考点19三角恒等变换(2)

合集下载

三角恒等变换

三角恒等变换

三角恒等变换三角恒等变换是数学中的一个重要概念,它可以帮助我们简化三角函数的复杂表达式,以及解决与三角函数相关的问题。

本文将介绍三角恒等变换的定义、常见的三角恒等变换公式,以及使用恒等变换解决问题的实例。

一、定义三角恒等变换是指通过等式变换将一个三角函数变换为具有相同函数值的其他三角函数的过程。

这种变换可以帮助我们简化三角函数的表达式,使其更易于计算和处理。

二、常见的三角恒等变换公式在三角恒等变换中,常见的公式包括以下几种:1. 余弦函数恒等变换:a) $\cos^2(x)+\sin^2(x)=1$ :这是最基本的三角恒等变换公式,称为余弦函数的平方与正弦函数的平方之和等于1。

b) $\cos(-x)=\cos(x)$ :余弦函数具有对称性质,关于y轴对称。

c) $\cos\left(\frac{\pi}{2}-x\right)=\sin(x)$ :余弦函数与正弦函数的关系,通过将自变量进行变换,可以转化为正弦函数。

2. 正弦函数恒等变换:a) $\sin(-x)=-\sin(x)$ :正弦函数具有奇函数的性质,关于原点对称。

b) $\sin\left(\frac{\pi}{2}-x\right)=\cos(x)$ :正弦函数与余弦函数的关系,通过将自变量进行变换,可以转化为余弦函数。

3. 三角函数的和差化积:a) $\sin(x \pm y)=\sin(x)\cos(y) \pm \cos(x)\sin(y)$ :正弦函数的和差化积公式。

b) $\cos(x \pm y)=\cos(x)\cos(y) \mp \sin(x)\sin(y)$ :余弦函数的和差化积公式。

4. 二倍角公式:a) $\sin(2x)=2\sin(x)\cos(x)$ :正弦函数的二倍角公式。

b) $\cos(2x)=\cos^2(x)-\sin^2(x)=2\cos^2(x)-1=1-2\sin^2(x)$ :余弦函数的二倍角公式。

三角恒等变换

三角恒等变换

三角恒等变换三角恒等变换是解决三角函数之间关系的重要工具,它们能够将一个三角函数表达式转化为与之等价的形式。

在解三角函数方程、简化和证明三角恒等式时,熟练掌握三角恒等变换是至关重要的。

1. 基本的三角恒等变换基本的三角恒等变换包括:- 正弦函数的平方加上余弦函数的平方等于1:sin^2(x) + cos^2(x) = 1- 1加上正切函数的平方等于secant函数的平方:1 + tan^2(x) = sec^2(x)- 1加上余切函数的平方等于cosecant函数的平方:1 + cot^2(x) = csc^2(x)这些基本的恒等变换在求解三角函数方程的时候经常会用到。

2. 倍角恒等变换倍角恒等变换是将角度翻倍的三角函数关系,其中包括:- 正弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)- 余弦函数的倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)- 正切函数的倍角公式:tan(2x) = (2tan(x))/(1 - tan^2(x))倍角恒等变换可以帮助我们简化三角函数表达式,从而更容易进行计算和证明。

3. 和差恒等变换和差恒等变换是将两个三角函数的和或差转化为一个三角函数的形式,常见的和差恒等变换包括:- 正弦函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)- 余弦函数的和差公式:cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)- 正切函数的和差公式:tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))和差恒等变换可以帮助我们将复杂的三角函数表达式转化为简单的形式,方便计算和处理。

4. 半角恒等变换半角恒等变换是将一个角度的一半与三角函数的关系转化为另一个角度的三角函数关系。

19.三角恒等变换

19.三角恒等变换

第十九讲 三角恒等变换【高考考点】本节主要包括3个知识点:1.三角函数的化简求值;2.三角函数的条件求值;3.三角恒等变换的综合问题.【考点解读】(一) 三角函数的化简求值1.两角和与差的正弦、余弦、正切公式2.二倍角公式考点一、三角函数式的化简1.三角函数式化简的一般要求:(1)函数名称尽可能少;(2)项数尽可能少;(3)尽可能不含根式;(4)次数尽可能低、尽可能求出值.2.常用的基本变换方法有:异角化同角、异名化同名、异次化同次,降幂或升幂,“1”的代换,弦切互化等.[例1] 已知α∈(0,π),化简:(1+sin α+cos α)·⎝⎛⎭⎫cos α2-sin α22+2cos α=________.[方法技巧] 三角函数式的化简要遵循“三看”原则考点二、三角函数的给角求值[例2] 求值:(1)1+cos 20°2sin 20°-sin 10°1tan 5°-tan 5°;(2)sin 50°(1+3tan 10°).[方法技巧]给角求值问题的解题规律解决给角求值问题的关键是两种变换:一是角的变换,注意各角之间是否具有和差关系、互补(余)关系、倍半关系,从而选择相应公式进行转化,把非特殊角的三角函数相约或相消,从而转化为特殊角的三角函数;二是结构变换,在熟悉各种公式的结构特点、符号特征的基础上,结合所求式子的特点合理地进行变形.1.[考点二]计算:1-cos 210°cos 80°1-cos 20°=( )A.22 B.12 C.32 D .-222.[考点二](1+tan 18°)·(1+tan 27°)的值是( )A. 3 B .1+2 C .2 D .2(tan 18°+tan 27°) 3.[考点一]化简:(sin 2α+cos 2α-1)(sin 2α-cos 2α+1)sin 4α=________.4.[考点一]化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x =________.(二) 三角函数的条件求值考点一、给值求值问题[例1] 已知cos ⎝⎛⎭⎫π6+α·cos π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值.[方法技巧]给值求值问题的求解思路(1)先化简所求式子;(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手); (3)将已知条件代入所求式子,化简求值.考点二、给值求角问题[例2] (1)设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.[方法技巧]给值求角时选取函数的原则和解题步骤(1)通过先求角的某个三角函数值来求角,在选取函数时,遵照以下原则:1.[考点一]已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A.13 B.23 C .-23 D .-13 2.[考点一]若α,β都是锐角,且cos α=55,sin(α-β)=1010,则cos β=( ) A.22 B.210 C.22或-210 D.22或2103.[考点二](2017·成都模拟)若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π44.[考点二]若锐角α,β满足(1+3tan α)(1+3tan β)=4,则α+β=________.5.[考点一]已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.(三) 三角恒等变换的综合问题利用三角恒等变换将三角函数化简后研究图象及性质是高考的热点.在高考中以解答题的形式出现,考查三角函数的值域、最值、单调性、周期、奇偶性、对称性等问题.考点、三角恒等变换与三角函数性质的综合问题[典例] 已知向量m =(sin x,1),n =3A cos x ,A2cos 2x (A >0),函数f (x )=m ·n 的最大值为6.(1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域.[方法技巧]三角恒等变换在三角函数图象和性质中的应用(1)图象变换问题先根据和角公式、倍角公式把函数表达式变为正弦型函数y =A sin(ωx +φ)+t 或余弦型函数y =A cos(ωx +φ)+t 的形式,再进行图象变换.(2)函数性质问题求函数周期、最值、单调区间的方法步骤:①利用三角恒等变换及辅助角公式把三角函数关系式化成y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的形式;②利用公式T =2πω(ω>0)求周期;③根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;④根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的单调区间.1.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域.2.已知函数f (x )=3sin ωx -cos ωx -1,x ∈R(其中ω>0).(1)求函数f (x )的值域;(2)若函数y =f (x )的图象与直线y =-1的两个相邻交点间的距离为π2,求函数y =f (x )的单调增区间.3.已知函数f (x )=2cos 2ωx -1+23sin ωx cos ωx (0<ω<1),直线x =π3是函数f (x )的图象的一条对称轴.(1)求函数f (x )的单调递增区间;(2)已知函数y =g (x )的图象是由y =f (x )的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝⎛⎭⎫2α+π3=65,α∈⎝⎛⎭⎫0,π2,求sin α的值.全国卷5年真题集中演练1.(2016·全国甲卷)函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( )A .4B .5C .6D .72.(2015·新课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( )A .-32 B.32 C .-12 D.123.(2014·新课标全国卷Ⅰ)设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π24.(2013·新课标全国卷Ⅱ)已知sin 2α=23,则cos 2α+π4=( )A.16B.13C.12D.235.(2013·新课标全国卷Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________.【考题定时练习】 一、选择题1.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13 B.13 C .-23 D.232.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=( ) A .-233 B .±233 C .-1 D .±13.若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=( )A .1B .2C .3D .44.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A.45 B .-45 C.35 D .-355.在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( ) A.π4 B.π3 C.π2 D.3π46.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3·tan αtan β=3,则α,β的大小关系是( )A .α<π4<βB .β<π4<α C.π4<α<β D.π4<β<α二、填空题7.函数f (x )=sin ⎝⎛⎭⎫2x -π4-22sin 2x 的最小正周期是________. 8.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________. 9.已知tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈⎝⎛⎭⎫-π2,π2,则α+β=________. 10.若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos π4-β2=33,则cos ⎝⎛⎭⎫α+β2=________. 三、解答题11.已知函数f (x )=cos 2x +sin x cos x ,x ∈R.(1)求f ⎝⎛⎭⎫π6的值;(2)若sin α=35,且α∈⎝⎛⎭⎫π2,π,求f ⎝⎛⎭⎫α2+π24.12.(2016·天津高考)已知函数f (x )=4tan x sin ⎝⎛⎭⎫π2-x ·cos ⎝⎛⎭⎫x -π3- 3. (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎡⎦⎤-π4,π4上的单调性.。

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是指一些与三角函数相关的恒等式或等式组,通过这些等式可以将一个三角函数表达式转化为另一个三角函数表达式,或者简化一个复杂的三角函数表达式。

这些恒等变换在解决三角函数相关问题时非常有用。

下面是对一些常见的三角恒等变换进行总结和详解。

1.正弦函数的恒等变换:- 正弦函数的定义:对于任意实数x,sin(x) = y,其中y为[-1, 1]之间的值。

- 正弦函数的周期性:sin(x + 2π) = sin(x),即正弦函数以2π为周期。

- 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数是奇函数。

2.余弦函数的恒等变换:- 余弦函数的定义:对于任意实数x,cos(x) = y,其中y为[-1, 1]之间的值。

- 余弦函数的周期性:cos(x + 2π) = cos(x),即余弦函数以2π为周期。

- 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数是偶函数。

3.正切函数的恒等变换:- 正切函数的定义:对于任意实数x(除了例如π/2 + kπ,其中k 为整数),tan(x) = y,其中y为整个实数轴上的值。

- 正切函数的周期性:tan(x + π) = tan(x),即正切函数以π为周期。

- 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数是奇函数。

4.三角函数的平方和差公式:- sin²(x) + cos²(x) = 1,即正弦函数的平方与余弦函数的平方和等于1- sin(x + y) = sin(x)cos(y) + cos(x)sin(y),即正弦函数的和的正弦等于两个正弦函数的乘积和。

- cos(x + y) = cos(x)cos(y) - sin(x)sin(y),即余弦函数的和的余弦等于两个余弦函数的乘积差。

- sin(x - y) = sin(x)cos(y) - cos(x)sin(y),即正弦函数的差的正弦等于两个正弦函数的乘积差。

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是数学中一个非常重要的概念,它涉及到三角函数之间的相互关系。

在三角恒等变换中,通过对三角函数的特性、性质和运算进行分析和推导,可以得到一系列具有等价关系的三角函数等式。

这些等式在解决各种三角函数问题时起到了重要的作用。

1.互余关系:在一个直角三角形中,正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数之间存在互余关系。

例如,正弦函数和余弦函数之间的互余关系可以表示为:sin(x) = cos(π/2 - x),cos(x) = sin(π/2- x)。

通过这种互余关系,可以将一个三角函数的计算问题转化为另一个三角函数的计算问题,从而更加方便地求解。

2.双替换关系:在三角恒等变换中,有些等式可以通过同时替换角度的正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数进行变换。

例如,sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)就是一个双替换关系。

通过双替换关系,可以将三角函数等式从一个角度扩展到整个角度范围内。

3.平方和差关系:三角恒等变换中的平方和差关系利用了三角函数的平方和差公式。

根据平方和差公式,可以将一个三角函数的平方表示为其他三个三角函数的和或差。

例如,sin²(x) + cos²(x) = 1就是一个平方和关系。

通过平方和差关系,可以将一个三角函数的计算问题转化为其他三角函数的计算问题,从而更加方便地求解。

4.倍角关系:在三角恒等变换中,倍角关系是指利用三角函数的倍角公式将一个三角函数的角度扩展为原来的两倍。

例如,sin(2x) = 2sin(x)cos(x),cos(2x) = cos²(x) - sin²(x)。

通过倍角关系,可以将一个角度的问题扩展为两倍角度的问题,从而更加方便地求解。

5.三角和差关系:三角恒等变换中的三角和差关系利用了三角函数的和差公式。

三角的恒等变换

三角的恒等变换

三角恒等变换公式如下:cos(α+β)=cosα·cosβ-sinα·sinβ。

cos(α-β)=cosα·cosβ+sinα·sinβ。

sin(α+β)=sinα·cosβ+cosα·sinβ。

sin(α-β)=sinα·cosβ-cosα·sinβ。

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)。

定号法则将α看做锐角(注意是“看做”),按所得的角的来象垍限头樤,取三角函数的符号。

也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。

在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。

正负号看原函数中α所在象限的正负号。

关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。

或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。

还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。

比如:90°+α。

定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。

所以sin(90°+α)=cosα, cos(90°+α)=-sinα这个非常神奇,屡试不爽~还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。

在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。

本文将对三角恒等变换中的关键知识点进行总结。

一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。

通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。

2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。

3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。

二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。

1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。

初中数学知识归纳三角恒等变换

初中数学知识归纳三角恒等变换

初中数学知识归纳三角恒等变换初中数学知识归纳——三角恒等变换三角恒等变换是初中数学中的重要内容之一,它是解决三角函数相关题目的基础。

在数学学习中,了解并熟练掌握三角恒等变换对于提高解题效率、拓宽思维方式、加深对三角函数的理解都具有重要作用。

本文将对三角恒等变换进行归纳总结,帮助读者更好地理解和应用。

一、基本概念在开始具体介绍三角恒等变换之前,我们首先需要了解一些基本概念。

三角恒等变换是指通过等式变换的方式,将一个三角函数表达式转化为相等的另一个三角函数表达式。

在这个过程中,我们需要用到一些基本的三角函数关系,如正弦函数、余弦函数、正切函数等。

二、常见恒等变换下面我们将重点介绍一些常见的三角恒等变换,对于初中数学学习而言,这些恒等变换是必须要熟练掌握的。

这些恒等变换可以帮助我们简化计算、拓宽解题思路、提高解题速度。

1. 余弦函数的恒等变换(1)余弦函数和正弦函数之间的关系:cos^2θ + sin^2θ = 1(2)余弦函数的偶性:cos(-θ) = cosθ(3)余弦函数的倒数:1/cosθ = secθ2. 正弦函数的恒等变换(1)正弦函数和余弦函数之间的关系:sin^2θ + cos^2θ = 1(2)正弦函数的奇性:sin(-θ) = -sinθ(3)正弦函数的倒数:1/sinθ = cscθ3. 正切函数的恒等变换(1)正切函数和余切函数之间的关系:tanθ = sinθ/cosθ(2)正切函数的奇性:tan(-θ) = -tanθ(3)正切函数的倒数:1/ta nθ = cotθ4. 其他特殊变换(1)和差角公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinB(2)倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)三、应用举例为了更好地理解和应用三角恒等变换,我们可以通过一些具体的例子来加深印象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点19三角恒等变换(2) 班级: 姓名:
1.如果α∈(π2,π),且sin α=45,那么sin(α+π4)-22cos α等于( )A.225 B .-225 C.425 D .-425
2.已知α和β都是锐角,且5sin 13
α=,()4cos 5αβ+=-,
则s i n β的值是( ) A.3365 B.1665 C.5665 D.6365 3.已知2cos 23θ=,则44sin cos θ
θ+的值为 ( )A .1813 B .1811 C .9
7 D .1- 4.函数)2
(3cos 2cos )(ππ-≤≤-+-=x x x x f 的最大值,最小值分别( )
A .3,2
B .5,3
C .5,2
D .3,8
15 5.在△ABC 中,C =120°,tan A +tan B =233,则tan A ·tan B 的值为( )A.14 B.13 C.12 D.53
6.已知向量a =(sin x ,cos x ),向量b =(1,3),则|b a +|的最大值为( )A .1 B. 3 C .3 D .9
7.设α是锐角,且lg(1-cos α)=m ,lg 11+cos α
=n ,则lgsin α等于( ) A .m -n B.12(m -1n ) C.m -n 2 D.12(1m
-n ) 8.在ABC 中,若sin(A+B)sin(A –B) = sin 2 C ,则ABC 的形状是 ( )
A 锐角三角形
B 直角三角形
C 钝角三角形
D 等腰三角形
11.已知sin β=m sin(2α+β),且tan(α+β)=3tan α,则实数m 的值为( )
A .2 B.12 C .3 D.13
12.设000017cos 17sin ,15cos 15sin +=+=b a ,则下列各式中正确的是( )
A.b b a a <+<222
B. 222b a b a +<<
C. a b a b <+<2
22 D. 222b a a b +<<
13.=+0000313sin 253sin 223sin 163sin
14.(1)已知α为第三象限的角,cos2α=-35,则tan(π4
+2α)=________. (2)已知1sin 3
x =,()sin 1x y +=,则()sin 2y x +=
(3)已知2tan()5αβ+=,1tan()44
πβ-=,则tan()4πα+等于
已知1sin cos 3
αβ+=,1sin cos 2βα-=,则sin()αβ-=__________ 15.方程x 2+3ax +3a +1=0(a>2)的两根为tanA ,tanB ,且A,B∈(-π2,π2
),则A +B = 16.已知cos α=17,cos(α-β)=1314,且0<β<α<π2
. (1)求tan2α的值; (2)求β.
17.已知向量(cos ,sin )= a αα, (cos ,sin )= b ββ, 255
-= a b .
(1) 求cos()αβ-的值; (2) 若02
πα<<, 02πβ-<<, 且5sin 13β=-, 求sin α
1.集合A={0,2,a },B={1,2a },若}16,4,2,1,0{=B A ,则a 的值为( ) A. 0 B. 1 C.2 D. 4
2.已知集合P={1,2},那么满足P Q ⊆的集合Q 的个数是( )A.4 B.3 C.2 D. 1
3.设全集}3{},1,1{},3,42,1{2=-=---=A C a A a a a I I ,则a 的值是( )A.2- B.3 C. 2-或3 D. 2
7
4.设集合}0log {},01{22>=>-=x x B x x A ,则B A 等于( )
A. }1{>x x
B.}0{>x x
C.}1{-<x x
D. }11{>-<x x x 或
5.已知全集U=R ,集合}212{≤-≤-=x x M 和},...2,1,12{=-==k k x x N 的关系
的韦恩图如图所示,则阴影部分所示的集合的元素共有( ) A.3个 B.2个 C.1个 D.无穷多个
6.设P,Q 为两个非空实数集合,定义集合},{Q b P a b a Q P ∈∈+=+.若}6,2,1{},520{==Q P ,,,则P+Q 中元素的个数是( ) A.9 B.8 C. 7 D. 6
7.设集合定义集合运算:},,{*B y A x xy z z B A ∈∈==,设}2,0{},2,1{==B A ,则集合A*B 的所有元素之和为( )A.0 B.2 C.3 D.6 8.},1{},,sin cos {22R x i i
x x N R x x x y y M ∈<=∈-==为虚数单位,,则N M 为( )
A.(0,1)
B.(0,1]
C.[0,1)
D.[0,1]
9.在集合},,,{d c b a 上定义两种运算⊕和⊗,如下那么=⊕⊗)(c a d ( )
A.a
B.b
C.c
D.d
10.设集合}034{},4{2>+-=<=x x x B x x A ,则集合=∉∈})({B A x A x x 且
11.对于平面上的点集Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,
给出平面上4个点集的图形如图(阴影区域及其边界)
其中为凸集的是。

相关文档
最新文档