八上期中数学试卷
八年级(上)期中数学试卷(含答案解析)

八年级(上)期中数学试卷一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.3.五边形的内角和是()A.180°B.360°C.540°D.600°4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠27.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.2812.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.16.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.17.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.参考答案与试题解析一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.五边形的内角和是()A.180°B.360°C.540°D.600°【考点】多边形内角与外角.【专题】常规题型.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形【考点】三角形的稳定性.【分析】根据三角形具有稳定性可得答案.【解答】解:直角三角形有稳定性,故选:B.【点评】此题主要考查了三角形的稳定性,是需要识记的内容.5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°【考点】平行线的性质.【分析】由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=95°﹣60°=35°,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=70°,∵DE∥BC,∴∠BED+∠ABC=180°,∴∠BED=180°﹣70°=110°.故选C.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.7.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点评】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【考点】角平分线的性质.【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交P.故选D.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题时注意题目要求要满足两个条件①到角两边距离相等,②点在CD上,要同时满足.二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=6.【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是65°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.16.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.【解答】解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.17.如图,AC=AD,BC=BD,则△ABC≌△ABD;应用的判定方法是(简写)SSS.【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带③去配,这样做的数学依据是两个角及它们的夹边对应相等的两个三角形全等.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS.【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形全等的判定,熟练掌握各判定定理是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明AF=DE,可以证明它们所在的三角形全等,即证明△ABF≌△DEC,已知两边(由BE=CF得出BF=CE,AB=DC)及夹角(∠B=∠C),由SAS可以证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE,∴AF=DE.【点评】本题考查了全等三角形的判定及性质;证明两边相等时,如果这两边不在同一个三角形中,通常是证明它们所在的三角形全等来证明它们相等,是一种很重要的方法.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.【考点】全等三角形的判定.【专题】证明题.【分析】根据已知得出Rt△CEB和Rt△AED,利用HL定理得出即可.【解答】证明:∵BE⊥CD,∴∠CEB=∠AED=90°,∴在Rt△CEB和Rt△AED中,∴Rt△CEB≌Rt△AED(HL).【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.【考点】作图-轴对称变换.【分析】根据关于坐标轴对称的点的坐标特点画出图形即可.【解答】解:如图所示.【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据OC=OD得,△ODC是等腰三角形;根据AB∥DC,得出对应角相等,求得△AOB是等腰三角形,证明最后结果.【解答】证明:∵OC=OD,∴△ODC是等腰三角形,∴∠C=∠D,又∵AB∥DC,∴∠A=∠C,∠B=∠D,∴∠A=∠B,∴△AOB是等腰三角形,∴OA=OB.【点评】本题主要考查了等腰三角形的判定和平行线的性质:两直线平行,内错角相等.。
人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试题一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或173.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.360°C.270°D.540°4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°5.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为()A.关于x轴成轴对称图形B.关于y轴成轴对称图形C.关于原点成中心对称图形D.无法确定8.如图,将两根钢条AA',BB'的中点O连在一起,使AA',BB'可绕点O自由转动,就△≌△的理由是()做成了一个测量工件,则A B''的长等于内槽宽AB,那么判定OAB OA B''A.边角边B.角边角C.边边边D.角角边9.如图,已知Rt△OAB,∠OAB=50°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()A.1个B.2个C.3个D.4个10.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()A.60°B.120°C.60°或120°D.60°或30°二、填空题11.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC ≌△FED .12.在ABC 中,AB =6,AC =10,那么中线AD 边的取值范围是___.13.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD=___.14.如图,在△ABC 中,10AB AC ==,120BAC ∠=︒,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF//AB 交AE 的延长线于点F ,则DF 的长为______________.15.如图,在△ABC 中,AB=AC ,∠BAC=36°,(1)作出AB 边的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连接BD ;(2)下列结论正确的是:①BD 平分∠ABC ;②AD=BD=BC ;③△BDC 的周长等于AB+BC ;④D 点是AC 中点;16.如图,等腰△ABC 中,AB=AC,∠A=20°,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠EBC=__________度.17.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE =120°,则DE的最大值是_____.三、解答题18.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AB=DE.19.在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:正多边形边数3456…n正多边形每个内角的度数(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.20.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.21.如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.22.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.23.如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.24.如图,''',使它与△ABC关于直线l对称;(1)利用网格线画△A B C'''的面积;(2)若每个小正方形的边长为1,请直接写出△A B C(3)若建立直角坐标系后,点A(m-1,3)与点Q(-2,n+1)关于x轴对称,求m2+n的值.25.如图,AC和BD相交于点E,AB//CD,BE=DE.求证:△ABE≌△CDE.26.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.参考答案1.B2.A3.B4.B5.A6.C7.B8.A9.D10.D11.AC=DF(或∠A=∠F或∠B=∠E)【解析】【详解】∵BD=CE,∴BD-CD=CE-CD,∴BC=DE,①条件是AC=DF 时,在△ABC 和△FED 中,12AC DF BC DE ⎧⎪∠∠⎨⎪⎩===∴△ABC ≌△FED (SAS );②当∠A=∠F 时,12A F BC DE ∠=∠⎧⎪∠∠⎨⎪⎩==∴△ABC ≌△FED (AAS );③当∠B=∠E 时,12BC DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△FED (ASA )故答案为AC=DF (或∠A=∠F 或∠B=∠E ).12.28AD <<【解析】【分析】延长AD 到点E ,使AD DE =,连接CE ,得出ADB EDC ≌,推出6CE AB ==,再根据三角形三边关系定理即可得出答案.【详解】解:如图,延长AD 到点E ,使AD DE =,连接CE,AD 是ABC 中线,BD CD ∴=,在ADB △和EDC △中,AD DE ADB EDC BD DC =⎧⎪∠=∠⎨⎪=⎩,()ADB EDC SAS ∴△≌△,6AB EC ∴==,∵在ACE 中,AC CE AE AC CE -<<+,∴106106AE -<<+,4216AD ∴<<,28AD ∴<<,故答案为:28AD <<.【点睛】本题考查了三角形三边关系定理,全等三角形的性质和判定的应用,主要考查学生的推理能力.13.2【解析】【分析】过P 点作PE ⊥OB 于E ,如图,根据角平分线的性质得到PE=PD ,再利用平行线的性质得到∠PCE=∠AOB=30°,接着根据含30度的直角三角形三边的关系得到PE=12PC=2,从而得到PD 的长.【详解】解:过P 点作PE ⊥OB 于E,如图,∵∠AOP=∠BOP=15°,∴OP 平分∠AOB ,∠AOB=30°,而PD ⊥OA ,PE ⊥OB ,∴PE=PD ,∵PC ∥OA ,∴∠PCE=∠AOB=30°,∴PE=12PC=12×4=2,∴PD=2.故答案为:2.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了含30度的直角三角形的性质和平行线的性质.14.5【解析】【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,根据等角对等边求出AD=DF,求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=12AB=12×10=5,∴DF=5.故答案为:5.【点睛】本题考查的是含30°角的直角三角形的性质,等腰三角形的判定和性质,平行线的性质,掌握直角三角形30°角所对的直角边等于斜边的一半的性质是解题的关键.15.(1)详见解析;(2)①②③.【解析】【分析】根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案,(1)利用线段垂直平分线的作法进而得出即可.(2)由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC,可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,,求得AD=BD=BC,则可求得答案,注意排除法在解选择题中的应用.【详解】(1)(2)∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=72°-36°=36°=∠ABD,∴BD平分∠ABC,故①正确,∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故③正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故②正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故④错误,故答案为:①②③.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识,解决本题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.16.60°.【解析】【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【详解】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC=180-202=80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC-∠ABE=80°-20°=60°.故填:60°.【点睛】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.17.12【解析】【分析】如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.证明△CMN是等边三角形,再根据DE≤DM+MN+EN,当D,M,N,E 共线时,DE的值最大.【详解】解:如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.由题意AD=EB=4,AC=CB=4,DM=CM=CN=EN=4,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=4,∴△CMN是等边三角形,∴MN=4,∵DE≤DM+MN+EN,∴DE≤12,∴当D,M,N,E共线时,DE的值最大,最大值为12,故答案为:12.【点睛】本题考查轴对称的性质,两点之间线段最短,等边三角形的判定和性质等知识,解题的关键是学会利用轴对称解决问题,属于中考填空题中的压轴题.18.见详解【解析】【分析】先根据条件求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【详解】∵FB=CE,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FE ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.19.(1)60°,90°,108°,120°,…(n-2)•180°÷n ;(2)正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)答案见详解.【解析】【分析】(1)利用正多边形一个内角=180°-360n°求解;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;(3)常见的两种正多边形的密铺组合有:正三角形和正四边形能密铺,正六边形只能和正三角形密铺.所以要从正三角形、正四边形、正六边形中选一种,只能选择正四边形.【详解】解:(1)由正n 边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n 边形的每一个内角为:60°,90°,108°,120°,…(n-2)•180°÷n ,故答案为60°,90°,108°,120°,…,()2180n n -∙︒;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)正方形和正八边形(如下图所示),理由:设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m·90+n·135=360的正整数解,即2m+3n=8的正整数解,只有12mn=⎧⎨=⎩一组,∴符合条件的图形只有一种.【点睛】本题主要考查了多边形内角和的知识点,求正多边形一个内角度数,可先求出这个外角度数,让180减去即可.一种正多边形的镶嵌应符合一个内角度数能整除360°;两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.20.见解析.【分析】连接AO,证明△BEO≌△ADO即可.【详解】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,∴∠AOD=∠BOE,∴△AOD≌△BOE,∴OE=OD.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .21.(1)证明见解析;(2)△MBN 是等边三角形.【解析】【分析】(1)利用SAS 证明△AOC ≌△BOD ,则有AE =CD ;(2)由△ABE ≌△DBC ,可证△ABM ≌△DBN ,从而得BM =BN ,∠MBN =60°.【详解】(1)证明:∵△ABD 、△BCE 都是等边三角形,∴AB =BD ,BC =BE ,∠ABD =∠CBE =60°,∴∠ABD +∠DBE =∠DBE +∠CBE 即∠ABE =∠DBC ,∴在△ABE 和△DBC 中,AB DBABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩△ABE ≌△DBC(SAS).∴AE =CD .(2)解:△MBN 是等边三角形,理由如下:∵△ABE ≌△DBC ,∴∠BAE =∠BDC .∵AE =CD ,M 、N 分别是AE 、CD 的中点,∴AM =DN ;又∵AB =DB .∴△ABM ≌△DBN .∴BM =BN ,∠ABM =∠DBN .∴∠DBM +∠DBN =∠DBM +∠ABM =∠ABD =60°.∴△MBN 是等边三角形.22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)见解析;(2)CF ⊥AB ,理由见解析;(3)16【解析】【分析】(1)四边形APCD 正方形,则PD 平分∠APC ,PC=PA ,∠APD=∠CPD=45°,即可求解;(2)由△AEP ≌△CEP ,则∠EAP=∠ECP ,而∠EAP=∠BAP ,则∠BAP=∠FCP ,又∠FCP+∠CMP=90°,则∠AMF+∠PAB=90°即可求解;(3)过点C 作CN ⊥BG ,垂足为N ,证明△PCN ≌△APB (AAS ),则CN=PB=BF ,PN=AB ,即可求解.【详解】(1)证明:∵四边形APCD 为正方形∴PD 平分∠APC ,∠APC=90°,PC=PA∴∠APD=∠CPD=45°在△AEP 和△CEP 中,EP EP EPC EPAPC PA =⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△CEP(SAS)(2)CF ⊥AB .理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP∵∠EAP=∠BAP∴∠BAP=∠FCP∵∠FCP+∠CMP=90°,∠AMF=∠CMP ∴∠AMF+∠PAB=90°∴∠AFM=90°∴CF⊥AB(3)过点C作CN⊥BG,垂足为N∵CF⊥AB,BG⊥AB∴四边形BFCN为矩形,FC∥BN∴∠CPN=∠PCF=∠EAP=∠PAB又AP=CP,∠ABP=∠CNP=90°∴△PCN≌△APB(AAS)∴CN=PB=BF,PN=AB∵△AEP≌△CEP∴AE=CE∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+BF+AF=2AB=16【点睛】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(3),证明△PCN ≌△APB (AAS ),是本题的关键.24.(1)见解析;(2)2;(3)-3.【解析】【分析】(1)根据成轴对称图形的性质画出图象即可;(2)用割补法求出三角形的面积;(3)根据点A 与点Q 的对称关系,求出m ,n 的值,再计算最后结果.【详解】(1)如图为所作,略;(2)111232213112222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△;(3)∵点A(m -1,3)与点Q(-2,n+1)关于x 轴对称∴m -1=-2,n+1=-3解得m=-1,n=-4∴m 2+n 的=(-1)2+(-4)=-3.【点睛】本题考查了轴对称图形的画法及面积计算,坐标计算,熟知轴对称图形的性质是解题的关键.25.见解析【解析】【分析】先观察要证的线段分别在哪两个三角形,再证出全等即可.【详解】证明:∵AB ∥CD ,∴∠B=∠D ,∠A=∠C ,在△ABE 和△CDE 中,∠B=∠D ,∠A=∠C ,BE=DE ,∴△ABE ≌△CDE (AAS ).【点睛】本题考查全等三角形的全等的判定问题,关键掌握全等三角形的证明方法,一般采用证三角形全等来证线段或角相等,这是一种很重要的方法.26.(1)证明见解析;(2)∠APN 的度数为108°.【解析】【分析】(1)利用正五边形的性质得出AB=BC ,∠ABM=∠C ,再利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出∠BAM+∠ABP=∠APN ,进而得出∠CBN+∠ABP=∠APN=∠ABC 即可得出答案.【详解】证明:(1)∵正五边形ABCDE ,∴AB=BC ,∠ABM=∠C ,∴在△ABM 和△BCN 中AB BC ABM C BM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△BCN (SAS );(2)∵△ABM ≌△BCN ,∴∠BAM=∠CBN ,∵∠BAM+∠ABP=∠APN ,∴∠CBN+∠ABP=∠APN=∠ABC=()521805-⨯ =108°.即∠APN 的度数为108°.。
人教版八年级上册数学期中考试试题带答案

人教版八年级上册数学期中考试试卷一、单选题1.在下列以线段a 、b 、c 的长为边,能构成三角形的是()A .a =3,b =4,c =8B .a =5,b =6,c =11C .a =6,b =8,c =9D .a =7.b =17,c =252.如果三角形的一个内角等于另两个内角之差,则这个三角形为()A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形3.如图,点D 是△ABC 边BC 延长线上的点,∠ACD =105°,∠A =70°,则∠B 等于A .35°B .40°C .45°D .50°4.如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,则S △ABC 的面积为()A .52B .3C .72D .45.如图,ABC A B C ''△≌△,30BCB '∠=︒,则ACA '∠的度数为()A .30°B .45︒C .60︒D .110︒6.从十二边形的一个顶点出发,可引出对角线()条A .9条B .10条C .11条D .12条7.一个多边形的内角和等于1080°,则这个多边形的每个外角都等于()A.30°B.45°C.60°D.90°8.如图,已知∠ABC,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP.他这样做的依据是()A.在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.测量垂直平分线上的点到这条线段的距离相等9.如图所示,在△ABC中P为BC上一点,PR⊥BC,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP其中正确的是()A.①②B.②③C.①③D.①②③10.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°二、填空题11.已知三角形的两边长分别为1和4,第三边长为整数,则第三边长为______.12.一个六边形的内角和度数为_______.13.如图所示,△ABC≌△AED,∠E=55°,∠EAC=55°,∠C=45°,则∠DAC=______.14.如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD :CD =2:3,AD 、BE 交于点O ,若S △AOE ﹣S △BOD =1,则△ABC 的面积为_____.15.已知:如图,Rt ABC 中,AC BC =,D 为BC 上一点,CE AD ⊥于E ,若2CE =,则BEC S =△________.16.在Rt ABC △中,90A ∠=︒,3AB =,4AC =,ABC ∠,ACB ∠的平分线交于P 点,PE BC ⊥于E 点,则PE 的长是________.17.如图,在△ABC 中,∠B =30°,∠BAC =90°,AD ⊥BC ,CD =2,则BD =_.三、解答题18.已知一个正多边形的每个外角均为45°,则这个多边形的内角和是多少度.19.如图:111A B C △的面积为a ,分别延长111A B C △的三条边11B C 、11C A 、11A B 到点2B 、2C 、2A ,使得1211C B B C =,1211A C A C =,1211B A A B =,得到222A B C △:再分别延长222A B C △的三条边22B C 、22C A 、22A B 到点3B 、3C 、3A ,使得2322C B B C =,2322A C A C =,2322B A A B =,得到333A B C △:…….按照此规律作图得到n n n A B C ,求n n n A B C 的面积.20.如图,在ABC 中,AD 是高,AE 是角平分线,50BAC ∠=︒,60B ∠=︒.求DAC ∠和BEA ∠的度数.21.如图,已知AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,点E ,D 分别为垂足,CF CB =.求证:BE FD =.22.如图,△ABC为等边三角形,AE=CD,AD与BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求∠BPD的度数;(3)求AD的长.23.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,DE⊥AB 于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=12,求AC的长.24.如图,在△ABC中,AB=AC,点D,E.,F分别在AB、BC、AC边上,且BE=CF,BD=CE(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DFE的度数.25.如图,在△ABC 中,AC=BC ,点D 在边AB 上,AB=4BD ,连接CD ,点E ,F 在线段CD 上,连接BF ,AE ,∠BFC=∠AEC=180°-∠ACB .(1)①∠FBC 与∠ECA 相等吗?说明你的理由;②△FBC 与△ECA 全等吗?说明你的理由;(2)若AE =11,EF =8,则请直接写出BF 的长为;(3)若△ACE 与△BDF 的面积之和为12,则△ABC 的面积为.26.(1)模型探究:如图1所示的“镖形”图中,请探究ADB ∠与A ∠、B Ð、C ∠的数量关系并给出证明;(2)模型应用:如图2,DE 平分ADB ∠,CE 平分ACB ∠,24A ∠=︒,66B ∠=︒,请直接写出E ∠的度数.参考答案1.C2.C3.A4.C5.A6.A7.B8.A9.A10.C11.4【分析】三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,根据三边关系可得第三边的范围,从而可得答案.【详解】解:设三角形的第三边为,x则41-<x <41+,即3<x <5,第三边长为整数,4,x ∴=故答案为:4.【点睛】本题考查的是三角形的三边关系,熟悉三角形的三边关系得到第三边的取值范围是解题的关键.12.720︒【分析】根据多边形的内角和公式()2180n -⋅o,其中n 为多边形的边数,进行计算即可.【详解】解:一个六边形的内角和等于()62180720-⨯=;故答案为:720°.【点睛】本题考查了多边形的内角和公式,熟悉多边形内角和公式是解题的关键.13.25°.【解析】【分析】根据全等三角形的性质得到∠D =∠C ,根据三角形内角和定理求出∠EAD ,结合图形计算,得到答案.【详解】∵△ABC ≌△AED ,∠C =45°,∴∠D =∠C =45°,∵∠E =55°,∴∠EAD =180°﹣∠E ﹣∠D =80°,∴∠DAC =∠EAD ﹣∠EAC =80°﹣55°=25°,故答案为:25°.14.10【分析】根据E 为AC 的中点可知,S △ABE =12S △ABC ,再由BD :CD =2:3可知,S △ABD =25S △ABC ,进而可得出结论.【详解】解:∵点E 为AC 的中点,∴S △ABE =12S △ABC .∵BD :CD =2:3,∴S △ABD =25S △ABC ,∵S △AOE ﹣S △BOD =1,S △AOE ﹣S △BOD=ABE ABD S S - ,∴12S △ABC ﹣25S △ABC =1,解得S △ABC =10.故答案为:10.15.2【分析】延长CE ,过B 点作BM CE ⊥于点M ,先证明()BMC CEA AAS ≌,即可得出2BM CE ==,运用三角形面积计算公式计算即可.【详解】解:延长CE ,过B 点作BM CE ⊥于点M ,,∵90MCB ACE ACE CAD ∠+∠=∠+∠=︒,∴MCB CAD ∠=∠,∵90BMC AEC ∠=∠=︒,AC BC =,∴()BMC CEA AAS ≌,∴2BMCE ==,∴1122222BECS CE BM=⨯=⨯⨯=,故答案为:2.【点睛】本题主要考查全等三角形的判定与性质,寻找BEC△EC边上的高作辅助线证明()BMC CEA AAS≌全等是解题的关键.16.1【解析】【分析】连接AP,作PF⊥AB于F,PG⊥AC于G,根据角平分线的性质得到PE=PF=PG,根据三角形的面积公式计算即可.【详解】解:连接AP,作PF⊥AB于F,PG⊥AC于G,∵∠A=90°,AB=3,AC=4,∴BC=5,∵BP、CP是∠ABC和∠ACB的平分线,∴PE=PF=PG,∴12×BC×PE+12×AB×PF+12×AC×PG=12×AB×AC,解得,PE=1.故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.6【解析】【分析】先在Rt ACD △中,利用直角三角形的性质、勾股定理求出AD 的长,再在Rt ABD △中,利用直角三角形的性质、勾股定理即可得.【详解】解: 在ABC 中,30,90B BAC ∠=︒∠=︒,9006B C ︒-∠∴=∠=︒,AD BC ⊥ ,9030CAD C ∴∠=︒-∠=︒,在Rt ACD △中,2CD =,24,AC CD AD ∴===,则在Rt ABD △中,26ABAD BD ====,故答案为:6.18.1080︒【分析】由已知,根据正多边形的外角和为360度可以得到正多边形的边数,再由正多边形内角和的计算方法可以得解.【详解】解:由360458︒÷︒=可以得知正多边形的边数为8,∴这个正多边形的内角和为()821801080-⨯︒=︒.19.17n a-【分析】连接A 1B 2,B 1C 2,C 1A 2,C 2A 3,B 2C 3,A 2B 3,根据中线的性质求出△A 1C 1B 2的面积,再求出B 2C 2C 1的面积,同理可求出△A 1A 2C 2、△B 1B 2A 2,故可得到222A B C △的面积,进而发现规律得到n n n A B C 的面积.【详解】如图,连接A 1B 2,C 1A 2,B 1C 2,C 2A 3,B 2C 3,A 2B 3,∵1211C B B C =,∴112A C B S =111A B C △S =a∴2212B C C S a= ∵1211A C A C =,1211B A A B =同理1222A A C S a = ,1222B B A S a = ∴2222227A B C S a a a a a =+++=△=7111A B C △S ∵2322C B B C =,∴223A C B S =222A B C S △=7a ∴33214B C C S a= ∵2322A C A C =,2322B A A B =同理23314A AC S a = ,23314B B A S a= 同理可得333222749A B C A B C S S a ==△△=72a ∴1111177n n n n n A B C A B C S S a --== .【点睛】此题主要考查三角形面积的规律探索,利用了底倍长,高相等,面积加倍,解题的关键是熟知中线的性质.20.20,95DAC BEA ∠=︒∠=︒【解析】【分析】因为AD 是高,所以90ADC ∠=︒,又因为50,60BAC B ∠=︒∠=︒,根据三角形内角和定理求出70C ∠=︒,即可求出DAC ∠度数;因为50BAC ∠=︒,且AE 是角平分线,所以25BAE ∠=︒,再利用三角形内角和定理即可求解.【详解】解:AD BC⊥ 90ADC ∴∠=︒50,60BAC B ∠=︒∠=︒ ,180506070C ∴∠=︒-︒-︒=︒;在Rt ADC 中,180180907020DAC ADC C ∴∠=︒-∠-∠=︒-︒-︒=︒,50BAC ∠=︒ 且AE 是角平分线,25BAE ∴∠=︒,180180602595BEA B BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,综上所述:20,95DAC BEA ∠=︒∠=︒.【点睛】本题考查了角平分线的性质、与高有关的角度计算、三角形内角和定理,解题的关键是找准角之间的等量关系,利用三角形内角和定理进行求解.21.见解析【解析】【分析】根据角平分线性质可得CD CE =,90CDF CEB ∠=∠=︒,然后证Rt CDF Rt CEB △≌△(HL )即可.【详解】证明:∵AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,CD CE ∴=,90CDF CEB ∠=∠=︒,在Rt △DFC 和Rt △EBC 中,CD CE CF CB =⎧⎨=⎩,Rt CDF Rt CEB∴△≌△(HL),DF BE∴=.【点睛】本题考查角平分线的性质,三角形全等判定与性质,掌握角平分线的性质,三角形全等判定与性质,是解题关键.22.(1)详见解析;(2)60°;(3)7.【解析】【分析】(1)根据SAS证明△ABE与△CAD全等即可;(2)根据全等三角形的性质得出∠ABE=∠CAD,进而解答即可;(3)根据含30°的直角三角形的性质解答即可.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=∠C=60°,又∵AE=CD,在△ABE与△CAD中,AB AC=⎧⎪⎨⎪⎩∠BAC=∠CAE=CD,∴△ABE≌△CAD(SAS),∴BE=AD;(2)解:由(1)得∠ABE=∠CAD AD=BE,∴∠BPQ=∠BAD+∠ABE=∠BAD+∠CAD=60°;(3)解:∵BQ⊥AD,∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,又∵AD=BE,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查全等三角形的性质及含30度角的直角三角形,解题突破口是根据全等三角形的性质得出∠ABE =∠CAD .23.(1)证明见解析;(2)6.【解析】【分析】(1)先根据垂直的定义、直角三角形的性质可得A BED ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据全等三角形的性质可得,12AC BE BC DB ===,再根据线段中点的定义可得162BE BC ==,由此即可得出答案.【详解】证明:(1)90ACB DBC ∠=∠=︒ ,DE AB ⊥,9090,BED ABC A ABC ∴∠+∠=︒∠+∠=︒,A BED ∴∠=∠,在ACB △和EBD △中,90ACB EBD A BED AB ED ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ACB EBD AAS ≅∴ ;(2)由(1)已证:ACB EBD ≅ ,,12AC BE BC DB ∴===,点E 是BC 的中点,24.(1)证明见解析;(2)证明见解析;(3)55︒.【分析】(1)先根据等腰三角形的性质可得B C ∠=∠,再根据三角形全等的判定定理证出DBE ECF ≅△△,然后根据全等三角形的性质可得DE EF =,最后根据等腰三角形的定义即可得证;(2)先根据全等三角形的性质可得BDE CEF ∠=∠,再根据三角形的外角性质即可得证;(3)先根据三角形的内角和定理可得70B ∠=︒,从而可得70∠︒=DEF ,再根据等腰三角形的性质即可得.【详解】证明:(1)AB AC = ,B C ∴∠=∠,在DBE 和ECF △中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,()DBE ECF SAS ∴≅ ,DE EF ∴=,DEF ∴ 是等腰三角形;(2)由(1)已证:DBE ECF ≅△△,BDE CEF ∴∠=∠,DEF CEF DEC B BDE ∠+∠=∠=∠+∠ ,B DEF ∴∠=∠;(3) 在ABC 中,40,A B C ∠=︒∠=∠,()1180702B C A ∴∠=∠=︒-∠=︒,由(2)已证:B DEF ∠=∠,70DEF ∴∠=︒,由(1)已证:DEF 是等腰三角形,()1180552DFE EDF DEF ∴∠=∠=︒-∠=︒.25.(1)①见解析;②全等,理由见解析;(2)3;(3)48【分析】(1)①连接BC ,由已知及∠AEC=180°-∠AED ,可得到∠ACB=∠AED .再证明∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②利用“ASA”证明△FBC ≌△ECA ;(2)由(1)中全等三角形的结论及已知可得到BF 的长;(3)由(1)中结论可得S △FBC=S △ECA ,所以S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,根据AB=4BD ,可得到S △DBC=14S △ABC=12,从而可得△ABC 的面积.【详解】解:(1)①∠FBC=∠ECA ,理由如下:∵∠BFC=∠AEC=180°-∠ACB ,且∠AEC=180°-∠AED ,∴∠ACB=∠AED .由外角定理可得∠AED=∠ACD+∠CAE ,又∠ACB=∠ACD+∠BCF ,∴∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②△FBC 与△ECA 全等,理由如下:在△FBC 和△ECA 中,FBC ECA BC CA BCF CAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FBC ≌△ECA (ASA );(2)由(1)中②可知,FC=AE=11,BF=CE ,又EF=8,∴CE=FC-EF=11-8=3,∴BF=3,故答案为:3;(3)由(1)中结论可知S △FBC=S △ECA ,∴S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,又AB=4BD ,∴S △DBC=14S △ABC=12,∴S △ABC=48.故答案为:48.26.(1)ADB ∠=A ∠+B Ð+C ∠,理由见详解;(2)21°【分析】(1)连接CD 并延长到点E ,利用三角形的外角的性质求解即可;(2)由(1)可知:∠ADB-∠C=∠A+∠B=90°,从而得∠EDO-∠BCO=12×90°=45°,结合∠EDO+∠E=∠BCO+∠B ,即可求解.【详解】解:(1)ADB ∠=A ∠+B Ð+C ∠,理由如下:连接CD 并延长到点E ,∵∠ADE =∠ACD +∠A ,∠BDE =∠BCD +∠B ,∴∠ADE +∠BDE =∠ACD +∠A +∠BCD +∠B ,∴ADB ∠=A ∠+B Ð+ACB ∠.(2)由第(1)题可得:ADB ∠=A ∠+B Ð+ACB ∠,∴∠ADB-∠ACB=∠A+∠B=66°+24°=90°,∵DE 平分ADB ∠,CE 平分ACB ∠,∴∠EDO-∠BCO=12(∠ADB-∠C )=12×90°=45°,∵∠DOE=∠BOC ,∴∠EDO+∠E=∠BCO+∠B ,∴∠B-∠E=∠EDO-∠BCO=45°,∴∠E=∠B-45°=66°-45°=21°.。
八年级上册期中数学试卷及答案解析

八年级上册期中数学试卷及答案解析1.已知三角形两边长分别为7、10,那么第三边的长可以是()A.2B.3C.17D.52.n边形的每个外角都为15o,则边数n为()A.20B.22C.24D.263.如图,要测量湖两岸相对两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再在BF的垂线DG上取点E,使点A,C,E在一条直线上,可得ΔABC≌ΔEDC.判定全等的依据是()A.ASAB.SASC.SSSD.HL4.已知,如图,AD=AC,BD=BC,O为AB上一点,则图中共有全等三角形的对数是()A.1对B.2对C.3对D.4对5.如图,ΔABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.LB=LCB.AD平分LBACC.AD L BCD.AB=2BD6.和点p(—3,2)关于x轴对称的点是()A.(3,2)B.(—3,2)C.(—3,—2)D.(3,—2)7.如图所示,人字梯中间一般会设计一“拉杆”,这样做的依据是.8.八边形的对角线共有条.9.如图,在ΔABC中,LC=40。
,将ΔABC沿着直线l折叠,点C落在点D的位置,则L1—L2的度数是.10.如图,小虎用10块高度都是4cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,LACB=90。
),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离DE为cm.11.RtΔABC中,CD是斜边AB上的高,LB=30。
,AD=2cm,则AB的长度是cm.12.已知等腰三角形的一个内角等于40。
,则它的顶角是。
.13.如图点P是LBAC的平分线AD上一点,PE L AC于点E.已知PE=3,则点P到AB的距离是.14.如图,等腰ΔABC中,AB=AC,AB的垂直平分线MN交AC于点D,LDBC=15。
,则LA 的度数是度.15.如图,在ΔABC中,AD L BC于D,AE平分LDAC,LBAC=80。
人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试题一、单选题1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.若正多边形的一个外角是60°,则该正多边形的边数是()A .4B .5C .6D .73.如图,△ABC 中BC 边上的高是()A .BDB .AEC .BED .CF4.若△ABC ≌△DEF ,AB =2,AC =4,且△DEF 的周长为奇数,则EF 的值为()A .3B .4C .3或5D .3或4或55.如图,在△ABC 中,点D 为BC 边上一点,连接AD ,取AD 的中点P ,连接BP ,CP .若△ABC 的面积为4cm 2,则△BPC 的面积为()A .4cm 2B .3cm 2C .2cm 2D .1cm 26.如图,在ABC 中,D 、E 分别为AB 、AC 边上的点,DA DE =,DB BE EC ==.若130ABC ∠=︒,则C ∠的度数为()A .20︒B .22.5︒C .25︒D .30°7.如图,将一副含30°,45°的直角三角板如图摆放,则∠1+∠2等于()A.200°B.210°C.180°D.225°8.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD9.在△ABC中,∠A=40°,∠B=60°,则∠C=()A.40°B.80°C.60°D.100°10.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC二、填空题11.若三角形三个内角度数的比为2:3:4,则此三角形是______三角形(填锐角、直角或钝角).12.已知ABC∆是等腰三角形,若它的周长为18,一条边的长为4,则它的腰长为__________.13.若△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,设边AC的长为m,则m的取值范围是_____.14.如图,在△ABC 中,∠ACB =90º,∠ABC =60º,CD ⊥AB ,垂足为D ,若BD =1,则AD 的长为___________.15.如图,△ABC ≌△ADE ,且点E 在BC 上,若∠DAB =30°,则∠CED =_____.16.如图,ABC 为等边三角形,以边AC 为腰作等腰ACD △,使AC CD =,连接BD ,若32ABD ∠=︒,则CAD ∠=__________°.三、解答题17.如图,已知CD 为ACB ∠的平分线,AM CD ⊥于,46,8M B BAM ∠=︒∠=︒,求ACB ∠的度数.18.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .19.如图,已知△ABC.(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D,(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是_______.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21.如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,AB=AE.求证:(1)AE⊥AB;(2)CD=DE﹣BC.22.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=12 BF.23.如图,在△ABC中,AB=AC,∠BAC=90°,点D、E分别在AB、BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF.(2)判断BD和CF的数量关系,并说明理由.24.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.如图1,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点.(1)若OF+BE=AB,求证:CF=CE.(2)如图2,∠ECF=45°,S△ECF=6,求S△BEF的值.参考答案1.A【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,就可得到答案。
八年级(上)期中数学试卷含答案解析

八年级(上)期中数学试卷一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC 的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C 的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEFK为正方形,∴EF=FK=BE=BK,∵AB=BC,∴CK=KF=EF=AE,在△AEF和△CKF中∴△AEF≌△CKF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92°.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB 的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC ≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC ≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65°.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为10.【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE =S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【解答】解:∵点E为AC的中点,∴S△ABE =S△ABC.∵BD:CD=2:3,∴S△ABD=S△ABC,∵S△AOE ﹣S△BOD=1,∴S△ABE =S△ABD=S△ABC﹣S△ABC=1,解得S△ABC=10.故答案为:10.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.【考点】三角形内角和定理.【分析】然后根据三角形的内角和等于180°列式计算求出∠B,然后求解即可.【解答】解:∵∠A=∠B﹣10°,∠C=∠B﹣5°,∴∠B﹣10°+∠B+∠B﹣5°=180°,∴∠B=65°,∴∠A=65°﹣10°=55°,∠C=65°﹣5°=60°,∴△ABC的内角的度数为55°,60°,65°.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.【解答】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的性质得到AB=AC,AD=AE,BE=CD,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质和三角形的内角和得到∠ACB=∠ABC=65°,根据垂直的定义得到∠BEC=∠AEB=90°,于是得到结论.【解答】(1)证明:∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=CD,∴BD=CE,在△BEC与△CDB中,,∴△BEC≌△CDB;(2)解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=65°,∵BE⊥AC,∴∠BEC=∠AEB=90°,∴∠ABE=∠ACD=40°,∴∠BCD=15°.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是(1,﹣1),点B的对应点B1的坐标是(﹣4,﹣1),点C的对应点C1的坐标是(﹣3,1);(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标(0,﹣3)或(0,1)或(3,﹣3).【考点】作图﹣轴对称变换;坐标确定位置.【分析】(1)根据各点坐标画出三角形即可,再根据轴对称的性质,画出三角形即可;(2)根据△△A1B1C1各顶点的位置写出其坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【解答】解:(1)画图如图所示:(2)由图可得,点A1的坐标是(1,﹣1),点B1的坐标是(﹣4,﹣1),点C1的坐标是(﹣3,1);(3)∵AB为公共边,∴与△ABC全等的三角形的第三个顶点的坐标为(0,﹣3),(0,1)或(3,﹣3).22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.【考点】翻折变换(折叠问题);三角形三边关系.【分析】根据翻折变换的性质可得CE=CD,BE=BC,然后求出AE,再求出AD+DE=AC,最后根据三角形的周长公式列式计算即可得解.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,∴AE<AD+DE,∴在△ABE中,AE>AB+BE,∴AE<5,AE>2,即2<AE<5,∴7<△AED的周长<1.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.【解答】解:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=2HE=2.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.【考点】三角形综合题.【分析】(1)如图1中,设CD与y轴交于点E.根据四边形内角和定理,只要证明∠BCD+∠BAD=180°即可解决问题.(2)如图1中,求出直线AB、BC的解析式,再求出直线AD、CD的解析式,利用方程组求交点D坐标.(3)分四种情形,利用全等三角形的性质,列出方程分别求解即可.【解答】解:(1)如图1中,设CD与y轴交于点E.∵AD⊥AB,∴∠BAD=90°,∵∠1+∠BCO=90°,∠1=∠2,∴∠BCO+∠2=90°,∴∠BCD=90°,∴∠BCD+∠BAD=180°,∴∠ABC+∠D=360°﹣(∠BCD+∠BAD)=180°.(2)如图1中,∵A(7a,﹣7a),B(0,﹣7a),∴直线AB的解析式为y=x﹣7a,∵AD⊥AB,∴直线AD的解析式为y=﹣x+7a,∵C(﹣3a,0),B(0,﹣7a),∴直线BC的解析式为y=﹣x﹣7a,∵CD⊥BC,∴直线CD的解析式为y=x+a,由解得,∴点D的坐标为(4a,3a).(3)①如图2中,作NG⊥OE于G,GN的延长线交DF于H.∵△NEM是等腰直角三角形,∴EN=MN,∠ENM=90°,由△ENG≌△NMH,得EG=NH,∵N(n,2n﹣3),D(4,3),∴HN=EG=3﹣(2n﹣3)=6﹣2n∵GH=4,∴n+6﹣2n=4,∴n=2,∴N(2,1).②如图3中,作NG⊥OE于G,MH⊥OE于H.由△ENG≌△MEH,得GE=HM=4,∴OG=7=2n﹣3,∴n=5,∴N(5,7).③如图4中,作NG⊥OE于G,GN的延长线交DF于H.由△ENG≌△NMH得EG=NH=4﹣n,∴3+4﹣n=2n﹣3,∴n=,∴N(,).④如图5中,作MG⊥OE于G,NH⊥GM于H.由△EMG≌△MNH得EG=MH=n﹣4,MG=NH=4∴GH=n,∴3﹣(n﹣4)+4=2n﹣3,∴n=,∴N(,).综上所述,满足条件的点N的坐标为(2,1)或(5,7)或(,)或(,).。
八年级(上)期中数学试卷(附答案)

八年级(上)期中数学试卷一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.2.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个3.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±14.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°6.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=27.下列运算错误的是()A.B.C.D.8.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3 B.4 C.6 D.510.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2 B.1 C.6 D.10二、填空题(每空2分,共24分)11.计算:(﹣3)﹣2=.12.约分:=.13.用科学记数法表示﹣0.000614为.14.分解因式:4x2y﹣4xy+y=.15.若分式有意义,则实数x的取值范围是.16.化简﹣的结果是.17.如图,已知∠1=∠2,AC=AD,添加一个条件使△ABC≌△AED,你添加的条件是(填一种即可),根据.18.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为.19.已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是.20.观察下列等式:第1个等式:a1==﹣;第2个等式:a2==﹣;第3个等式:a3==﹣;第4个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.三、解答题(每小题5分,共25分)21.分解因式:x2(m﹣2)+9y2(2﹣m)22.化简:﹣÷.23.解分式方程:.24.已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.25.先化简,再求值:(1﹣)÷,其中a=﹣1.四、解答题(26题3分,27-29每题6分,本题共21)26.尺规作图:已知:如图,∠A与直线l.试在l上找一点P,使点P到∠A的两边的距离相等.要求:保留痕迹,不写作法.27.列方程解应用题从A地到B地的路程是30千米.甲骑自行车从A地到B地先走,半小时后,乙骑自行车从A地出发,结果二人同时到达.已知乙的速度是甲的速度的1.5倍,求甲、乙二人骑车速度各是多少?28.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.29.已知:如图,Rt△ABC中,∠BAC=90°.(1)按要求作出图形:①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE.(2)猜想(1)中线段AD与BE的大小关系,并证明你的结论.解:(1)完成作图(2)AD与BE的大小关系是.参考答案与试题解析一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个【考点】因式分解-运用公式法;因式分解-提公因式法.【专题】因式分解.【分析】直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.【解答】解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.【点评】此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.3.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±1【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.【解答】解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.4.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°【考点】全等三角形的性质;三角形内角和定理.【分析】根据已知数据找出对应角,根据全等得出∠A=∠D=50°,∠F=∠C=72°,根据三角形内角和定理求出即可.【解答】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°﹣∠D﹣∠F=58°,故选B.【点评】本题考查了三角形内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠A=∠D=50°,∠F=∠C=72°是解此题的关键,注意:全等三角形的对应边相等,对应角相等.5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°【考点】全等三角形的性质.【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE﹣∠DAC代入数据进行计算即可得解.【解答】解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=35°.故选B.【点评】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.6.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=2【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣2),得2x﹣5=﹣3,解得x=1.检验:当x=1时,(x﹣2)=﹣1≠0.∴原方程的解为:x=1.故选:C.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.下列运算错误的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.【解答】解:A、==1,故本选项正确;B、==﹣1,故本选项正确;C、=,故本选项正确;D、=﹣,故本选项错误;【点评】此题考查了分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.8.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)【考点】全等三角形的判定与性质;作图—基本作图.【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【解答】解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选A.【点评】考查全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点.9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.10.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2 B.1 C.6 D.10【考点】分式的混合运算;完全平方公式.【专题】阅读型.【分析】根据题意求出所求式子的最小值即可.【解答】解:∵x>0,∴在原式中分母分子同除以x,即=x+,在面积是9的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=,(x>0),解得x=3,这时矩形的周长2(x+)=12最小,因此x+(x>0)的最小值是6.故选:C【点评】此题考查了分式的混合运算,弄清题意是解本题的关键.二、填空题(每空2分,共24分)11.计算:(﹣3)﹣2=.【考点】负整数指数幂.【分析】根据负指数次幂的意义,首先计算乘方,即可.【解答】解:(﹣3)﹣2==.故答案是:.【点评】本题主要考查了负指数次幂的意义,正确理解意义是解题的关键.12.约分:=.【考点】约分.【分析】先找出分式的分子和分母的公因式,再根据分式的基本性质求出即可.【解答】解:原式==,故答案为:.【点评】本题考查了分式的约分的应用,关键是找出分式的分子和分母的公因式.13.用科学记数法表示﹣0.000614为﹣6.14×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:﹣0.000614=﹣6.14×10﹣4,故答案为:﹣6.14×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:4x2y﹣4xy+y=y(2x﹣1)2.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(4x2﹣4x+1)=y(2x﹣1)2.故答案为:y(2x﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.若分式有意义,则实数x的取值范围是x≠5.【考点】分式有意义的条件.【专题】计算题.【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.16.化简﹣的结果是﹣.【考点】分式的加减法.【专题】计算题.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣=﹣=﹣.故答案为:﹣.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.如图,已知∠1=∠2,AC=AD,添加一个条件使△ABC≌△AED,你添加的条件是AB=AE(填一种即可),根据SAS.【考点】全等三角形的判定.【专题】开放型.【分析】首先根据等式的性质可得∠CAB=∠DAE,再添加条件AB=AE可利用SAS定理判定△ABC≌△AED.【解答】解:添加的条件AB=AE,∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,在△ABC和△AED中,∴△ABC≌△AED(SAS),故答案为:AB=AE,SAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为﹣=2.【考点】由实际问题抽象出分式方程.【分析】设原计划每天修建道路x米,则实际每天修建道路(x+20)米,根据题意,提前2天完成任务,列方程.【解答】解:设原计划每天修建道路x米,则实际每天修建道路(x+20)米,由题意得,﹣=2.故答案为:﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.19.已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是②③④.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,根据角平分线上的点到角的两边的距离相等可得DE=DF=DG,再根据到角的两边距离相等的点在角的平分线上解答.【解答】解:如图,过点D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,∵点D是△ABC的两外角平分线的交点,∴DE=DG,DF=DG,∴DE=DF=DG,∴点D在∠B的平分线上,故②③④正确,只有点G是AC的中点时,AD=CD,故①错误,综上所述,说法正确的是②③④.故答案为:②③④.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.20.观察下列等式:第1个等式:a1==﹣;第2个等式:a2==﹣;第3个等式:a3==﹣;第4个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)由前四个等是可以看出:是第几个算式,等号左边的分母的第一个因数是就是几,第二个因数是几加1,第三个因数是2的几加1次方,分子是几加2;等号右边分成分子都是1的两项差,第一个分母是几乘2的几次方,第二个分母是几加1乘2的几加1次方;由此规律解决问题;(2)把这20个数相加,化为左边的形式相加,正好抵消,剩下第一个数分裂的第一项和最后一个数分裂的后一项,得出答案即可.【解答】解:(1)用含n的代数式表示第n个等式:a n==﹣.(2)a1+a2+a3+…+a20=﹣+﹣+﹣+﹣+…+﹣=﹣.故答案为:(1),﹣;(2)﹣.【点评】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.三、解答题(每小题5分,共25分)21.分解因式:x2(m﹣2)+9y2(2﹣m)【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(m﹣2)﹣9y2(m﹣2)=(m﹣2)(x2﹣9y2)=(m﹣2)(x+3y)(x﹣3y).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.化简:﹣÷.【考点】分式的混合运算.【专题】计算题.【分析】原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣•=﹣=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.解分式方程:.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+2(x﹣1)=3,去括号得:2x+2x﹣2=3,移项合并得:4x=5,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定定理SAS推知△ADF≌△CBE;然后由全等三角形的对应边相等知,AF=CE,所以AF﹣EF=CE﹣EF,即AE=CF.【解答】证明:∵AD∥BC(已知),∴∠A=∠C(两直线平行,内错角相等);在△ADF和△CBE中,,∴△ADF≌△CBE (ASA),∴AF=CE(全等三角形的对应边相等),∴AF﹣EF=CE﹣EF,即AE=CF.【点评】本题主要考查了全等三角形的判定与性质.普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.做题时要根据已知条件的具体位置来选择方法.25.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【专题】探究型.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.四、解答题(26题3分,27-29每题6分,本题共21)26.尺规作图:已知:如图,∠A与直线l.试在l上找一点P,使点P到∠A的两边的距离相等.要求:保留痕迹,不写作法.【考点】作图—基本作图;角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等可得点P在∠A的角平分线上,因此画∠A 的角平分线与l的交点就是P点.【解答】解:如图所示:.【点评】此题主要考查了基本作图,以及角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.27.列方程解应用题从A地到B地的路程是30千米.甲骑自行车从A地到B地先走,半小时后,乙骑自行车从A地出发,结果二人同时到达.已知乙的速度是甲的速度的1.5倍,求甲、乙二人骑车速度各是多少?【考点】分式方程的应用.【分析】首先设甲的速度为x千米/时,则乙的速度为1.5x千米/时,由题意得:甲需要时间小时,乙需要小时,再根据乙所用时间+半小时=甲所用时间即可列出方程.【解答】解:设甲的速度为x千米/时,则乙的速度为1.5x千米/时,由题意得:=+,解得:x=20,经检验:x=20是原分式方程的解,1.5×20=30(千米/时).答:甲的速度为20千米/时,则乙的速度为30千米/时.【点评】此题主要考查了分式方程的应用,难度中等,做此类题主要是要抓住关键条件列出方程解答即可.28.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中真分式与假分式的定义判断即可;(2)原式变形,化为带分式即可;(3)分式化为带分式后,即可确定出x的整数值.【解答】解:(1)分式是真分式;(2)==1﹣;(3)==2﹣为整数,则x的可能整数值为0,﹣2,2,﹣4.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.29.已知:如图,Rt△ABC中,∠BAC=90°.(1)按要求作出图形:①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE.(2)猜想(1)中线段AD与BE的大小关系,并证明你的结论.解:(1)完成作图(2)AD与BE的大小关系是AD=BE.【考点】全等三角形的判定与性质.【分析】(1)根据已知条件画出图形即可;(2)在AE上截取AF=AC,连结BF,根据全等三角形的判定定理求出△BAF≌△BAC,求出△BFE≌△DCA,即可得出答案.【解答】解:(1)如图:;(2)AD=BE,理由是:在AE上截取AF=AC,连结BF,∵∠BAC=90°,∴∠BAF=180°﹣90°=90°,∴∠BAC=∠BAF,在△ABF与△ABC中∴△ABF≌△ABC(SAS),∴BF=BC,AF=AC,∠BCA=∠BFA,∵∠BFE+∠BFA=180°,∠BCA+∠DCA=180°,∴∠BFE=∠DCA,∵BC=DC,BC=BF,∴BF=DC,∵AC=AF,AE=2AC=AF+EF,∴EF=AC=AF,在△BFE和△DCA中∴△BFE≌△DCA,∴AD=BE,故答案为:AD=BE.【点评】本题考查了全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,有一定的难度.。
八年级(上)期中数学试卷附答案解析

八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个 D.1个6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.107.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠310.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=.12.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是.13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD=cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是(填序号).三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.23.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、直角三角形有三条高,故本选项错误;C、三角形的中线一定在三角形的内部,故本选项正确;D、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确.故选:B.2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个【解答】解:①7边形有=14条对角线,故正确;②外角和大于内角和的多边形只有三角形,故正确;③多边形外角和=360°,设这个多边形是n边形,根据题意得(n﹣2)•180°=360°×4,解得n=10.故错误.故选:C.3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对【解答】解:∵AB∥CD,∴∠A=∠D,∵AB=CD,AE=FD,∴△ABE≌△DCF(SAS),∴BE=CF,∠BEA=∠CFD,∴∠BEF=∠CFE,∵EF=FE,∴△BEF≌△CFE(SAS),∴BF=CE,∵AE=DF,∴AE+EF=DF+EF,即AF=DE,∴△ABF≌△CDE(SSS),∴全等三角形共有三对.故选:C.4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm【解答】解:∵O是AB,CD的中点,AB=CD,∴OA=OB=OD=OC,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD=15cm,故选:D.5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个D.1个【解答】解:第一个图形是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,故选:A.6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.10【解答】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BD是中线,∴∠ABD=30°,∵CE=CD,∴∠CDE=∠E=30°,∴∠BFE=90°,∴BE=2BF,∵EF=12,∴BE2=BF2+EF2,即4BF2=BF2+144,解得BF=4,在Rt△BDF中,cos30°=,∴BD=BF÷cos30°=4÷=8.故选:C.7.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【解答】解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D.8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC和△AB′C′关于直线L对称,∴(1)△ABC≌△AB′C′,正确;(2)∠B′AC=∠B′AC正确;(3)直线L一定垂直平分线段C C′,故本小题正确;(4)根据对应线段或其延长线的交点在对称轴上可知本小题错误;综上所述,正确的结论有3个.故选:B.9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠3【解答】解:如图,由三角形外角的性质可得∠1+∠4=∠5,∠2=∠5+∠3,∴∠1+∠4=∠2﹣∠3,故选:D.10.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选:B.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=(b﹣a)7.【解答】解:原式=[﹣(b﹣a)]2•(b﹣a)5=(b﹣a)2•(b﹣a)5=(b﹣a)7故答案为:(b﹣a)712.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【解答】解:∵∠B=30°,∠ACB=90°,AB=14cm,∴AC=7cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=7cm.=×7×7=(cm2).故S△ACF故答案为:.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD= 2.5cm.【解答】解:在△ABC中,∠C=90°,∠B=2∠A,所以,∠A=30°,∠B=60°,BC=sin∠A×AB=×10=5cm;∵CD⊥AB∴∠B+∠BCD=∠A+∠B=90°即:∠BCD=∠A又∵∠CDB=∠ACB=90°∴△ACB∽△CDB∴=即:DB===2.5cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为45°.【解答】解:∵AB=AC,∴∠C=∠ABC,∵BD=BC,∴∠C=∠CBD,∵∠A=30°,∴∠C=∠ABC=∠CBD=75°,∴∠CBD=30°,∴∠ABD=75°﹣30°=45°.故答案为45.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为110°.【解答】解:等腰三角形一个外角为70°,那相邻的内角为110°三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以110°只可能是顶角.故答案为:110°.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为6.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CND∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是②③④(填序号).【解答】解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;∵AD是△ABC的角平分线,∴∠EAD=∠FAD,在△AED和△AFD中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,故④正确;∵在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,故②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,故③正确.综上可得:正确的是:②③④,故答案为:②③④.三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.【解答】解:如图所示:点B′即为所求,∵A(0,2),B(3,﹣2),∴B点到AC的距离为4,则B′点到AC的距离也为4,且两点横坐标相等,∴B′(3,6).20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.【解答】解:∵AF平分∠CAE,∴∠CAF=∠DAF在△CAF与△DAF中,∴△CAF≌△DAF(SAS)∴∠ACF=∠ADF∵∠ACB=∠CAE=90°,∴∠ACE+∠CAE=∠B+∠CAE=90°∴∠ACE=∠B,∴∠ADF=∠B∴FD∥BC21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.【解答】解:数量关系为:BE=EC,位置关系是:BE⊥EC.证明如下:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC﹣∠EDA=180°﹣45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=CD=AC,∵AC=2AB,∴AB=AD=DC,∵在△EAB和△EDC中,∴△EAB≌△EDC(SAS),∴EB=EC,且∠AEB=∠DEC,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE⊥EC.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.【解答】解:∵+(4a﹣b﹣2)2=0,∴≥0,(4a﹣b﹣2)2≥0,∴,解得,∴(﹣3ab2)2=(﹣3×1×4)2=3623.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.【解答】解:原式=6x2+3x﹣2x2+10x﹣3x+15=4x2+10x+15,当x=﹣2时,原式=16﹣20+15=11.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.【解答】(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,∴BG>CE.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006学年第一学期期中教学质量检测 八年级数学试卷
同学们, 你们好! 转眼半个学期飞快地过去了. 在这半个学期里, 我们学到了许多新的数学知识, 提高了数学思维能力. 现在让我们在这里展示一下自己的真实水平吧! 祝大家成功!
一.精心选一选(本题有10小题,每题3分,共30分)
1.如图,两只手的食指和拇指在同一平面内,它们构成的一对角可以看作是( )
A .同位角 B. 内错角 C. 同旁内角 D. 对顶角 2.下列说法正确个数有( )
①两直线平行,同位角相等 ②两直线平行,内错角相等 ③两直线平行,同旁内角相等
④两平行线中,一直线上的点到另一直线的距离处处相等
A .1个 B. 2个 C.3个 D. 4个
3.下列说法不能判断一个三角形是等边三角形的是( )
A .有三条边相等 B. 有一个角是60°的等腰三角形
C. 有三个角相等
D. 有两个角之和等于另一个角的两倍 4.下列几何体中,是棱柱的有( )
A .4个 B.3个 C.2个 D.1个
5.下列各图形中,经过折叠不能围成一个立方体的是( )
6.对于以下调查,不应作抽样的是( )
A .日光灯管厂要检测一批灯管的使用寿命 B.了解居民对废电池的处理情况
C.了解现代大学生的主要娱乐方式
D.防治某突发性传染病期间,某学校对学生测量体温 7.若直角三角形的两边长为3cm 和4cm ,则第三边长为( )
A .5cm
D.5cm
8.对于下列一组数据:18、8、9、9、8、8、9、18、9、11.它们的众数和中位数分别是( )
A .9和10 B.9和11 C.8和10 D.8和11
9.如图,已知AD ⊥BD ,AC ⊥BC ,E 为AB 的中点,则△CDE 一定是(B )
A .等腰直角三角形 B.等腰三角形 C.直角三角形 D.等边三角形 10.如图,在△ABC 中,∠B=90°,∠AC
B 、∠CAF 的平分线所在的直线交于点H ,则∠H 的度数是( )
第1题图
A .30° B.45° C.60° D.以上都有可能
F
H
E
D
第10题图
C
B
A
第11题图
b
a 12
二.细心填一填(本题有10小题,每题3分,共30分) 11.如图,若直线//a b ,∠2=50°,则∠1= 度。
12.若直角三角形两条直角边长为3cm 和4cm ,则斜边上的高线长为 cm 。
13.某几何体的主视图与左视图是正方形,俯视图是一个圆,则这个几何体是 。
14.某天老师布置了10道课外练习,小明将解题情况绘成条形统计图如下图,试问该班同学平均每人做对 道题。
51015202530对7题
对8题
对9题
对10题
第16题图
E
B
15.将一条两边沿互相平行的纸带按如图方式对折,若∠1=30°,则∠α= 度。
16.如图,在△ABC 中,AB=AC ,DE 垂直平分AB 交AB 于点D ,交AC 于点E ,若∠A=50°,则∠CBE= 度。
17.如下图,在一个立方体的表面分别标上数字1,2,3,4,5,6,请在右边表面展开图中分别填上对应的数字。
18.数据:-3,-1,0,1,3的标准差是 。
19.若等腰三角形一腰上的高线长是腰长的一半,则这个等腰三角形的顶角是
度。
20.如图,2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形。
如果大正方形的面
积是13,小正方形的面积是1,直角三角形较短直角边为a ,较长直角边为b ,那么(a+b )2
的值为 。
第15题图
第9题图
E
D
C
B
A
1
6第20题图
三.动手画一画(本题有2小题,共8分) 21.(本题5分)已知线段a ,h (如图),用直尺圆规作等腰三角形ABC ,使底边BC=a ,BC 边上的高为h 。
(要求保留作图痕迹并写出作法)
h a
22.(本题3分)如图是由7个相同的小立方块搭成的几何体,请画出它的三视图。
四.耐心做一做(本题有5小题,共32分)
23. (本题5分)如图,在
B 港有两艘渔船甲船和乙船,若甲船沿北偏东60°的方向以每小时8海里速度前进,乙船沿南偏东30°的方向以每小时15海里速度前进,两小时后,甲船到M 岛,乙船到P 岛,求M 岛与P 岛之间的距离。
24.(本题6分)如图所示是底面为正三角形的直三棱柱,请根据图中所标尺寸计算它的侧面积和表面积。
P
25.(本题6分)如图,BD 是等腰三角形ABC 的底边AC 上的高,DE ∥BC ,交AB 于点E 。
请判断△BDE 是怎样的特殊三角形,并说明理由。
26.(本题7分)龙港某公司生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,
(1)写出这15人该月加工零件数的平均数、中位数和众数;
(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么?如果你作为生产部负责人,会如何处理定额问题?
27.(本题8分)在△ABC 中,∠C=2∠A ,BD 平分∠ABC 。
(1)如图甲,若AB=AC ,则BC+CD=AB ,请说明理由;(2)如图乙,若AB ≠AC ,上述结论是否同样成立?请说明理由。
D
B A 乙
甲。