复数的三角形式..
复数三角运算

复数三角运算复数三角运算主要涉及复数的三角形式,即z=r(cosθ+i sinθ),其中r是复数的模,θ是复数的辐角。
1.复数的模:对于复数z=a+bi,其模定义为r=∣z∣=a2+b2。
2.复数的辐角:辐角θ是复数在复平面上与正实轴之间的夹角,可以通过tanθ=ab来计算(其中a和b分别是复数的实部和虚部)。
注意,辐角不是唯一的,因为对于任何整数k,θ+2kπ也是z的一个辐角。
3.复数的三角形式:任何复数z都可以表示为z=∣z∣(cosθ+i sinθ),其中θ是z的一个辐角。
4.复数的三角运算:o加法:如果z1=r1(cosθ1+i sinθ1)和z2=r2(cosθ2+i sinθ2),则z1+z2=r1 (cosθ1+i sinθ1)+r2(cosθ2+i sinθ2)。
这通常通过转换为笛卡尔形式(z=a+bi)进行加法,然后再转换回三角形式。
o乘法:如果z1=r1(cosθ1+i sinθ1)和z2=r2(cosθ2+i sinθ2),则z1×z2=r1r2 (cos(θ1+θ2)+i sin(θ1+θ2))。
这里使用了三角恒等式cos(A+B)=cos A cos B−sin A sin B和sin(A+B)=sin A cos B+cos A sin B。
o除法:除法稍微复杂一些,通常也是通过转换为笛卡尔形式进行,然后再转换回三角形式。
5.复数的共轭:复数z=a+bi的共轭是z=a−bi。
在三角形式中,如果z=r(cosθ+i sinθ),则z=r(cosθ−i sinθ)。
6.复数的模的平方:对于复数z=a+bi,其模的平方∣z∣2=a2+b2。
在三角形式中,如果z=r(cosθ+i sinθ),则∣z∣2=r2。
这些规则使得在三角形式下进行复数运算变得相对简单和直观。
复数的三角形式

例 1、计算:
① 2 (cos +isin ) 3 (cos +isin ) 12 12 6 6
②3(cos75º+isin75º) 3 (cos15º+isin15º) ③(cos3A+isin3A) (cos2A-isin2A)
4 4 5 5 ④4(cos +isin )÷2(cos +isin ) 3 3 6 6
3 arg z 2 , 6、复数 z=a(1+2i)+(1-i),如果|z|>2 并且 2
求实数 a 的取值范围
则 M∩N 所围成的复平面是上的区域的面积是( (A) )
4
(B)
2
(C)
3 4
(D)
3、设 a∈(-1,0),复数 cos(arcsina)+isin(arcsina)的辐角主值为( ) (A) arcsina (B)2 + arcsina (C) -arcsina (D) + arcsina 4、复数 1+cos200º+isin200º的辐角主值为( ) (A) 200º (B) -100º (C) 100º (D) 280º
定理的推广:设 zn=rn(cos n+isin n),其中 rn≥0 于是:z1z2z3„zn=r1r2r3„rn[cos( 1+ 2+ 3+„+ n) +isin( 1+ 2+ 3+„+ n)]
复数乘法的几何意义:
⑴两个复数 z1、z2 相乘时,可以先画出分别与 z1、z2 对应的 向量 OZ1 、 OZ 2 ,然后把向量 OZ 2 按逆时针方向旋转 1 再把模变为原来的 r1 倍,所得的向量 OZ 就表示积 z1z2. 特征:旋转+伸缩变换 ⑵向量的旋转与伸缩可以转化为两个复数的乘积.
复数的三角形式

复数的三角形式1.复数的三角形式复数的幅角指的是复数Z=a+bi所对应的向量半轴为始边,向量以x轴正方向所在的射线(起点为O)为终边的角度θ,记作ArgZ。
其中,满足0≤θ<2π的辐角θ的值称为辐角的主值,记作argZ。
需要注意的是,不等于零的复数Z的辐角有无限多个值,这些值中的任意两个相差2π的整数倍。
复数的三角形式指的是r(cosθ+isinθ),其中r为复数Z=a+bi的模,θ为Z的一个辐角。
任何一个复数Z=a+bi都可以表示成r(cosθ+isinθ)的形式。
2.复数的三角形式的运算设Z=r(cosθ+isinθ),Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2),则:3.应用例1:求下列复数的模和辐角主值1)1+i解:对于1+i,有a=1,b=1,点(1,1)在第一象限,所以r=sqrt(2),tanθ=1,辐角主值为θ=π/4.2)4-3i解:对于4-3i,有a=4,b=-3,点(4,-3)在第四象限,所以r=5,tanθ=-3/4,辐角主值为θ=11π/6.想一想:如何求复数z=3-4i的辐角?解:对于3-4i,有a=3,b=-4,点(3,-4)在第四象限,所以r=5,tanθ=-4/3,辐角主值为θ=11π/6.复数的三角形式具有以下特征:形式为r(cosθ+isinθ),其中r为模,θ为一个辐角。
下列各式是否为复数的三角形式:1)isinθ+cosθ2)2(cos(π/4)+isin(π/4))3)5(cos(5π/6)+isin(π/6))解:(1)不是,(2)是,(3)是。
例2:把下列复数转化为三角形式1)-1解:-1=cosπ+isinπ,所以r=1,θ=π。
2)2i解:2i=2(cosπ/2+isinπ/2),所以r=2,θ=π/2.3)3-i解:3-i=2(cos(11π/6)+isin(π/6)),所以r=2,θ=11π/6.总结:将复数的代数形式z=a+bi转化为复数的三角形式的一般方法步骤是:①求复数的模:r=sqrt(a^2+b^2);②由tanθ=b/a求出复数的辐角主值θ;③将复数表示为r(cosθ+isinθ)的形式。
复数的三角形式

复数的三角形式1、复数的三角形式(1)复数的幅角:设复数Z=a+bi对应向量,以x轴的正半轴为始边,向量所在的射线(起点为O)为终边的角θ,叫做复数Z的辐角,记作ArgZ,其中适合0≤θ<2π的辐角θ的值,叫做辐角的主值,记作argZ.说明:不等于零的复数Z的辐角有无限多个值,这些值中的任意两个相差2π的整数倍.(2)复数的三角形式:r(cosθ+isinθ)叫做复数Z=a+bi的三角形式,其中.说明:任何一个复数Z=a+bi均可表示成r(cosθ+isinθ)的形式.其中r为Z的模,θ为Z的一个辐角.2、复数的三角形式的运算:设Z=r(cosθ+isinθ),Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2).则3、应用例1求下列复数的模和辐角主值 (1)i +1 (2)i -3解:(1)211122=+=+i又a b tan =θ=1,点(1,1)在第一象限。
所以41πθ=+=)(i arg(2)213322=-+=-)()(i有31-=θtan ,点(13-,)在第四象限,所以611623πππθ=-=-=)(i arg想一想:怎样求复数i z 43-=的辐角?想一想:复数的三角形式有哪些特征?下列各式是复数的三角形式吗?(1)θθcos sin i + (2)[])()(︒-+︒-30302sin i cos(3))(6655ππsin i cos+例2 把下列复数转化为三角形式 (1)-1;(2)i 2; (3) i -3解:(1)2201+-=)(r =1,辐角主值为θ=π=-)(1arg,所以-1=ππsin i cos +(2)22022=+=r 辐角主值为θ=()22π=i arg ,所以i2=)(222ππsin i cos+(3)21322=-+=)()(r ,由3331-=-=θtan 和点),(13-在第四象限,得611623πππθ=-=-=)(i arg ,所以i -3=)(6116112ππsin i cos+总结:复数的代数形式bi a z +=化为复数的三角形式一般方法步骤是:①求复数的模:22b a r +=;②由a btan =θ及点)(b ,a 所在象限求出复数的一个辐角(一般情况下,只须求出复数的辐角主值即可);③写出复数的三角形式。
《复数的三角形式》课件

调制与解调
在通信系统中,复数的三角形式 用于信号的调制和解调过程。通 过将基带信号转换为高频载波信 号,可以实现远距离传输和高效
的频谱利用。
在量子力学中的应用
波函数的复数表示
在量子力学中,波函数通常用复 数表示。复数的三角形式为描述 粒子的状态和行为提供了方便的
数学工具。
量子态的演化
利用复数的三角形式,可以方便地 描述量子态随时间的演化过程,有 助于理解和计算量子系统的行为。
2023-2026
ONE
KEEP VIEW
《复数的三角形式》 ppt课件
REPORTING
CATALOGUE
目 录
• 复数三角形式的定义 • 复数三角形式的运算 • 复数三角形式的应用 • 复数三角形式的扩展 • 复数三角形式的习题与解答
PART 01
复数三角形式的定义
复数三角形式的定义与表示
复数三角形式的性质
01
02
03
模长的性质
模长是非负实数,表示复 数的绝对值。
幅角的性质
幅角可以是任意实数,表 示复数在复平面上的旋转 角度。
共轭复数的性质
若$z = r(costheta + isintheta)$,则其共轭复 数为$z^* = r(cos(theta) + isin(-theta))$。
习题一:计算复数的三角形式
总结词
理解并掌握复数三角形式的计算方法
详细描述
这道题目主要考察了学生对复数三角形式的理解和计算能力。通过这道题目, 学生需要掌握如何将任意复数表示为三角形式,并能够根据给定的模和幅角计 算出对应的复数。
习题二:利用复数的三角形式进行运算
总结词
掌握复数三角形式的运算规则
复数的三角形式与指数形式的相互转换方法应用

复数的三角形式与指数形式的相互转换方法应用复数的三角式与指数式的相互转换方法及应用复数是数学中的一个重要概念,其中涉及到了复数的三角式和指数式的相互转换。
本文将针对复数的三角式和指数式的相互转换方法进行介绍,并且探讨这些转换方法在实际中的应用。
一、复数的三角式和指数式1. 复数的三角式复数的三角式是指将一般复数 $a + bi$ 表示成 $r(\cos{\theta} +i\sin{\theta})$ 的形式,其中 $r$ 为复数的模,$\theta$ 为辐角。
其中,复数的模 $r$ 的计算方法为 $r = \sqrt{a^2 + b^2}$;辐角$\theta$ 的计算方法为 $\theta = \text{arctan}(\frac{b}{a})$,当 $a <0$ 时,$\theta = \text{arctan}(\frac{b}{a}) + \pi$。
2. 复数的指数式复数的指数式是指将复数表示成 $re^{i\theta}$ 的形式,其中 $r$ 为复数的模,$\theta$ 为辐角。
其中,复数的模 $r$ 的计算方法为 $r = \sqrt{a^2 + b^2}$;辐角$\theta$ 的计算方法为 $\theta = \text{arctan}(\frac{b}{a})$,当 $a <0$ 时,$\theta = \text{arctan}(\frac{b}{a}) + \pi$。
二、复数的三角式和指数式的相互转换方法1. 从复数的三角式到指数式的转换将复数 $a + bi$ 的三角式 $r(\cos{\theta} + i\sin{\theta})$ 中的$\cos{\theta}$ 和$\sin{\theta}$ 分别用$e^{i\theta}$ 的实部和虚部表示,即 $\cos{\theta} = \text{Re}(e^{i\theta})$,$\sin{\theta} =\text{Im}(e^{i\theta})$,则有 $a + bi = r(\cos{\theta} + i\sin{\theta}) =r\text{e}^{i\theta}$。
复数的三角形式和欧拉公式

复数是数学中一个重要的概念,它可以用来表示实数以外的数。
复数有两种常见的表示方法,一种是常规的代数形式,即a+bi,其中a和b都是实数,i是虚数单位;另一种是三角形式,即r(cosθ+isinθ),其中r是复数的模,θ是复数的幅角。
复数的三角形式是由欧拉公式推导而来的。
欧拉公式是数学中非常重要而优美的公式之一,它将自然对数的底e、虚数单位i和余弦函数、正弦函数之间建立了一种神奇的关系:e^(iθ)=cosθ+isinθ。
通过欧拉公式,我们可以将复数用指数形式表示为r×e^(iθ),其中r是复数的模,θ是复数的幅角。
这样的表示形式更加简洁而且直观,方便于进行复数的运算。
复数的三角形式有许多重要的性质。
首先,复数的三角形式可以用于求解复数的乘法和除法。
当两个复数相乘时,只需要将它们的模相乘,幅角相加即可;而当两个复数相除时,只需要将被除数的模除以除数的模,被除数的幅角减去除数的幅角即可。
这使得复数的乘除运算变得简单而直观。
此外,复数的三角形式还可以用于求解复数的幂运算。
由于指数运算具有幂相乘的性质,我们可以将复数的幂表示为(r×e^(iθ))^n=r^n×e^(inθ),其中n是正整数。
这样,我们可以通过对模进行乘方,对幅角进行n倍来求解复数的幂,从而进一步简化了运算过程。
最后,复数的三角形式还可以用于求解复数的根。
通过将复数表示为r×e^(iθ),我们可以利用欧拉公式求解复数的n次根。
具体的方法是通过将模开n次根号,幅角除以n来求解。
这样,我们可以方便地找到复数的根,并且我们可以得到全部n个根。
综上所述,复数的三角形式是一种非常有用的表示方法,它简化了复数的运算和求解过程。
欧拉公式的推导和应用,使得我们在处理复数时更加方便、直观,并且可以通过几何的方法来理解复数的运算和性质。
因此,对于学习和应用复数的人来说,掌握复数的三角形式和欧拉公式是十分重要而有价值的。
复数的三角表示形式

复数的三角表示形式
复数是由实数和虚数组成的数,一般表示成 a+bi 的形式,其中a 为实数部分,b 为虚数部分,i 为虚数单位。
除此之外,复数还可以用三角形式表示,即:
z = r(cosθ + i sinθ)
其中,r 表示复数 z 的模,θ表示 z 的幅角。
模 r 的计算公式为:
r = |z| = √(a + b)
幅角θ的计算公式为:
θ = arg(z) = tan(b/a) + kπ (k∈Z)
在三角形式中,复数可以看作是平面直角坐标系中一个点的极坐标,其中实部和虚部分别对应该点在 x 轴和 y 轴上的投影长度。
使用三角形式表示复数有以下几个优点:
1. 易于计算复数的乘法和除法,只需按照平面向量的乘法和倒数公式进行计算。
2. 易于用欧拉公式表示复数,即 e^(iθ) = cosθ + i sinθ,可以方便地进行复杂的数学推导。
3. 易于理解复数在复平面上的几何意义,可以通过旋转和缩放的方式进行操作。
因此,三角形式是复数的重要表示形式之一,对于深入理解复数的性质和应用具有重要意义。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 5.设复数 z=3cos+i·2sin,求函数 y=tan(-argz)( 0 )
2
的最大值
由题,∵ 0 ∴ sin>0, cos>0, tg>0,
2
又 z=3cos+i·2sin
∴ arg z (0, ) 且 tan(argz) 2sin 2 tan ,
例题讲解
复数的三角形式
4、正整数n 是什么值时,(1 3i)n 是实数?
5、已知z 4(cos
i sin
),求 1 的模与辐角
12
12 z
6、已知复数z cos x i sin x , x R,若
f ( x) | z3 1 |,在直角坐标平面上画 z
出y f (x)的示意图
7、若 z1 , z2 C,| z1 || z2 | 1,
且
z1
z2
1 5
7 5
i,求
z1
z2
的值
复数的三角形式
8、将下列复数化为三角形式
(1) 1 sin i cos ( )
2
新课讲授
复数的三角形式
一、复数三角形式的乘法与乘方
z1 r1 (cos 1 i sin1 ) z2 r2 (cos 2 i sin2 )
r b
叫复数z=a+bi的辐角。
θ
O
a
X
②复数辐角用ArgZ=2kπ+θ表示
③适合0≤θ<2π的辐角θ的值,叫辐角主值 记作arg z,即0≤arg z<2π。复数(除0外)与它
的辐角主值一一对应。
④当a∈R+时,arga=0,arg(-a)=π argai=π/2,arg(-ai)=3π/2,arg0不一定
• 三角函数的定义:
y
sin r cos x
r
tg y
x
y
P(x, y)
r
x
O
新课讲授
复数的三角形式
设 r | OZ |, 是 以 x 轴 的 非 负 半 轴 为 始 边 ,
以 OZ 所 在 射 线 为 终 边 的 角 ,则 a , b 与 r ,
有什么关系?
y
我们有:
a r cos , b r sin
b r
0
z a bi r(cos i sin )
Z (a,b)
ax
r(cos i sin )叫做复数 a bi 的三角形式
r -复数的模, -复数的辐角
㈠复数辐角的概念:
Y
①以x轴的正半轴为始边,
Z(a,b)
·
向量oz所在的射线(起 点是o)为终边的角θ,
2
3cos 3
∴ tany=tan(-argz) tan tan(arg z)
1 tan tan(arg z)
1 tan
3
1
1 2 tan2
3 2 tan
3
tan
∵ 3 2 tan 2 3 2 tan 2 6 ,
tan
5
5
5
5
⑤ Cos i Sin Cos iSin
2
例题讲解
复数的三角形式
5、设 z ( 3 i)4 (7 7i),则复数z 的辐角主值为
6、复数1 3i 与7 i 的辐角主值分别为
和,则tan( )的值为
∴ 1 (a 1)2 2 , 解得 0≤a≤2,
又 tg=a-1, ∴ -1≤tg≤1,
∴ 的辐角主值 [0, ] [7 ,2) .
44
此题首先要算对了,还要会算模以及辐角.其中,最容 易出问题的是的范围的确定.仅有-1≤tg≤1 是不够的,还 应当注意到 =1+(a-1)i 的实部为 1,虚部 a-1 在[-1,1]内, 所以 所对的辐角只能在第一和第四象限.
例 4.在复平面上,一个正方形的四个顶点按照逆时针方 向依次为 Z1,Z2,Z3,O(其中 O 为原点).已知 Z2 对应 复数 Z2=1+ 3i ,求 Z1 和 Z3 所对应的复数.
分析与解答: 根据题意我们不妨画出草图,以便分析. 根据平面几何的知识,我们知道正方形的一条对角线
将正方形分成两个全等的等腰直角三角形,而且斜边是直 角边的 2 倍.
由复数运算的几何意义知:
1
z1 2 z 2 [cos( 4 ) i sin( 4 )]
2 (1 3i)( 2 2 i)
2
22
3 1 3 1i
2
2
1
z 3 2 z 2 (cos 4 i sin 4 )
2 (1 3)( 2 2 i)
2
22
1 3 1 3 i
2
2
求 z1 时是将O→Z2 向顺时针方向旋转 45,且模缩短到原
来长度的 1 ,符合复数除法的几何意义,也可以直接写成
2
1 2
1 cos
3i i sin
.
4
4
而在求 z3 时,也可将O→Z1 逆时针旋转 90得到,因此用
z3=z1·i 算更方便.
例题讲解
复数的三角形式
1、计算:2(cos i sin ) 3(cos i sin )
12
12
6
6
2、计算:[3(sin 80 i cos 80 )] 6 ,( 3 i)6
3、 向 量OZ 与 复数 1 i 对 应, 把OZ 按 逆 时 针 方 向 旋 转90, 得 到OZ, 求 与 向 量OZ 对 应的 复数(用 代数 形式 表 示)
22
4
4
∴ z cos( ) i sin( ) cos i sin ,
64
64
12
12
∴ z cos( ) i sin( )
12
12
又 z 23
[cos(
)
i sin(
3
)](cos
3 i sin )
3
3
4
4
cos 5 i sin 5 .
12
12
因此 OP,OQ 的夹角为5 ( ) ,
12 12 2
∵ OP⊥OQ,又∵ |OP|=|z |=1, |OQ|=|z2 2|=1,
∴ |OP|=|OQ|, ∴ΔOPQ 为等腰直角三角形.
例 3.设 =z+ai(a∈R), z (1 4i)(1 i) 2 4i 且
3
6
(4) cos( ) i sin( )
3
3
(5) 3( cos 2 i sin 2 )
3
3
例题讲解
复数的三角形式
2、 把 下 列 复 数 表 示 成 代数 形 式
(1) 4(cos i sin )
3
3
(2) 6(cos 11 i sin11 )
6
6
tan
∴ tan y 1 6 ,当且仅当 3 2tan 时等号成立,
2 6 12
tan
此时 tan2 3 ,
2
y max
arctg
6 12
,此时 arctg
6.
2
复数的三角形式
一、复数三角形式的乘法与乘方
z1 r1 (cos 1 i sin1 ) z2 r2 (cos 2 i sin2 ) z1z2 r1r2[cos(1 2 ) i sin(1 2 )]
3 2 ,
2
∴ 5 7 ,
2
2
又 z1·z2=(-3-2i)(1-5i)=-13+13i.
+是
z1·z2
的一个辐角,且tg(Fra bibliotek)
13 13
1
.
∴ 11 .
4
解该题时,很多同学由于不注意、以及+的范
围,从而得出错误结论.
两个复数相乘,积的模等于各复数的 模的积,积的辐角等于各复数的辐角的和
新课讲授
复数的三角形式
一、复数三角形式的乘法与乘方
z1 r1 (cos 1 i sin1 ) z2 r2 (cos 2 i sin2 )
z1 z2 zn r1 (cos 1 i sin1 ) r2 (cos 2 i sin 2 ) rn (cos n i sin n )
几何意义 z1 z2 r1 (cos1 i sin1 ) r2 (cos 2 i sin 2 )
r1r2[(cos1 cos 2 sin1 sin 2 )
是什么呢? i(cos1 sin2 sin1 cos2 )]
r1r2[cos(1 2 ) i sin(1 2 )]
例题:
例 1 . 复 数 z1 与 2+4i 的 积 是 2-16i , 复 数 z2 满 足
z1
z
2
(7 i
16i)
1
.如果复数
z1
的辐角主值是,z2
的辐角
主值是,求+的值.
分析与解答:
①+是 z1·z2 的一个辐角;
②必须先求出 z1 和 z2,并由此确定、的范围;
由已知 z1