技术不仅能够提高材料表面的物理和化学性能,还可实现对材料性质的调控和优化。

以上是关于等离子体表面处理技术原理的基本说明。

等离子处理原理

等离子处理原理

等离子处理原理
等离子处理是一种常用的表面处理技术,它通过生成等离子体来改变材料的表面性质。

等离子体是由气体或液体中的原子或分子通过加热、激发或电离等方式获得的带电粒子。

在等离子体处理过程中,材料表面暴露在等离子体中,等离子体中的带电粒子会与表面相互作用,从而改变材料的化学组成和物理性质。

等离子体处理的原理主要涉及两个方面:等离子体激发和表面反应。

等离子体中的带电粒子可以通过碰撞、俄歇过程或辐射跃迁等方式将能量传递给材料表面,使其激发或电离,从而改变其性质。

同时,等离子体中的带电粒子也可以与材料表面发生化学反应,例如氧化、还原、硝化和氮化等反应,从而形成新的化合物或改变材料的化学组成。

等离子体处理的原理基于带电粒子与材料表面的相互作用,因此选择合适的等离子体源和操作参数非常重要。

常见的等离子体源包括氩气、氧气、氮气等,通过调节气体流量、压力和电场强度等参数可以控制等离子体的性质和能量。

此外,材料的性质和表面结构也会影响等离子体处理的效果,例如材料的导电性、表面形貌和化学组成等。

综上所述,等离子处理是一种利用等离子体与材料表面相互作用改变材料性质的技术。

通过调节等离子体源和操作参数,可以控制等离子体的能量和化学活性,实现对材料的精确处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等离子体表面处理技术的原理及应用
前言:随着高科技产业的讯速发展,各种工艺对使用产品的技术要求越来越高。

等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更随着高科技产业的迅猛发展,各种工艺对使用产品的技术要求也越来越高。

这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。

正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来。

一、等离子体表面改性的原理
等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。

它的能量范围比气态、液态、固态物质都高,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化学过程。

其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。

二、等离子体表面处理技术的应用
1、在工艺产业方面的应用
1)、在测量被处理材料的表面张力
表面张力测定是用来评估材料表面是否能够获得良好的油墨附着力或者粘接附着品质的重要手段。

为了能够评估等离子处理是否有效的改善了表面状态,或者为了寻求最佳的等离子表面处理工艺参数,通常通过测量表面能的方式来测定表面,比如使用Plasmatreat 测试墨水。

最主要的表面测定方式包括测试墨水,接触角测量以及动态测量
评价表面状态
低表面能, 低于28 mN/m良好的表面附着能力,高表面能
2)预处理–Openair® 等离子技术,对表面进行清洗、活化和涂层处理的高技术表面处理工艺
常压等离子处理是最有效的对表面进行清洗、活化和涂层的处理工艺之一,可以用于处理各种材料,包括塑料、金属或者玻璃等等。

使用Openair®等离子技术进行表面清洗,可以清除表面上的脱模剂和添加剂等,而其活化过程,则可以确保后续的粘接工艺和涂装工艺等的品质,对于涂层处理而言,则可以进一步改善复合物的表面特性。

使用这种等离子技术,可以根据特定的工艺需求,高效地对材料进行表面预处理。

使用等离子技术清洗玻璃在后续加工过程前
活化聚丙烯材料
使用等离子聚合工艺
进行表面涂层处理
2、等离子表面改性技术在工业上的应用
1)等离子渗碳
该工艺是目前渗碳领域中较先进的工艺技术,是快速、优质、低能耗及无污染的新工艺。

等离子渗碳具有高浓度渗碳、高渗层渗碳以及对于烧结件和不锈件钢等进行渗碳的能力。

渗碳速度快,渗层碳浓度和深度容易控制,渗层致密性好。

渗剂的渗碳效率高,渗碳件表面不产生脱碳层,无晶界氧化,表面清洁光亮,畸变小。

处理后的工件耐磨性和疲劳强度均比常规渗碳高。

2)等离子束气缸内壁硬化处理
利用高能量密度的等离子束对原来无法进行常规处理的内燃机气缸内壁进行超快速加热熔凝淬火,形成细密的白口及马氏体高硬度组织,大幅度提高气缸内壁的耐磨性。

原机械部规定,未经处理的成品,优等品缸套台架试验寿命为5kh,而经过等离子内表面硬化的缸套寿命高达9kh。

3)等离子渗金属
在低真空下,利用辉光放电即低温等离子轰击的方法,可使工件表面渗人金属元素。

如渗 AI、Mo、W、Ti等,还可以进行多种元素的复合渗和表面合金化处理,可获得更好的表面性能。

如10钢等离子渗后再渗W的3~4倍,耐蚀性是只渗的一倍碳素钢经等离子渗后再,表面硬度达1600HV左右。

4)等离子多元渗硼
用高能等离子束在常压下快扫描涂敷多元渗硼膏剂的钢管内表面,可实现多元渗硼及自激冷淬火,获得多元渗硼淬火复合硬化层。

检测结果表明,硬化层具有较高的硬度及合理的硬度梯度,耐磨性及耐蚀性有显著提高。

5)等离子渗氮
该工艺在模具上的应用已很普遍,如钢压铸模、钢压延模、钢冷挤压模、钢热锻模经离子渗氮处理后的寿命一般可提高2~4倍
3、在医用高分子领域的作用
1) 增强抗菌性
随着生物医学的飞速发展,每年都有大量的人工器官或部件植入人体,但半数以上的植入物有感染,死亡率在50%~60%。

特别是人工瓣膜心内膜炎,对于瓣膜置换的病人往往是一个灾难性的后果。

以往预防生物材料感染为中心的研究集中于细菌污染、细菌的毒力、侵入途径、病人的抵抗力等方面。

近来一些研究表明,引起这种感染的初始动因就是细菌粘附在材料表面。

表皮葡萄球菌是最常见和最严重的人工心脏瓣膜感染致病菌。

研究人员发现以氩等离子体对医用硅橡胶反复进行处理,可明显降低细菌的粘附和生长。

西南交通大学黄楠等人在不同
工作条件下,使用乙炔对人工心瓣膜用聚对苯二甲酸乙二醇酯进行等离子体浸没离子束沉积,提高材料表面的亲水性,对改性后的材料,做细菌的动态粘附实验,结果表明其抗细菌粘附能力有显著的提高。

2) 改善细胞亲和性
随着高分子科学的迅速发展,人们逐渐将高分子材料用来修复人体的器官或组织。

三维可降解组织工程支架的研究是目前生物材料研究的热点之一,但是目前所使用的大多数组织工程医用高分子材料属于生物“惰性”材料,不能为种子细胞的附着和生长提供良好的生物界面。

为了使材料具有良好的细胞亲和性, 需对材料进行表面改性。

与其它表面改性方法相比,等离子体法既能较容易地在材料表面引入特定的官能团或其它高分子链,还可避免因加工而使支架材料表面改性效果降低或丧失的优点。

国内外曾有多个课题组研究了不同气体等离子体对医用高分子材料表面细胞亲和性的影响。

实验表明,各种含氮等离子体(气态酰胺,胺基化合物及氨气)处理后,能在材料表面引入氨基,促进了细胞的粘附和生长,同时材料表面氨基的数量和密度对于细胞的粘附有重要影响。

但是简单的等离子体表面处理只能在短时间内赋予材料一定的细胞相容性,由于等离子体处理效果的时效性,在材料表面引入的功能基团会逐渐向表面内运动和翻转。

为了获得持久的表面改性效果,大多采用等离子体聚合和等离子体接枝对医用高分子材料进行表面修饰。

此外近来也有课题组采用等离子体化学气相沉积对医用高分子材料进行表面修饰以提高材料的细胞亲和性。

3) 提高抗凝血性能
对于应用于临床的生物医用材料来说,材料的抗凝血性能十分重要,而对于植入体内与血液相接触的医用材料来说,其抗凝血性能更是至关重要,很多医用材料就是因为抗凝血性的不足,而限制了其在临床及生物医学领域的应用。

从第一代血液相容性生物医用材料问世,至今已逾40年,但目前仍没有能完全符合临床要求的抗凝血医用材料。

近些年来国内外的一些研究小组开始尝试利用等离子体技术对医用高分子材料表面进行改性,期望在保持材料原有的优异的力学机械性能的基础上,赋予材料良好的抗凝血性能。

如采用等离子体表面磺酸化技术在高分子材料表面引入了磺酸基,从而提高了材料的抗凝血性能;利用等离子体技术实现肝素在医用高分子材料表面高活性的固定;将等离子体技术与紫外接枝联用,在医用高分子材料表面固定具有抗凝血性能的生物大分子。

4) 等离子体灭菌
现代医疗卫生在为人类健康做出贡献的同时,也因致病微生物在公众场所的集中性、易传播性为人类带来了一定的隐患。

在对抗病菌的战斗中,杀菌消毒方法始终是一个重要研究内容。

低温等离子体杀菌消毒技术有一定的特点: 与高压蒸汽灭菌、干热灭菌相比,灭菌时间短;与化学灭菌相比, 操作温度低;能够广泛应用于多种材料和物品的灭菌;产生的各种活性粒子能够在数毫秒内消失,所以无需通风,不会对操作人员构成伤害,安全可靠。

当然,等离子体方法所导致的材料表面化学性质的变化也使得该方法具有一定的复杂性。

通过等离子体照射医用高分子材料, 往往可以将材料的前期处理和杀菌消毒一步实现, 为人工脏器移植、组织材料培养提供了新的方案。

5) 形成阻隔膜
大量实验表明聚合物中的增塑剂、填充剂、抗氧化剂、引发剂和残余单体会对人体造成危害。

采用等离子体聚合或等离子体接枝可在医用高分子表面形成一层阻隔膜,从而降低有害物质的渗透性,阻止聚合物中低分子量添加剂的泄漏。

国外一些研究者以此制备出抗渗漏型生物材料,通过等离子体聚合膜成功地降低了二辛酞酸酯(增塑剂) 从聚氯乙烯中渗到血液中的量,采用四甲基二硅氧烷等离子体聚合物镀膜也可阻止聚氯乙烯管的浸出物。

通过等离子体聚合在高分子微胶囊表面形成阻隔膜,以形成的聚合膜作为一道限速屏障,可以控制药物释放速度。

相当于在微胶囊表面加上一件外衣,但不会影响材料本身的性能。

结语:等离子表面处理技术能够在材料科学、高分子科学、生物医药材料学、
微流体研究、微电子机械系统研究、光学、显微术和牙科医疗等领域得到广泛应用。

因此,此技术在各个领域具有不可估量的发展前景。

相关文档
最新文档