陕西省咸阳市旬邑县原底中学2015-2016学年八年级数学上学期期中试卷(含解析) 新人教版

合集下载

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。

2015-2016学年八年级上学期期中考试数学试卷

2015-2016学年八年级上学期期中考试数学试卷

2015.11
7 D 8 C
三.解答题(共 56 分) 1 3 19. (共 8 分) (1)原式=4+ + ……(3 分) 2 2 =6 ……(4 分) (2)原式=3+ 2-1-1……(3 分) = 2+1……………(4 分) 27 (2) (x+1)3= ……………(1 分) 64 3 x+1= …………………(2 分) 4 1 x=- ………………(4 分) 4
B.
C.
D.
5.等腰三角形的两边长分别为 3cm 和 7cm,则周长为………………………………………… B.17 cm C.13 cm 或 17 cm D.11 cm 或 17 cm
6. 如图, 已知 AB=AD, 那么添加下列一个条件后, 仍无法判定△ABC ≌ △ADC 的是……… ) B.∠BAC=∠DAC A
C
A.CB=CD
D
C.∠BCA=∠DCA
பைடு நூலகம்
D.∠B=∠D=
F B C
G E H D
(第 8 题)
(第 7 题)
7.如图,已知△ABC 与△CDE 都是等边三角形,点 B、C、D 在同一条直线上,AD 与 BE 相交于点 G, BE 与 AC 相交于点 F, AD 与 CE 相交于点 H, 则下列结论①△ACD≌△BCE ② ∠AGB=60° ③BF=AH ④△CFH 是等边三角形 ⑤连 CG,则∠BGC=∠DGC.其中正 确的个数是…( A.2 上; △A1B1A2、 △A2B2A3、 △A3B3A4…均为等边三角形. 若 OA1=1, 则△A2015B2015A2016 的边长为… ) B.3 C.4 D.5
2.平方根等于它本身的数是………………………………………………………………………

2015-2016学年度上学期八年级期中考试数学试题

2015-2016学年度上学期八年级期中考试数学试题

2015-2016学年度上学期八年级期中考试数学试题(满分:120分;考试时间:120分钟)一、选择题(每小题3分,共30分)1. 下列图形中具有稳定性的是()A.正三角形B.正方形C.正五边形D.正六边形2. 下列长度的三条线段能组成三角形的是()A.1,2,3 B.20,15,8 C.4,5,9 D.5,15,83. 下列大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.中国人民大学D.浙江大学4. AD是△ABC的中线,设△ABD的面积为S1,△ACD的面积为S2,那么()A.S1>S2B.S1=S2C.S1<S2D. S1≠S25. 到三角形三边距离相等的点是三角形的()交点.A.三边中垂线B.三条中线C.三条高线D.三条角平分线6.△ABC≌△DEF,且△ABC的周长为100cm,A、B分别与D、E对应,且AB=35cm,DF=30cm,则EF的长为()A.35cm B.30cm C.45cm D.55cm7. 若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.98. 如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确...的是()A.△ABD≌△CBDB.△ABC≌△ADCC.△AOB≌△COBD.△AOD≌△COD9. 如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中一定不相等的线段是()A.AC=AE=BE B.AD=BD C.CD=DE D.AC=BD第8题图第9题图第10题图10. 如图,∠AOB=30°,点P是∠AOB内的一个定点,OP=20cm,点C、D分别是OA、OB上的动点,连结CP、DP、CD,则△CPD周长的最小值为()A.10cm B.15cm C.20cm D.40cm二、填空题(每小题3分,共30分)11. 在△ABC中,若∠B+∠C=3∠A,则∠A=__________°.12. 如图,PD⊥OA,PE⊥OB,点D、E为垂足,PD=7cm,当PE=______ cm时,点P在∠AOB的平分线上.13. 如图所示,∠A、∠1、∠2的大小关系是.第12题图第13题图第14题图14. 如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).你添加的条件是.15. 如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP 相交于点P,且∠BEP=50°,则∠EPF=_________度.16.如图所示,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE= °.第15题图第16题图第17题图17. 如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是__ ___.18.如图,AD是△ABC的对称轴,点E,F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.19. 如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.第18题图第19题图第20题图20.如图,△ABC是边长6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V p=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当t=___ s时,△PBQ为直角三角形.三、解答题(共60分)21.(6分)已知a,b,c为三角形的三边长,化简|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|.2B C122.(6分)如图,已知∠A=∠D ,CO=BO ,求证:△AOC ≌△DOB.第22题图23.(8分)如图:在△ABC 中,AB=AC >BC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E.(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,一边长为15cm ,求△BCE 的周长.第23题图24.(9分)如图,已知网格上最小的正方形的边长为1.(1)分别写出点A 、B 、C 三点的坐标;(2)作△ABC 关于y 轴的对称图形△A′B′C′(不写作法);(3)写出△ABC 关于x 轴对称的三角形的各顶点坐标.25.(9分)把两个含有45°角的大小不同的直角三角板如图放置,点D 在BC 上,连接BE ,AD ,AD 的延长线交BE 于点F .求证:AF ⊥BE .第25题图第24题图26. (10分) 如图所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间.第26题图27. (12分) 如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由;(3)△AOD能否为等边三角形?为什么?(4)探究:当α为多少度时,△AOD是等腰三角形.第27题图参考答案一、1~5 A C B B D ; 6~10 A CB D C.二、11.45; 12.7; 13. ∠2>∠1>∠A ; 14.BE=DC(答案不唯一); 15. 70; 16.90; 17.①; 18. 6; 19. 9; 20. t=23或512. 三、21.∵b+c-a>0, b-c-a<0. c-a-b<0, a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|= (b+c-a)-(b-c-a)-(c-a-b)-(a-b+c)=(b+c-a-b+c+a-c+a+b-a+b-c=2b.22. 在△AOC 和△DOB 中,,,.A D AOC DOB CO BO ì??ïï??íï=ïî∴△AOC ≌△DOB (AAS ). 23. (1)20°; (2)分两种情况讨论,△BCE 的周长=26cm.24. (1) A (-3,3),B (-5,1),C (-1,0)(2)如图所示: (3)△ABC 关于x 轴对称的三角形的各顶点坐标(﹣3,﹣3)、B (﹣5,-1)、C (﹣1,0).25.证明:AF ⊥BE ,理由如下:由题意可知∠DEC=∠EDC=45°,∠CBA=∠CAB=45°,∴EC=DC ,BC=AC ,又∠DCE=∠DCA=90°,∴△ECD 和△BCA 都是等腰直角三角形,∴EC=DC ,BC=AC ,∠ECD=∠ACB=90°.在△BEC 和△ADC 中,EC=DC ,∠ECB=∠DCA ,BC=AC ,∴△BEC ≌△ADC (SAS ).∴∠EBC=∠DAC .∵∠DAC+∠CDA=90°,∠FDB=∠CDA ,∴∠EBC+∠FDB=90°. ∴∠BFD=90°,即AF ⊥BE .26.∵在A 处观测海岛B 在北偏东60°方向,∴∠BAC=30°,∵C 点观测海岛B 在北偏东30°方向,∴∠BCD=60°,∴∠BAC=∠CBA=30°,∴AC=BC.∵D 点观测海岛在北偏西30°方向,∴∠BDC=60°,∴∠BCD=60°,∴∠CBD=60°,∴△BCD 为等边三角形, ∴BC=BD ,∵BC=20,∴BC=AC=CD=20,∵船以每小时10海里的速度从A 点航行到C 处,又以同样的速度继续航行到D 处, ∴船从A 点到达C 点所用的时间为:20÷10=2(小时),船从C 点到达D 点所用的时间为:20÷10=2(小时),∵船上午11时30分在A 处出发,D 点观测海岛B 在北偏西30°方向, ∴到达D 点的时间为13时30分+2小时=15时30分.答:轮船到达C 处的时间为13时30分,到达D 处的时间15时30分.27.(1)∵△BOC ≌△ADC ,∴OC=DC .∵∠OCD=60°,∴△OCD 是等边三角形.(2)△AOD 是Rt △.理由如下:∵△OCD 是等边三角形,∴∠ODC=60°,∵△BOC ≌△ADC ,∠α=150°,∴∠ADC=∠BOC=∠α=150°,∴∠ADO=∠ADC-∠ODC=150°-60°=90°,∴△AOD是Rt△.(3)不能.理由:由△BOC≌△ADC,得∠ADC=∠BOC=∠α.若△AOD为等边三角形,则∠ADO=60°,又∠ODC=60°,∴∠ADC=∠α=120°.又∠AOD=∠DOC=60°,∴∠AOC=120°,又∵∠AOB=110°,∴∠AOC+∠AOB+∠BOC=120°+120°+110°=350°<360°.所以△AOD不可能为等边三角形.(4)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°-∠AOB-∠BOC-∠COD=360°-110°-α-60°=190°-α,∠ADO=∠ADC-∠ODC=α-60°,∴∠OAD=180°-∠AOD-∠ADO=180°-(190°-α)-(α-60°)=50°.①当∠AOD=∠ADO时,190°-α=α-60°,∴α=125°.②当∠AOD=∠OAD时,190°-α=50°,∴α=140°.③当∠ADO=∠OAD时,α-60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.。

2015-2016学年八年级数学上册期中考试试卷6

2015-2016学年八年级数学上册期中考试试卷6

知识改变命运
知识改变命运
知识改变命运
知识改变命运
知识改变命运
知识改变命运
知识改变命运
河北省2015—2016学年八年级期中考试数学试卷(冀教版)答案 说明:本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分。

一、
1.D
2.C
3.B
4.C
5.A
6.A
7.D
8.C
9.D 10.D
11.D 12.A
13.C 14.C 15.B 16.C
二、
17.4 18.8cm
19.∠A=∠DCE (答案不唯一,正确即可) 20.3-2
2 三、
21.(1)x=0. 经检验,x=0是原分式方程的解;
(2)原式=
1-x 3x =6.(3) 4232
22.如图;
23.(1)a 的值为6;b 的值为37;
(2)2b-a-4的平方根为±8.
24.(1)证明略;【提示:易得△ABC ≌△BDE 】 (2)∠BFE 的度数为124°.【提示:由(1)易得∠DBE=62°】
25.(1)该商家第一次购进了120个鼠标;
(2)每个鼠标的售价为150元.【提示:易得两次总共购进
360
个鼠标. 设每个鼠标的
售价为x元,根据题意可得,(360-50)x+50×0.8x=(13200+28800)(1+25%)】
26.(1)BF=BG;理由略;【提示:易得∠BAD=∠BCF. 易得△ABG ≌△CFB】
(2)∠FBG的度数为90°.【提示:易得∠G=∠FBD,∠G+∠DBG=90°】
知识改变命运。

2015-2016学年八年级上学期期中考试数学试卷

2015-2016学年八年级上学期期中考试数学试卷

2015—2016学年度第一学期期中考试试卷初二数学(试题卷)(考试时间100分钟,满分100分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有……………………………………………………………( ▲ )A .1个B .2个C .3个D .4个2.如图,在边长为1个单位长度的小正方形组成的网格中, A 、B 都是格点,则线段AB 的长度为………………………………………………………………………………………………( ▲ ) A. 5 B. 6 C.7 D. 83.一个等腰三角形的两边长分别是4和9,则它的周长是……………………………………( ▲ ) A .13 B .17 C .22 D .17或224. 下列结论错误的是…………………………………………………………………………………………………( ▲ )A .全等三角形对应边上的中线相等B .两个直角三角形中,两个锐角相等,则这两个三角形全等C .全等三角形对应边上的高相等D .两个直角三角形中,若有两组边对应相等,则这两个直角三角形全等5.如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的 知识,说明画出∠A'O'B'=∠AOB的依据是…………………………………………………………( ▲ ) A .SAS B .ASA C .AAS D .SSS6.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是 直角三角形的是………………………………………………………………………………………………………( ▲ )(第2题图)A .∠A :∠B :∠C=3:4:5 B . a :b :c =5:12:13C . a 2=b 2-c 2D .∠A =∠C -∠B 7.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置 是在△ABC的 ………………………………………………………………………………………………………( ▲ )A. 三边中线的交点 B .三边中垂线的交点 C .三条角平分线的交点 D .三边上高的交点8.如图,BD 是∠ABC 平分线,DE AB 于E ,AB =36cm,BC =24cm,S △ABC =144cm 2,则DE 的长是………( ▲ )A .4.8cmB .4.5cmC .4 cmD .2.4cm9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形, 能满足条件的线段有……………………………………………………………………………………………………………………( ▲ )A .2条B .3条C .4条D .5条10.如下图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、(第8题图)B(第5题图)(第9题图)(第14题图)(第10题图)B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…, ∠A n +1B n B n +1=θn,则θ2016-θ2015的值为………………………………………………………………………………………………( ▲ )A .20151802α+ B . 20151802α- C .20161802α+ D .20161802α-二.填空题(本大题共8小题,每空3分,共24分.) 11.正方形是一个轴对称图形,它有 ▲ 条对称轴. 12.△ABC 是等腰三角形,若∠A =80°,则∠B = ▲.13.某直角三角形的两直角边长分别为6cm ,8 cm ,则此三角形斜边上的高的长是 ▲ cm .14.如图,∠1=∠2,要使△ABE ≌ △ACE ,则还需添加一个条件是 ▲ .15. 如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 ▲ cm . 16.如图,△OAD ≌△OBC ,且∠O =70°,∠AEB =100°,则∠C = ▲ °.17.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据计算图中实线所围成的图形的面积S = ▲ .18.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线, AD ⊥BE ,AD =8,BF =5,则AC 的长等于 ▲ .(第15题图)FBACDE (第18题图)CABED(第16题图) O(第17题图)(图1)(图2)三.解答题(本大题共6小题,共46分. 解答需写出必要的文字说明或演算步骤) 19.作图题:(6分)(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线.) (2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.①在图中画出与△ABC 关于直线L 成轴对称的△A′B′C′; ②请直线L 上找到一点P ,使得PC + PB 的距离之和最小..20.(6分)如图,四边形ABCD 中,AB ∥CD ,AB =CD ,A ∠ABE =∠CDF .(1)试说明:△ABE ≌△CDF ;(2)试说明:AF =CE .21.(6分)中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA ⊥OB ,OA =36海里,OB =12海里,黄岩岛位于O 点,我国海监船在点B 处发现有一不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向黄岩岛所在地点O ,我国海监船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船. (1)请用直尺和圆规作出C 处的位置; (2)求我国海监船行驶的航程BC 的长.22.(7分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB =∠ECD =90º,点D 为AB 边上的一点,(1)试说明:∠EAC =∠B ;(2)若AD =10,BD =24,求DE 的长.O(图3)23.(6分)如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF的中点吗?试说明理由24.(6分)探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为(请画出示意图,并标明必要的角度).25.(9分)如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.2015—2016学年第一学期期中考试试卷初二数学参考答案 2015.11一、选择题(每题3分,共30分)二、填空题(每题3分,共24分)11.__ 4 ____; 12. 80°或50°或20°; 13.__ 4.8_ ;14.∠B =∠C 等; 15.__ 10 ; 16. 15° _; 17._ 50 _;18._ 13 ___.三、解答题: (第12题有一个答案给1分,多答,答错不得分) 19.(1) 图略---------2分 (2)① 图略--------2分 ②图略--------2分 20.(1)解:∵AB ∥CD∴∠BAE =∠DAF ---------1分又∵AB =CD ,∠ABE =∠CDF ---------2分∴△ABC ≌△DEF ---------3分 (2) ∵ △ABC ≌△DEF∴ AE=CF ---------4分 ∴ AE —EF=CF —EF ---------5分 ∴ AF=CE ---------6分21.(1)∴点C 就是所求点 ---------2分(2)解:连接BC ,由作图可得:CD 为AB 的中垂线∴CB =CA ---------3分 由题意可得:OC=36—CA=36—CB ---------4分 ∵OA ⊥OB∴在Rt △BOC 中,222BO CO BC +=∴22212(36)BC BC +-= ---------5分 ∴BC =20 ---------6分22.(1)∵∠ACB=∠E CD=90°∴∠ACB—∠ACD =∠E CD—∠ACD∴∠ECA=∠DCB ------------1分∵△ACB和△ECD都是等腰三角形∴EC=DC,AC=BC ------------2分∴△ACE≌△BCD ------------ 3分∴∠EAC=∠B ---------- 4分(2)∵△ACE≌△BCD∴AE=BD=24 -----------5分∵∠EAC=∠B=45 °∴∠EAD=∠EAC+∠CAD=90°------------6分∴在Rt△ADE中,222DE EA AD=+∴2221024DE=+∴DE=26 ------------7分23.解:E是CF的中点------------1分连结DF ------------2分∵AD⊥BC,F是AB边上的中点,∴DF就是Rt△ADB斜边AB上的中线------------3分∴DF =FB= 12AB------------4分∵DC=BF∴DC = DF ------------5分∵DE⊥CF∴DE平分CF,即E是CF的中点------------6分24.(1)------------2分(2)45°或36°------------4分------------6分25(1)证明:在△ABD和△CDB中AD=BCAB=CDBD=DB∴△ABD≌△CDB--------------1分∴∠ADB=∠CBD----------------2分∴AD∥BC----------------3分(2)解:设G点的移动距离为y,由(1)得∠EDG=∠FBG若△DEG与△BFG全等则有△DEG≌△BFG或△DGE≌△BFG可得:DE=BF,DG=BG;或DE=BG,DG=BF,----------------4分①当E由D到A,即0<t≤3时,有4t=12-t,解得t=2.4y=15-y y=7.5 ---------5分或4t = y,解得t= 112-t =15-y= 4 ----------------6分②当F由A返回到D,即3<t≤6时,有24-4t=12-t,解得t=4y=15-y y=7.5 ----7分或24-4t=y,解得t=4.212-t=15-y y=7.2 ----------------8分综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.----------------9分1、本试卷学生预计均分72分2、考点分布情况(按知识点)(1)全等三角形36分(2)轴对称图形38分(3)勾股定理26分。

咸阳市八年级上学期期中数学试卷

咸阳市八年级上学期期中数学试卷

咸阳市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共15题;共30分)1. (2分)﹣5的倒数的相反数是()A . 5B .C . ﹣5D .2. (2分) (2016八上·兰州期中) 以下列各组数据为边长作三角形,其中能组成直角三角形的是()A . 3,5,3B . 4,6,8C . 7,24,25D . 6,12,133. (2分) (2016八上·兰州期中) 估算 +1的值在()A . 5和6之间B . 3和4之间C . 4和5之间D . 2和3之间4. (2分) (2016八上·兰州期中) 已知 +(b﹣1)2=0,则(a+b)2016的值是()A . ﹣1B . 1C . 2014D . ﹣20145. (2分) (2016八上·兰州期中) 下列各组数中互为相反数的是()A . ﹣2与B . ﹣2与C . ﹣2与﹣D . 2与|﹣2|6. (2分) (2016八上·兰州期中) 如果a有算术平方根,那么a一定是()A . 正数B . 0C . 非负数D . 非正数7. (2分) (2016八上·兰州期中) 将平面直角坐标系内某图形上各个点的纵坐标都乘以﹣1,横坐标不变,所得图形与原图形的关系是()A . 关于x轴对称B . 关于y轴对称C . 关于原点对称D . 沿y轴向下平移1个单位长度8. (2分)满足下列条件的三角形中,不是直角三角形的是()A . 三内角之比为1:2:3B . 三边长的平方之比为1:2:3C . 三边长之比为3:4:5D . 三内角之比为3:4:59. (2分)已知直角三角形两边的长为3和4,则此三角形的周长为()A . 12B . 7+C . 12或7+D . 以上都不对10. (2分) (2016八上·永登期中) 在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A . (4,﹣3)B . (﹣4,3)C . (0,﹣3)D . (0,3)11. (2分) (2017八下·宁江期末) 若k≠0,b<0,则y=kx+b的图象可能是()A .B .C .D .12. (2分)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A . a<bB . a<3C . b<3D . c<﹣213. (2分) (2016八上·兰州期中) 下列式子正确的是()A . =±4B . ± =4C . =﹣4D . ± =±414. (2分) (2016八上·兰州期中) 下列计算结果正确的是()A .B . =±6C .D .15. (2分) (2016八上·埇桥期中) 若点A(x,3)与点B(2,y)关于x轴对称,则()A . x=﹣2,y=﹣3B . x=2,y=3C . x=﹣2,y=3D . x=2,y=﹣3二、耐心填一填 (共5题;共5分)16. (1分) 5﹣的小数部分是________.17. (1分)若|a﹣4|+|b+5|=0,则a﹣b=________ .18. (1分) (2019七下·东海期末) 已知是二元一次方程mx+ny=-2的一个解,则-2m+n的值等于________.19. (1分) (2018七上·从化期末) 在数轴上与表示-2的点相距5个单位长度的点所表示的数是________.20. (1分)(2020·皇姑模拟) 如图,已知菱形ABCD的顶点A( ,0),∠DAB=60°,若动点P从点A 出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,则第2020秒时,点P 的坐标为________.三、细心做一做 (共8题;共52分)21. (5分)如图所示,点C、D在线段AB上,D是线段AB的中点,AD=3AC,AC=2,求线段AB的长.22. (10分) (2016八上·兰州期中) 化简:(1)(2).23. (5分) (2016八上·兰州期中) 作图题:如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出AB= 这样的线段,并选择其中的一个说明这样画的道理.24. (5分) (2016八上·兰州期中) 设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,﹣2)两点,试求k,b的值.25. (5分) (2016八上·兰州期中) 正方形的边长为2,建立合适的直角坐标系,写出各个顶点的坐标.26. (5分) (2016八上·兰州期中) 如图是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三角形均是直角三角形)27. (5分) (2016八上·兰州期中) 如图:有一个圆柱,底面圆的直径EF= ,高FC=12cm,P为FC的中点,求蚂蚁从E点爬到P点的最短距离是多少?(画出平面图形)28. (12分) (2016八上·兰州期中) 观察下列一组式的变形过程,然后回答问题:例1:,例2:,,(1) =________; =________(2)请你用含n(n为正整数)的关系式表示上述各式子的变形规律.(3)利用上面的结论,求下列式子的值..参考答案一、精心选一选 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12、答案:略13-1、14-1、15-1、二、耐心填一填 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、细心做一做 (共8题;共52分)21-1、22-1、22-2、23-1、24-1、25-1、26-1、27-1、28-1、28-2、28-3、。

2015—2016学年度第一学期期中质量测试八年级数学试题附答案

2015—2016学年度第一学期期中质量测试八年级数学试题附答案

2015—2016学年度第一学期期中质量测试八年级数学试题(总分:120分时间:100分钟)一、选择题1、若分式112--xx的值为0,则应满足的条件是()A. x≠1B. x=-1C. x=1D. x=±12、下列计算正确的是()A.a·a2=a2 B.(a2)2=a4 C.3a+2a=5a2 D.(a2b)3=a2·b3 3、下列四个图案中,是轴对称图形的是()4、点M(3,-4)关于x轴的对称点的坐标是()A.(3, 4)B.(-3,-4)C.(-3, 4)D.(-4,3)5、下列运算正确的是()A.yxyyxy--=--B.3232=++yxyx C.yxyxyx+=++22D.yxyxxy-=-+1226、如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在().A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7、如图,AD是△ABC的角平分线,从点D向AB、AC两边作垂线段,垂足分别为E、F,那么下列结论中错误..的是()A.DE=DF B.AE=AFC.BD=CD D.∠ADE=∠ADF8、如果2592++kxx是一个完全平方式,那么k的值是()A、30B、±30C、15D、±15BC(第7题)FEADB9、若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、不变 C 、缩小2倍 D 、缩小4倍二、填空题10、一种细菌半径是0.000 012 1米, 将0.000 012 1用科学记数法表示为 . 11.计算: ()a a a 2262÷-= .12、如图,△ABC 中,∠C =90°,∠A =30°,AB 的垂 直平分线交AC 于D ,交AB 于E ,CD =2,则AC = .三、解答题13、分解因式:(4分) x 3﹣4x 2+4x14、先化简再求值:(6分))52)(52()1(42-+-+m m m ,其中3-=m15、解方程:(6分) .16、(6分)如图,点B ,E ,F ,C 在一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:∠A =∠D .DECB12题(第16题)F E DCBA图8ABCDE17(8分)如图,∆ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE+CF.18、如图8,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D . (1)求证:△ADC ≌△CEB .(5分)(2),5cm AD =cm DE 3=,求BE 的长度.(4分)第17题答案一、B B C A D C C BC二、1.21×10-5 , 3a-1 ,6 三、13、解:原式=x(x-2)214、解:原式=4m 2+8m+4-4m 2+25=8m+29当m=-3时,原式= -24+29=5 15、解:去分母得:x(x+2)-(x 2-4)=8整理 得:2x=4 解得:x=2经检验得x=2是原方程的增根 ∴原分式方程无解16、证明:∵BE =CF∴BF=CE在△ABE和△DCF中∵AB =DC ,∠B =∠C ,BF=CE∴△ABE≌△DCF∴∠A =∠D17、证明:∵BD平分∠ABC ∴∠EBD=∠DBC∵EF∥BC ∴∠EDB=∠DBC∴∠DBC=∠EBD ∴BE=DE 。

2015—2016学年八年级上学期数学期中试卷(5套)

2015—2016学年八年级上学期数学期中试卷(5套)

2015—2016学年八年级上学期数学期中试
卷(5套)
2015年八年级上册数学期中考试题整理
八年级上册数学期中考试试卷:附答案
最新:初中二年级上册数学期中考试模拟试卷
2015—2016学年初二上学期数学期中试卷
八年级数学期中卷2015
一个学期一次的期中考试马上就要开始了,同学们正在进行紧张的复习。

这就是我们为大家准备的八年级上学期数学期中试卷,希望能够及时的帮助到大家。

为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年陕西省咸阳市旬邑县原底中学八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.以下列各组数为三边的三角形中不是直角三角形的是()A.9、12、15 B.41、40、9 C.25、7、24 D.6、5、42.在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B.2 C.3 D.43.下列计算正确的是()A. =2B.•=C.﹣=D. =﹣34.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(﹣2,1)C.(2,0)D.(﹣2,0)5.已知,,则的值为()A.0.480 B.0.0480 C.0.1517 D.1.5176.长方形的一条对角线的长为10cm,一边长为6cm,它的面积是()A.60cm2B.64cm2C.24cm2D.48cm27.若一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是()A.直角三角形B.等腰直角三角形C.等腰三角形D.以上结论都不对8.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)9.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y210.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.二、填空题(共10小题,每小题3分,满分30分)11.直角三角形两直角边长分别为3和4,则它斜边上的高为.12.直角三角形三边长分别为5,12,x,则x2= .13.比较大小:;﹣2﹣3.14.﹣27的立方根为,的平方根为,﹣的倒数为.15.如图,已知点A的坐标为(﹣2,2),点B的坐标为(﹣1,﹣3),则点C的坐标是.16.点P(3,﹣4)在第象限,与x轴距离是,与y轴距离是,与原点距离是;点P关于x轴对称的点Q坐标为,P关于y轴对称点M坐标为.17.A到x轴距离为3,到y轴的距离为4,且A点在第三象限,则点A的坐标为.18.从大村到黄岛的距离为60千米,一辆摩托车以平均每小时35千米的速度从大村出发到黄岛,则摩托车距黄岛的距离y(千米)与行驶时间t(时)的函数表达式为.19.已知函数:(1)图象不经过第一象限;(2)图象与直线y=﹣x平行.请你写出一个同时满足(1)和(2)的函数关系式:.20.若y=(m﹣3)x|m|﹣2+m+n是一次函数,则m= .若它为正比例函数,则m= ,n= .三、解答题(共7小题,满分60分)21.计算下列各题(1)++3﹣(2)3+﹣4(3)﹣1(4)(2﹣1)2.22.在数轴上作出表示的点(保留作图痕迹,不写作法).23.如图是边长为4的正三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.24.一架云梯AB长25米,如图那样斜靠在一面墙AC上,这时云梯底端B离墙底C的距离BC为7米.(1)这云梯的顶端距地面AC有多高?(2)如果云梯的顶端A下滑了4米,那么它的底部B在水平方向向右滑动了多少米?25.如图,一次函数y=﹣x+1的图象与x轴、y轴交于点A、B两点,(1)求A、B点的坐标;(2)求△ABO的面积.26.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小.27.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(3)B出发后小时与A相遇.(4)求出A行走的路程S与时间t的函数关系式.2015-2016学年陕西省咸阳市旬邑县原底中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.以下列各组数为三边的三角形中不是直角三角形的是()A.9、12、15 B.41、40、9 C.25、7、24 D.6、5、4【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、92+122=225=152,符合勾股定理的逆定理,是直角三角形;B、402+92=1681=412,符合勾股定理的逆定理,是直角三角形;C、72+242=625=252,符合勾股定理的逆定理,是直角三角形;D、52+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.2.在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B.2 C.3 D.4【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:所给数据中无理数有:,π,2+,3.212212221…,共4个.故选D.3.下列计算正确的是()A. =2B.•=C.﹣=D. =﹣3【考点】二次根式的混合运算.【分析】根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.【解答】解:A、=2,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣=2﹣,故C错误;D、=|﹣3|=3,故D错误.故选:B.4.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(﹣2,1)C.(2,0)D.(﹣2,0)【考点】一次函数图象上点的坐标特征.【分析】分别把下列各个点代入解析式根据等式左右是否相等来判断点是否在函数图象上.【解答】解:(1)当x=2时,y=2,(2,1)不在函数y=x+1的图象上,(2,0)不在函数y=x+1的图象上;(2)当x=﹣2时,y=0,(﹣2,1)不在函数y=x+1的图象上,(﹣2,0)在函数y=x+1的图象上.故选D.5.已知,,则的值为()A.0.480 B.0.0480 C.0.1517 D.1.517【考点】算术平方根.【分析】由=,根据二次根式的化简的知识,即可求得答案.【解答】解:∵≈4.80,≈15.17,∴==0.01×4.80=0.0480.故选B.6.长方形的一条对角线的长为10cm,一边长为6cm,它的面积是()A.60cm2B.64cm2C.24cm2D.48cm2【考点】勾股定理.【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:∵长方形的一条对角线的长为10cm,一边长为6cm,∴另一边长为=8cm,∴它的面积为8×6=48cm2.故选D.7.若一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是()A.直角三角形B.等腰直角三角形C.等腰三角形D.以上结论都不对【考点】等腰直角三角形.【分析】化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.【解答】解:∵(a+b)2﹣c2=2ab,即 a2+b2+2ab﹣c2=2ab,∴a2+b2=c2,∴这个三角形是直角三角形,故选:A.8.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【解答】解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.9.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数y=kx+b(k≠0,k,b为常数),当k<0时,y随x的增大而减小解答即可.【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选A.10.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.【考点】一次函数的图象.【分析】因为a的符号不确定,故应分两种情况讨论,再找出符合任一条件的函数图象即可.【解答】解:分两种情况:(1)当a>0时,一次函数y=ax﹣a经过第一、三、四象限,选项A符合;(2)当a<0时,一次函数y=ax﹣a图象经过第一、二、四象限,无选项符合.故选A.二、填空题(共10小题,每小题3分,满分30分)11.直角三角形两直角边长分别为3和4,则它斜边上的高为.【考点】勾股定理.【分析】根据勾股定理求出斜边的长,再根据面积法求出斜边上的高.【解答】解:设斜边长为c,高为h.由勾股定理可得:c2=32+42,则c=5,直角三角形面积S=×3×4=×c×h可得h=,故答案为:.12.直角三角形三边长分别为5,12,x,则x2= 169或119 .【考点】勾股定理.【分析】由于直角三角形的斜边不能确定,故应分x为直角边与斜边两种情况进行讨论.【解答】解:当x为直角边时,x2=122﹣52=119;当x为斜边时,x2=52+122=169.故答案为169或119.13.比较大小:<;﹣2>﹣3.【考点】实数大小比较.【分析】先求出的范围,即可求出答案;把根号外的因式移入根号内,再比较即可.【解答】解:∵1<<2,∴0<﹣1<1,∴0<,∵﹣2=﹣,﹣3=﹣,∴﹣2>﹣3,故答案为:<,>.14.﹣27的立方根为﹣3 ,的平方根为±2 ,﹣的倒数为﹣.【考点】立方根;倒数;平方根.【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【解答】解:(1)∵(﹣3)×(﹣3)×(﹣3)=﹣27,∴﹣27的立方根为﹣3;(2)∵=4,∴的平方根为±2,(3)(﹣)×(﹣)=1,∴﹣的倒数为﹣;故答案为﹣3,±2,﹣.15.如图,已知点A的坐标为(﹣2,2),点B的坐标为(﹣1,﹣3),则点C的坐标是(2,1).【考点】坐标确定位置.【分析】以点A向右2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出点C的坐标即可.【解答】解:建立平面直角坐标系如图,点C的坐标是(2,1).故答案为:(2,1).16.点P(3,﹣4)在第四象限,与x轴距离是 4 ,与y轴距离是 3 ,与原点距离是 5 ;点P关于x轴对称的点Q坐标为(3,4),P关于y轴对称点M坐标为(﹣3,﹣4).【考点】点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据各象限内点的坐标特征,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答,再利用勾股定理列式求出点到原点的距离;根据关于x轴对称点的横坐标不变,纵坐标变为相反数,关于y轴对称点的横坐标互为相反数,纵坐标相等解答.【解答】解:点P(3,﹣4)在第四象限,与x轴距离是4,与y轴距离是3,与原点距离是=5;点P关于x轴对称的点Q坐标为(3,4),P关于y轴对称点M坐标为(﹣3,﹣4).故答案为:四,4,3,5;(3,4),(﹣3,﹣4).17.A到x轴距离为3,到y轴的距离为4,且A点在第三象限,则点A的坐标为(﹣4,﹣3).【考点】点的坐标.【分析】根据第三象限内点的横坐标与纵坐标都是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵A到x轴距离为3,到y轴的距离为4,且A点在第三象限,∴点A的横坐标是﹣4,纵坐标是﹣3,∴点A的坐标为(﹣4,﹣3).故答案为:(﹣4,﹣3).18.从大村到黄岛的距离为60千米,一辆摩托车以平均每小时35千米的速度从大村出发到黄岛,则摩托车距黄岛的距离y(千米)与行驶时间t(时)的函数表达式为y=60﹣35t .【考点】函数关系式.【分析】根据题意可得摩托车距黄岛的距离y=大村到黄岛的距离为60千米﹣摩托车行驶t 的距离.【解答】解:由题意得:y=60﹣35t,故答案为:y=60﹣35t.19.已知函数:(1)图象不经过第一象限;(2)图象与直线y=﹣x平行.请你写出一个同时满足(1)和(2)的函数关系式:y=﹣x﹣1 .【考点】两条直线相交或平行问题.【分析】根据一次函数与系数的关系得k<0,b≤0,再利用两直线平行的问题得k=1,然后令b=﹣1写出一个满足条件的函数关系式.【解答】解:设直线解析式为y=kx+b,∵图象不经过第一象限,∴k<0,b≤0,∵图象与直线y=﹣x平行,∴k=﹣1,b≠0,∴当b取﹣1时,解析式为y=﹣x﹣1.故答案为y=﹣x﹣1.20.若y=(m﹣3)x|m|﹣2+m+n是一次函数,则m= ﹣3 .若它为正比例函数,则m= ﹣3 ,n= 3 .【考点】一次函数的定义;正比例函数的定义.【分析】根据一次函数和正比例函数的定义解答.【解答】解:∵y=(m﹣3)x|m|﹣2+m+n是一次函数,∴|m|﹣2=1,m﹣3≠0,∴m=﹣3,若为正比例函数,则m+n=0,解得﹣3+n=0,n=3.三、解答题(共7小题,满分60分)21.计算下列各题(1)++3﹣(2)3+﹣4(3)﹣1(4)(2﹣1)2.【考点】实数的运算.【分析】(1)先根据数的开方法则把原式进行化简,再合并同类项即可;(2)先把各根式化为最简二次根式,再合并同类项即可;(3)先算乘法,再算减法即可;(4)根据完全平方公式进行计算即可.【解答】解:(1)原式=4﹣3+3﹣3=﹣2+3(2)原式=9+﹣2=8;(3)原式=﹣1=﹣1=2;(4)原式=12+1﹣4=13﹣4.22.在数轴上作出表示的点(保留作图痕迹,不写作法).【考点】勾股定理;实数与数轴;作图—复杂作图.【分析】首先作出以1和3为直角边的直角三角形,则其斜边的长即是=.再以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可.【解答】解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是=;如图所示.23.如图是边长为4的正三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.【考点】等边三角形的性质;坐标与图形性质.【分析】以BC所在的直线为x轴,以BC边上的高所在的直线为y轴,建立平面直角坐标系,则BO=CO,再根据勾股定理求出AO的长度,点A、B、C的坐标即可写出.【解答】解:如图,以BC所在的直线为x轴,以BC边上的高所在的直线为y轴,建立平面直角坐标系,∵正三角形ABC的边长为4,∴BO=CO=2,∴点B、C的坐标分别为B(﹣2,0),C(2,0),∵AO===2,∴点A的坐标为(0,2).24.一架云梯AB长25米,如图那样斜靠在一面墙AC上,这时云梯底端B离墙底C的距离BC为7米.(1)这云梯的顶端距地面AC有多高?(2)如果云梯的顶端A下滑了4米,那么它的底部B在水平方向向右滑动了多少米?【考点】勾股定理的应用.【分析】(1)在直角三角形ABC中,利用勾股定理即可求出AC的长;(2)首先求出AC的长,利用勾股定理可求出B′C的长,进而得到BB′=CB′﹣CB的值.【解答】解:(1)在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即AC2+72=252,所以AC=24(m),即这架云梯的顶端A距地面有24m高;(2)梯子的底端在水平方向也滑动了8m.理由:∵云梯的顶端A下滑了4m至点A,∴AC=AC﹣A′A=24﹣4=20(m),在Rt△ACB′中,由勾股定理得AC2+BC′2=AB′2,即202+B′C2=252所以B′C=15(m)BB′=CB′﹣BB=15﹣7=8(m),即梯子的底端在水平方向也滑动了8m.25.如图,一次函数y=﹣x+1的图象与x轴、y轴交于点A、B两点,(1)求A、B点的坐标;(2)求△ABO的面积.【考点】一次函数图象上点的坐标特征.【分析】(1)先令y=0,求出x的值;再令x=0,求出y的值即可得出A,B两点的坐标;(2)直接根据三角形的面积公式进行计算即可.【解答】解:(1)∵令y=0,则x=;令x=0,则y=1,∴A点的坐标为(,0),B点的坐标为(0,1);(2)S△ABO=××1=.答:△ABO的面积是.26.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小.【考点】一次函数图象与系数的关系.【分析】(1)根据b=0时函数的图象经过原点,列出方程组,求出b的值即可;(2)先求出直线y=﹣2x+9与y轴的交点坐标,把此点坐标代入所求一次函数的解析式即可求出k的值;(3)根据两直线平行时其未知数的系数相等,列出方程,求出k的值即可;(4)根据k<0时,一次函数为减函数列出不等式,求出k的取值范围即可.【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k2+12的图象经过原点,∴﹣3k2+12=0,∴,∴k=﹣2;(2)∵直线y=﹣2x+9求出此直线与y轴的交点坐标为(0,9),∴﹣3k2+12=9,∴k=1或k=﹣1;(3)∵一次函数的图象平行于y=﹣2x的图象,∴k﹣2=﹣2,∴k=0;(4)∵一次函数为减函数,∴k﹣2<0,∴k<2.27.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距10 千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 1 小时.(3)B出发后 3 小时与A相遇.(4)求出A行走的路程S与时间t的函数关系式.【考点】一次函数的应用.【分析】(1)从图上可看出B出发时与A相距10千米.(2)修理的时间就是路程不变的时间是1.5﹣0.5=1小时.(3)从图象看出3小时时,两个图象相交,所以3小时时相遇.(4)S和t的函数关系是一次函数,设函数是为S=kt+b,过(0,10)和(3,22.5),从而可求出关系式.【解答】解:(1)由图形可得B出发时与A相距10千米;(2)在图中发现0.5至1.5小时,自行车没有行走,故可得出修理所用的时间为1小时.(3)图中两直线的交点是B与A相遇的时刻,即出发3小时后与A相遇.(4)设函数是为S=kt+b,且过(0,10)和(3,22.5),则,解得:.故S与时间t的函数关系式为:S=t+10.。

相关文档
最新文档