最新1-电力电子器件 (2)

合集下载

第2章 电力电子器件概述 习题答案

第2章 电力电子器件概述  习题答案

第2章 电力电子器件概述 习题第1部分:填空题1. 电力电子器件是直接用于(主)电路中,实现电能的变换或控制的电子器件。

2. 主电路是在电气设备或电力系统中,直接承担(电能的变换或控制任务) 的电路。

3.处理信息的电子器件一般工作于放大状态,而电力电子器件一般工作在(开关)状态。

4. 电力电子器件组成的系统,一般由(控制电路)、(驱动电路)、(保护电路)、(主电路)四部分组成。

5. 按照器件能够被控制的程度,电力电子器件可分为以下三类:(半控型)、(全控型) 和(不控型)。

6.按照驱动电路信号的性质,电力电子器件可分为以下分为两类:(电流驱动型) 和(电压驱动型)7. 电力二极管的主要类型有(普通二极管)、( 快恢复二极管)、(肖特基二极管)。

8. 普通二极管又称整流二极管多用于开关频率不高,一般为(1K )Hz 以下的整流电路。

其反向恢复时间较长,一般在(5us)以上。

9.快恢复二极管简称快速二极管,其反向恢复时间较短,一般在(5us)以下。

10.晶闸管的基本工作特性可概括为:承受反向电压时,不论(门极是否有触发电流),晶闸管都不会导通;承受正向电压时,仅在(门极有触发电流)情况下,晶闸管才能导通;晶闸管一旦导通,(门极)就失去控制作用。

要使晶闸管关断,只能使晶闸管的电流(降到接近于零的某一数值以下)。

11.晶闸管的派生器件有:(快速晶闸管)、(双向晶闸管)、(逆导晶闸管)、(光控晶闸管)。

12. 普通晶闸管关断时间(一般为数百微秒),快速晶闸管(一般为数十微秒),高频晶闸管(10us )左右。

高频晶闸管的不足在于其(电压和电流定额)不易提高。

13.(双向晶闸管)可认为是一对反并联联接的普通晶闸管的集成。

14.逆导晶闸管是将(晶闸管)反并联一个(二极管)制作在同一管芯上的功率集成器件。

15. 光控晶闸管又称光触发晶闸管,是利用(一定波长的光照信号)触发导通的晶闸管。

光触发保证了主电路与控制电路之间的(绝缘),且可避免电磁干扰的影响。

电力电子器件概述

电力电子器件概述
4. 最高工作结温 TJM:125~175℃
5. 反向恢复时间trr 6. 浪涌电流IFSM
1.2.4 主要类型
1. 普通二极管——又称整流二极管 1KHZ以下 数千安和数千伏以上
2. 快恢复二极管 5μs以下 3. 肖特二极管
1.3 半控型器件——晶闸管(SCR)
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
Id
1
2
3
Im
sin td
t
3
4
Im
0.24Im
I
1
2
Im
sin t
2
d
t
0.46Im
3
Kf
I Id
0.46 0.24
1.92
IT ( AV )
100 2
50
Id
1.57 50 1.92
41 A
Im
Id 0.24
41 0.24
171
A
⑵ 维持电流IH 使晶闸管维持通态所必需的最小主电流。 ⑶ 擎住电流IL ⑷ 浪涌电流ITSM
4. 光控晶闸管LTT
⑴又称光触发晶闸 管,是利用一定 波长的光照信号 触发导通的晶闸 管。
⑵光触发保证了主 电路与控制电路 之间的绝缘,且 可避免电磁干扰 的影响。
⑶在高压大功率的 场合占有重要地位。
1.4 典型全控型器件
门极可关断晶闸管——在晶闸管问世后不久出现。 20世纪80年代以来,电力电子技术进入了一个崭新时代。
不可控器件:电力二极管
半控型器件:晶闸管及其派生器件 全控型器件:功率场效应管、绝缘栅双极性晶体管、
门极可关断晶闸管
⑵ 按照控制信号性质可分为: 电流控制型 电压控制型:控制功率小

1电力电子器件1(二极管)

1电力电子器件1(二极管)
其动态特性(也就是开关特性)和参数,是电力电子 器件特性很重要的方面
作电路分析时,为简单起见往往用理想开关来代替
1.1.1 电力电子器件的概念和特征
(3) 实用中,电力电子器件往往需要由信息电子电 路来控制。
在主电路和控制电路之间,需要一定的中间电路 对控制电路的信号进行放大,这就是电力电子器 件的驱动电路。
承受的电压和电流决定的
按照驱动电路加在器件控制端和公共端之间信号的 性质,分为两类:
➢ 电流驱动型——通过从控制端注入或者抽出电流 来实现导通或者关断的控制
➢ 电压驱动型——仅通过在控制端和公共端之间施 加一定的电压信号就可实现导通或者关断的控制
1.1.3 电力电子器件的分类
➢ 电压驱动型器件实际上是通过加在控 制端上的电压在器件的两个主电路端 子之间产生可控的电场来改变流过器 件的电流大小和通断状态,所以又称 为场控器件,或场效应器件
➢ 2. 动态特性
➢ 动态特性——因结电容的存在,三种状态之间的 转换必然有一个过渡过程,此过程中的电压—电 流特性是随时间变化的
1.2.2 电力二极管的基本特性
➢ 开关特性——反映通态和断态之间的转换过程
➢ 关断过程:
➢ 须经过一段短暂的时间才能重新获得反向阻断能 力,进入截止状态
➢ 在关断之前有较大的反向电流出现,并伴随有明 显的反向电压过冲
度,分为以下三类:
(1) 半控型器件——通过控制信号可以控制 其导通而不能控制其关断
➢ 晶闸管(Thyristor)及其大部分派生器件 ➢ 器件的关断由其在主电路中承受的电压和电流
决定
1.1.3 电力电子器件的分类
(2) 全控型器件——通过控制信号既可控制 其导通又可控制其关断,又称自关断器件

电力电子器件及其应用

电力电子器件及其应用

宽禁带半导体材料的应用
总结词
宽禁带半导体材料(如硅碳化物和氮化 镓)在电力电子器件中的应用越来越广 泛。
VS
详细描述
宽禁带半导体材料具有高临界场强和高电 子饱和速度等优点,使得电力电子器件能 够承受更高的工作电压和更大的工作电流 ,同时减小器件的体积和重量,提高系统 的能效和可靠性。
电力电子系统集成化与模块化
压保护、过电流保护和过热保护等。
驱动电路与控制电路设计
总结词
驱动电路和控制电路是电力电子系统中的重要组成部 分,其设计的好坏直接影响到整个系统的性能。
详细描述
驱动电路负责提供足够的驱动信号,使电力电子器件 能够正常工作。在设计驱动电路时,需要考虑信号的 幅度、相位、波形等参数,以确保器件能够得到合适 的驱动信号。控制电路则负责对整个电力电子系统进 行控制和调节,以确保系统能够按照预设的方式运行 。控制电路的设计需要充分考虑系统的动态特性和稳 态特性,并能够根据实际情况进行实时调节。
要点一
总结词
要点二
详细描述
在选择电力电子器件时,电压和电流容量是关键参数。
需要根据电路的工作电压和电流来选择合适的器件,以确 保器件能够安全、有效地运行。选择电压和电流容量过小 的器件可能导致器件过载,影响其性能和寿命;而选择电 压和电流容量过大的器件则可能造成浪费,增加成本。
工作频率与散热设计
总结词
总结词
电力电子系统正朝着集成化和模块化的方向 发展。
详细描述
集成化和模块化可以提高电力电子系统的可 靠性和可维护性,减小系统的体积和重量, 降低制造成本。同时,集成化和模块化还有 利于实现电力电子系统的标准化和系列化, 方便不同系统之间的互连和互操作。
电力电子在分布式发电和微电网中的应用

第1章 电力电子器件概述(第一部分)(2)

第1章 电力电子器件概述(第一部分)(2)

1.1.2 应用电力电子器件的系统组成
1.1.3 电力电子器件的分类 1.1.4 本章内容和学习要点
华东理工大学
1-3
1.1.1 电力电子器件的概念和特征
电力电子器件
1)概念:
电力电子器件(Power Electronic Device)
——可直接用于主电路中,实现电能的变换或控制的电 子器件。
主电路(Main Power Circuit)
和控制电 路中附加 一些电路, 以保证电 力电子器 件和整个 系统正常 可靠运行
V1 L R
V2
主电路
电气隔离 图1-1 电力电子器件在实际应用中的系统组成
华东理工大学
1-7
注重对器件的保护:通常采用吸收(缓冲) 保护电路( Snubber )来限制器件的 du/dt 和di/dt,减小由于大电流跃变在引线(寄 生)电感上形成的反电势尖峰,以防器件 过压击穿。 需要驱动与隔离:强、弱电系统之间电气 隔离,不共地,消除相互影响,减小干扰, 提高可靠性。
通态损耗是器件功率损耗的主要成因。 器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
华东理工大学
1-6
1.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路 和以电力电子器件为核心的主电路组成。 在主电路
控 制 控制电路 电 路 检测 电路 保护 电路 驱动 电路
额定电流 —— 在指定的管壳温度和散热条件下, 其允许流过的最大工频正弦半波电流的平均值。 IF(AV)是按照电流的发热效应来定义的,使用时应 按有效值相等的原则来选取电流定额,并应留 有一定的裕量。 在工频正弦半波的情况下:
平均值 IF(AV) 有效值 1.57 IF(AV)

电力电子器件大全及使用方法详解

电力电子器件大全及使用方法详解

电力电子器件大全及使用方法详解第1章电力电子器件主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。

重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。

难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。

基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。

1 电力电子器件概述(1)电力电子器件的概念和特征主电路(main power circuit)--电气设备或电力系统中,直接承担电能的变换或控制任务的电路;电力电子器件(power electronic device)--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件;广义上电力电子器件可分为电真空器件和半导体器件两类。

两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。

因此,电力电子器件目前也往往专指电力半导体器件。

电力半导体器件所采用的主要材料仍然是硅。

同处理信息的电子器件相比,电力电子器件的一般特征:a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;其处理电功率的能力小至毫瓦级,大至兆瓦级,大多都远大于处理信息的电子器件。

b. 电力电子器件一般都工作在开关状态;导通时(通态)阻抗很小,接近于短路,管压降接近于零,而电流由外电路决定;阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定;电力电子器件的动态特性(也就是开关特性)和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。

电力电子技术最新版配套习题答案详解第2章

电力电子技术最新版配套习题答案详解第2章

目录第1章电力电子器件 (1)第2章整流电路 (4)第3章直流斩波电路 (20)第4章交流电力控制电路和交交变频电路 (26)第5章逆变电路 (31)第6章PWM控制技术 (35)第7章软开关技术 (40)第8章组合变流电路 (42)第2章 整流电路1. 单相半波可控整流电路对电感负载供电,L =20mH ,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d 与i d 波形。

解:α=0︒时,在电源电压u 2的正半周期晶闸管导通时,负载电感L 储能,在晶闸管开始导通时刻,负载电流为零。

在电源电压u 2的负半周期,负载电感L 释放能量,晶闸管继续导通。

因此,在电源电压u 2的一个周期里,以下方程均成立:t U ti Lωsin 2d d 2d= 考虑到初始条件:当ωt =0时i d =0可解方程得:)cos 1(22d t L U i ωω-= ⎰-=πωωωπ202d )(d )cos 1(221t t L U I =LU ω22=22.51(A)u d 与i d 的波形如下图:当α=60°时,在u 2正半周期60︒~180︒期间晶闸管导通使电感L 储能,电感L 储藏的能量在u 2负半周期180︒~300︒期间释放,因此在u 2一个周期中60︒~300︒期间以下微分方程成立:t U ti Lωsin 2d d 2d= 考虑初始条件:当ωt =60︒时i d =0可解方程得:)cos 21(22d t L U i ωω-=其平均值为)(d )cos 21(2213532d t t L U I ωωωπππ-=⎰=L U ω222=11.25(A) 此时u d 与i d 的波形如下图:2.图2-9为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为222U ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。

新型电力电子元器件的制造与应用

新型电力电子元器件的制造与应用

新型电力电子元器件的制造与应用随着科技的发展和能源需求的不断增长,电力行业在近年来得到了广泛的关注。

而电力电子元器件的出现,则进一步推动了电力技术的革新。

电力电子元器件是指利用电子器件进行能量转换、传递和调节的器件,其能够提高电力的利用率、提高电力系统的稳定性和可靠性。

本文将围绕着新型电力电子元器件的制造技术与应用领域,进行详细的探讨。

一、新型电力电子元器件的制造技术1.功率半导体器件功率半导体器件是电力电子元器件的主要组成部分,是指在工作过程中能处理一定功率的半导体器件。

功率半导体器件包括IGBT、MOSFET、SIC MOSFET等类型。

其中,IGBT在交流调速、逆变电源、静止无功补偿等领域得到广泛的应用,而SIC MOSFET因其低通阻、高频响应、高温性能好以及抗辐射能力强等优点,被广泛应用在高端电子领域。

在制造该类器件时,需要采用高纯度材料和精密工艺,通过特殊的制造工艺和检测手段,实现其高效、高稳定的性能表现。

此外,工艺参数的调控和器件尺寸的优化也是制造过程中所需注意的关键点。

2.电容器电容器是电力电子元器件的另一个主要组成部分,其在直流电源中,能够起到平滑滤波的作用,使电源输出的电压更加稳定。

现在,电容器的材料常常采用介电常数更高、更稳定的聚丙烯酸膜,制造工艺也不断得到改进,提高了其使用寿命和稳定性。

此外,在电容器的制造过程中,需要使用高纯度铝箔和无氧铜作为电极材料,通过电极的电化学加工和电容器负载的测试等工艺,保证了电容器的性能和可靠性。

3.电感器电感器是能够储存和输出电能的器件,其在直流电源中,能够起到过滤电源杂波的作用,使电源输出的电流更加稳定。

现在,电感器的制造采用了高效率的铜卷正交涂层技术,使电感器的设计更为紧凑化、体积更小、工作效率更高。

同时,压力注射技术的使用,也能够有效地提高电感器的性能,使其在各个领域中发挥更大的价值。

二、新型电力电子元器件的应用领域1.电力传输与转换领域在电力传输和转换领域,电力电子元器件可以实现电能变换和调节,降低传输损耗,提高能源利用效率,从而为人们生产和生活带来更加便利的用电环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档