2010年7月《数量方法二》试题

合集下载

数量方法(二)历年自考试题及部分答案

数量方法(二)历年自考试题及部分答案

全国2005年4月高等教育自学考试数量方法(二)试题课程代码:00994第一部分选择题(共30分)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.一组数据3,4,5,5,6,7,8,9,10中的中位数是()A.5 B.5.5C.6 D.6.52.某企业30岁以下职工占25%,月平均工资为800元;30—45岁职工占50%,月平均工资为1000元;45岁以上职工占25%,月平均工资1100元,该企业全部职工的月平均工资为()A.950元B.967元C.975元D.1000元3.某一事件出现的概率为1/4,试验4次,该事件出现的次数将是()A.1次B.大于1次C.小于1次D.上述结果均有可能4.设X、Y为两个随机变量D(X)=3,Y=2X+3,则D(Y)为()A.3 B.9C.12 D.155.某企业出厂产品200个装一盒,产品分为合格与不合格两类,合格率为99%,设每盒中的不合格产品数为X,则X通常服从()A.正态分布B.泊松分布C.均匀分布D.二项分布6.一个具有任意分布形式的总体,从中抽取容量为n的样本,随着样本容量的增大,样本均值X将逐渐趋向于()A.泊松分布B.2χ分布C.F分布D.正态分布7.估计量的无偏性是指()A.估计量的数学期望等于总体参数的真值B.估计量的数学期望小于总体参数的真值C.估计量的方差小于总体参数的真值D.估计量的方差等于总体参数的真值8.显著性水平α是指()A.原假设为假时,决策判定为假的概率B.原假设为假时,决策判定为真的概率C.原假设为真时,决策判定为假的概率D.原假设为真时,决策判定为真的概率9.如果相关系数r=-1,则表明两个随机变量之间存在着()A.完全反方向变动关系B.完全同方向变动关系C.互不影响关系D.接近同方向变动关系10.当所有观察点都落在回归直线y=a+bx上,则x与y之间的相关系数为()A.r=0 B.r2=1C.-1<r<1 D.0<r<111.某股票价格周一上涨8%,周二上涨6%,两天累计涨幅达()A.13% B.14%C.14.5% D.15%12.已知某地区2000年的居民存款余额比1990年增长了1倍,比1995年增长了0.5倍,1995年的存款额比1990年增长了( ) A .0.33倍 B .0.5倍 C .0.75倍 D .2倍 13.说明回归方程拟合程度的统计量是( ) A .置信区间 B .回归系数 C .判定系数 D .估计标准误差14.若采用有放回的等概率抽样,当样本容量为原来的9倍,样本均值的标准误差将( )A .为原来的91B .为原来的31C .为原来的9倍D .不受影响 15.设X 和Y 为两个随机变量,D(X)=10,D(Y)=1,X 与Y 的协方差为-3,则D(2X-Y)为( ) A .18 B .24 C .38 D .53第二部分 非选择题(共70分)三、填空题(本大题共5小题,每小题2分,共10分) 请在每小题的空格中填上正确答案。

2010年考研数学二真题及答案

2010年考研数学二真题及答案

2010年考研数学二真题及答案一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1) .曲线33cos sin x ty t ⎧=⎪⎨=⎪⎩上对应于点6t π=点处的法线方程是______. (2) .设1tan1sinxy ex=⋅,则y '=______.(3) .1=⎰______.(4) .下列两个积分的大小关系是:312x e dx ---⎰______ 312x e dx --⎰.(5) .设函数1, ||1()0, ||1x f x x ≤⎧=⎨>⎩,则函数[()]f f x =______.二、选择题(每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) .已知2lim 01x x ax b x →∞⎛⎫--= ⎪+⎝⎭,其中,a b是常数,则( )(A) .1,1a b == (B) .1,1a b =-= (C) .1,1a b ==- (D) .1,1a b =-=- (2) .设函数()f x 在(,)-∞+∞上连续,则()d f x dx ⎡⎤⎣⎦⎰等于( )(A) .()f x (B) .()f x dx (C) .()f x C + (D) .()f x dx '(3) .已知函数()f x 具有任意阶导数,且2()[()]f x f x '=,则当n 为大于2的正整数时,()f x的n 阶导数()()n f x 是 ( ) (A) .1![()]n n f x + (B) .1[()]n n f x + (C) .2[()]n f x (D) .2![()]n n f x (4) .设()f x 是连续函数,且()()xe xF x f t dt -=⎰,则()F x '等于( )(A) .()()x x e f e f x ---- (B) .()()x x e f e f x ---+ (C) .()()x x e f e f x --- (D) .()()x x e f e f x --+(5) .设(), 0()(0), 0f x x F x x f x ⎧≠⎪=⎨⎪=⎩,其中()f x 在0x =处可导,(0)0,(0)0f f '≠=,则0x =是()F x 的 ( ) (A) .连续点 (B) .第一类间断点(C) .第二类间断点 (D) .连续点或间断点不能由此确定三、(每小题5分,满分25分.) (1) .已知lim()9xx x a x a→∞+=-,求常数a . (2) .求由方程2()ln()y x x y x y -=--所确定的函数()y y x =的微分dy . (3) .求曲线21(0)1y x x =>+的拐点. (4) .计算2ln (1)xdx x -⎰.(5) .求微分方程ln (ln )0x xdy y x dx +-=满足条件1x e y ==的特解. 四、(本题满分9分)在椭圆22221x y a b+=的第一象限部分上求一点P ,使该点处的切线、椭圆及两坐标轴所围图形面积为最小(其中0,0a b >>).五、(本题满分9分)证明:当0x >,有不等式1arctan 2x x π+>. 六、(本题满分9分)设1ln ()1xt f x dt t =+⎰,其中0x >,求1()()f x f x+.七、(本题满分9分)过点(1,0)P 作抛物线y =,该切线与上述抛物线及x 轴围成一平面图形,求此平面图形绕x 轴旋转一周所围成旋转体的体积.八、(本题满分9分)求微分方程44ax y y y e '''++=之通解,其中a 为实数.答案一、填空题(本题共5小题,每小题3分,满分15分.)(1)【答案】:18y x -= (2)【答案】:11tan tan 22211111secsin cos x x e e x x x x x ⎛⎫--⎛⎫⋅⋅⋅+⋅ ⎪ ⎪⎝⎭⎝⎭ (3)【答案】:415(4)【答案】:> (5)【答案】:1二、选择题(每小题3分,满分15分.) (1)【答案】:C (2)【答案】:B (3)【答案】:A (4)【答案】:A (5)【答案】:B三、(每小题5分,满分25分.)(1)此题考查重要极限:1lim(1).xx e x→∞+=(1)lim()lim (1)xx x x x ax a x a x a x →∞→∞++=--()(1)lim (1)xa a x x a aa x a x⋅→∞⋅--+=-29a a a e e e -===, 得2ln 9a =ln 3a ⇒=. 或由 2222lim()lim 1x a xa a x ax a x x x a a e x a x a -⋅⋅-→∞→∞+⎛⎫=+= ⎪--⎝⎭,同理可得ln 3a =. (2)方程两边求微分,得2dy dx -ln()()()ln()x y d x y x y d x y =-⋅-+-⋅-()ln()()dx dydx dy x y x y x y-=--+--, 整理得 2ln()3ln()x y dy dx x y +-=+-.(3)对分式求导数,有公式2u u v uv v v '''-⎛⎫= ⎪⎝⎭,所以2222322(31),(1)(1)x x y y x x --'''==++, 令0y ''=得x =,y ''在此变号,即是x <时,0;y ''<x >时,0;y ''>故拐点为3)4. 本题利用第一个判别定理就足够判定所求点是否是拐点了. (4)由22(1)1(1)(1)(1)dx d x d x x x --==---有 2ln 1ln ()(1)1x dx xd x x=--⎰⎰ln 11()11x dx x x x -+--⎰分部法ln ln |1|1x xx C x=+-+-, C 为任意常数. 注:分部积分法的关键是要选好谁先进入积分号的问题,如果选择不当可能引起更繁杂的计算,最后甚至算不出结果来.在做题的时候应该好好总结,积累经验. (5)所给方程为一阶线性非齐次方程,其标准形式为11ln y y x x x'+=. 由于 ln |ln |dxx xe x ⎰=,两边乘以ln x 得ln (ln )x y x x'=. 积分得 ln ln xy x dx C x =+⎰, 通解为 ln 2ln x Cy x=+. 代入初始条件1x e y ==可得12C =,所求特解为ln 122ln x y x =+.四、(本题满分9分)对椭圆方程进行微分,有220xdx ydy a b +=22dy b xdx a y⇒=-.过曲线上已知点00(,)x y 的切线方程为00()y y k x x -=-,当0()y x '存在时,0()k y x '=.所以点(,)x y 处的切线方程为22()b xY y X x a y-=--,化简得到221xX yY a b +=.分别令0X =与0Y =,得切线在,x y 上的截距分别为22,a b x y;又由椭圆的面积计算公式ab π,其中,a b 为半长轴和半短轴,故所求面积为2211,(0,)24a b S ab x a x y π=⋅-∈.,a b 为常数,欲使得S 的最小,则应使得xy 最大;从而问题化为求u xy =(y 由椭圆方程所确定)当(0,)x a ∈时的最大值点.令,0u xy u xy y ''==+=,得y y x '=,再对22221x y a b+=两边求导得220x y y a b '+=,联合可得x =(唯一驻点),即在此点u xy =取得最大,S 取得最小值. 由于0lim ()lim ()x a x S x S x +→-→==+∞,所以()S x 在(0,)a 上存在最小值,x =必为最小点,所求P点为.五、(本题满分9分)证明不等式的一般方法是将表达式移到不等号的一边,令其为()f x ,另一边剩下0,再在给定区间内讨论()f x 的单调性即可证明原不等式.令1()arctan 2f x x x π=+-,则2211()0 (0)1f x x x x'=-<>+.因此,()f x 在 (0,)+∞上单调减;又有lim arctan 2x x π→+∞=,所以11lim ()lim ()lim 022x x x f x x x ππ→+∞→+∞→+∞=+-==, 故0x <<+∞时,()lim ()0x f x f x →+∞>=,所以原不等式得证.六、(本题满分9分)方法1:111ln ()1xtf dt xt =+⎰,由换元积分1t u =,21dt du u -=,1:1t x →⇒:1u x →; 所以 11111ln ln ()1(1)t uxx t uf dt du xtu u ===++⎰⎰.由区间相同的积分式的可加性,有1()()f x f x+=2111ln ln ln 1ln 1(1)2xx x t t t dt dt dt x t t t t +==++⎰⎰⎰.方法2:令1()()()F x f x f x=+,则21lnln 1ln ().111x xx F x x x x x-'=+⋅=++由牛顿-莱布尼兹公式,有1ln ()(1)xx F x F dx x -=⎰21ln 2x =, 而11ln (1)0x F dx x ==⎰,故211()()()ln 2F x f x f x x =+=. 七、(本题满分9分)先求得切线方程:对抛物线方程求导数,得y '=,过曲线上已知点00(,)x y 的切线方程为00()y y k x x -=-,当0'()y x 存在时,0'()k y x =所以点0(x 处的切线方程为0)y x x =-,此切线过点(1,0)P ,所以把点(1,0)P 代入切线方程得03x =,再03x =代入抛物线方程得01y =,1(3).2y '==由此,与抛物线相切于(3,1)斜率为12的切线方程为21x y -=.旋转体是由曲线(),y f x =直线21x y -=与x 轴所围成的平面图形绕x 轴旋转一周所形成的,求旋转体体积V :方法1:曲线表成y 是x 的函数,V 是两个旋转体的体积之差,套用已有公式得3322121(1)4V x dx dx ππ=--⎰⎰333212111(1)(2)4326x x x πππ=⋅---=.方法2:曲线表成x 是y 的函数,并作水平分割,相应于[],y y dy +小横条的体积微元,如上图所示,22(2)(21),dV y y y dy π⎡⎤=+-+⎣⎦于是,旋转体体积 1322(2)V y y y dy π=-+⎰432112120432y y y π⎛⎫=-+ ⎪⎝⎭6π=.八、(本题满分9分)所给方程为常系数二阶线性非齐次方程,特征方程2440r r ++=的根为122r r ==-,原方程右端axx ee α=中的a α=.当2a α=≠-时,可设非齐次方程的特解axY Ae =,代入方程可得21(2)A a =+, 当2a α==-时,可设非齐次方程的特解2axY x Ae =,代入方程可得12A =, 所以通解为 2122() (2)(2)axxe y c c x ea a -=++≠-+, 22212() (2)2x xx e y c c x ea --=++=-.。

2010年07月自考数量方法2真题及答案

2010年07月自考数量方法2真题及答案

2010年7月高等教育自学考试全国统一命题考试数量方法(二)试题课程代码:00994一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.一个数列的平均数是8,变异系数是0.25,则该数列的标准差是( )A.2B.4C.16D.322.一般用来表现两个变量之间相互关系的图形是( )A.柱形图B.饼形图C.散点图D.曲线图3.A与B为互斥事件,则A B为( )A.ABB.BC.AD.A+B4.从1到100这100个自然数中任意取一个,取到能被3整除的偶数的概率是( )A.0.16B.0.18C.0.2D.0.215.设A、B为两个事件,则表示( )A.“A发生且B不发生”B.“A、B都不发生”C.“A、B都发生”D.“A不发生或者B发生”6.设A、B为两个事件,P(A)=0.5,P(A-B)=0.2,则P(AB)为( )A.0.2B.0.3C.0.7D.0.87.某工厂用送样品的方式推销产品,平均每送10份样品,就收到两份订单,假定用户间的决策互不影响。

当该工厂发出30份样品时,它将收到订单的数量是( )A.2B.4C.6D.无法确定8.已知离散型随机变量X概率函数为P{X=i}=p i+1,i=0,1。

则p的值为( )A.(-1-51/2)/2B.(-l+51/2)/2C.(-l±51/2)/2D.P=1/29.对随机变量离散..程度进行描述时,通常采用( )A.分布律B.分布函数C.概率密度函数D.方差10.对于一列数据来说,其众数( )A.一定存在B.可能不存在C.是唯一的D.是不唯一的11.在一次知识竞赛中,参赛同学的平均得分是80分,方差是16,则得分的变异系数是( )A.0.05B.0.2C.5D.2012.样本估计量的数学期望与待估总体的真实参数之间的离差..称为( )A.偏差B.方差C.标准差D.相关系数13.在评价总体真实参数的无偏估计量和有偏估计量的有效性时,衡量标准为( )A.偏差B.均方误C.标准差D.抽样误差14.在假设检验中,如果仅仅关心总体均值与某个给定值是否有显著区别,应采用( )A.单侧检验B.单侧检验或双侧检验C.双侧检验D.相关性检验15.某销售商声称其销售的某种商品次品率P低于1%,则质检机构对其进行检验时设立的原假设应为( )A.H0:P<0.01B.H0:P≤0.01C.H0:P=0.01D.H0:P≥0.0116.在直线回归方程yˆ=a+bx中,若回归系数b=0,则表示( )iA.y对x的影响显著B.y对x的影响不显著C.x对y的影响显著D.x对y的影响不显著17.如果回归平方和SSR与剩余平方和SSE的比值为4∶1,则判定系数为( )A.0.2B.0.4C.0.6D.0.818.若平均工资提高了5%,职工人数减少5%,则工资总额( )A.降低2.5%B.提高2.5%C.降低0.25%D.提高0.25%19.反映城乡商品零售价格变动趋势的一种经济指数被称为( )A.数量指数B.零售价格指数C.质量指数D.总量指数20.设p 为价格,q 为销售量,则指数010q p q p ∑∑( )A.综合反映多种商品的销售量的变动程度B.综合反映商品价格和销售量的变动程度C.综合反映商品销售额的变动程度D.综合反映多种商品价格的变动程度二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

数量方法(二)

数量方法(二)

全国2009年4月高等教育自学考试数量方法(二)试题课程代码:00994一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.一个试验中所有基本事件的全体所组成的集合称为()A.集合B.单元C.样本空间D.子集2.对于峰值偏向右边的单峰非对称直方图,一般来说()A.平均数>中位数>众数B.众数>中位数>平均数C.平均数>众数>中位数D.中位数>众数>平均数3.下列统计量中可能取负值的是()A.相关系数B.判定系数C.估计标准误差D.剩余平方和4.设A、B、C为任意三个事件,则“在这三个事件中A与B不发生但是C发生”可以表示为()A.B.C C.AB D.ABC5.样本估计量的分布称为()A.总体分布B.抽样分布C.子样分布D.经验分布6.估计量的一致性是指随着样本容量的增大,估计量()A.愈来愈接近总体参数值B.等于总体参数值C.小于总体参数值D.大于总体参数值7.原假设为假时,根据样本推断其为真的概率称为()A.显著性水平B.犯第一类错误的概率C.犯第二类错误的概率D.错误率8.一个实验的样本空间为Ω={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4},B={2,3},C={2,4,6,8,10},则A C=()A.{2,3} B.{2,4}C.{4} D.{1,2,3,4,6,8}9.一个服从二项分布的随机变量,其方差与数字期望之比为3/4,则该分布的参数P是()A.1/4 B.2/4C.3/4 D.110.在一次抛硬币的试验中,小王连续抛了3次,则全部是正面向上的概率为()A.1/9 B.1/8 C.1/6 D.1/311.在一场篮球比赛中,A队10名球员得分的方差是9,变异系数是0.2,则这10球员人均得分为()A.0.6 B.1.8C.15 D.2012.设A、B为两个事件,P(B)=0.7,P(B)=0.3,则P(+)=()A.0.3 B.0.4 C.0.6 D.0.713.已知某批水果的坏果率服从正态分布N(0.04,0.09),则这批水果的坏果率的标准差为()A.0.04 B.0.09C.0.2 D.0.314.设总体X~N(,),为该总体的样本均值,则()A.P(<=<1/4 B.P(<==1/4C.P(<=>1/2 D.P(<)=1/215.设总体X服从正态分布N(,),已知,用来自该总体的简单随机样本X1,X2,…,Xn建立总体未知参数的置信水平为1-的置信区间,以L表示置信区间的长度,则()A.越大L越小B.越大L越大C.越小L越小D.与L没有关系16.假设总体服从正态分布,在总体方差未知的情况下,检验H o:=, H1:>的统计量为t=,其中n为样本容量,S为样本标准差,如果有简单随机样本X1,X2,…,X n,与其相应的t<t a(n-1),则()A.肯定拒绝原假设B.肯定接受原假设C.有可能拒绝原假设D.有可能接受原假设17.一元回归直线拟合优劣的评价标准是()A.估计标准误差越小越好B.估计标准误差越大越好C.回归直线的斜率越小越好D.回归直线的斜率越大越好18.已知环比增长速度为2%、5%、6.1%,则定基增长速度为()A.2%×5%×6.1% B.(2%×5%×6.1%)-1C.102%×105%×106.1% D.(102%×105%×106.1%)-119.按照指数所反映的内容不同,指数可分为()A.个体指数和总指数B.简单指数和加权指数C.数量指标指数和质量指标指数D.动态指数和静态指数20.某商店商品销售资料如下:表中a和b的数值应该为()A.125和120 B.120和80C.80和125 D.95和80二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

自考数量方法(二)试卷答案

自考数量方法(二)试卷答案

自考数量方法(二)试卷及答案自考数量方法(二)试卷及答案一、单选题(共20题,共60分)1.有一组数据99,97,98,101,100,98,100,它们的平均数是()A.98B.98.5C.99D.99.22.一组数据中最大值与最小值之差,称为( )A.方差B.标准差C.全距D.离差3.袋中有红、黄、蓝球各一个,每一次从袋中任取一球,看过颜色后再放回袋中,共取球三次,颜色全相同的概率为()A.1/9B.1/3C.5/9D.8/94.设A、B、C为任意三事件,事件A、B、C至少有一个发生被表示为()A.AB.BC.CD.A+B+C5.掷一枚骰子,观察出现的点数,记事件A={1,3,5},B={4,5,6},C={1,6}则C—A=()A.{3 ,5,6}B.{3 ,5}C.{1}D.{6}6.已知100个产品中有2个废品,采用放回随机抽样,连续两次,两次都抽中废品的概率为()A.2/100×2/100B.2/100×1/99C.2/100D.2/100+2/1007.随机变量的取值一定是( )A.整数B.实数C.正数D.非负数8.服从正态分布的随机变量X 的可能取值为( )A.负数B.任意数C.正数D.整数9.将总体单元在抽样之前按某种顺序排列,并按照设计的规则确定一个随机起点,然后每隔一定的间隔逐个抽取样本单元的抽选方法被称为( )A.系统抽样B.随机抽样C.分层抽样D.整群抽样10.估计量的无偏性是指估计量抽样分布的数学期望等于总体的( )A.样本B.总量C.参数D.误差11.总体比例P的90%置信区间的意义是( )A.这个区间平均含总体90%的值B.这个区间有90%的机会含P 的真值C.这个区间平均含样本90%的值D.这个区间有90%的机会含样本比例值12.用相关系数来研究两个变量之间的紧密程度时,应当先进行( )A.定量分析B.定性分析C.回归分析D.相关分析13.若变量Y与变量X有关系式Y=3X+2,则Y与X的相关系数等于()A.一1B.0C.1D.314.时间数列的最基本表现形式是( )A.时点数列B.绝对数时间数列C.相对数时间数列D.平均数时间数列15.指数是一种反映现象变动的( )A.相对数B.绝对数C.平均数D.抽样数16.某公司2022年与2022年相比,各种商品出厂价格综合指数为110%,这说明()A.由于价格提高使销售量上涨10%B.由于价格提高使销售量下降10%C.商品销量平均上涨了10%D.商品价格平均上涨了10%17.将一个数据集按升序排列,位于数列正中间的数值被称为该数据集的()A.中间数B.众数C.平均数D.中位数18.对于任意一个数据集来说()A.没有众数B.可能没有众数C.有唯一的众数D.有多个众数19.同时投掷三枚硬币,则事件“至少一枚硬币正面朝上”可以表示为()A.{( 正,正,正),(正,正,反),(正,反,反)}B.{(正,反,反)}C.{(正,正,反),(正,反,反)}D.{ (正,正,正)}20.一个实验的样本空间Ω={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4},B={2,3},C={2,4,6,8},则ABC=()A.{2 ,3}B.{2 ,4}C.{1 ,2,3,4,6,8}D.{2}二、填空题(共10题,共30分)21.若一组数据的平均值为5,方差为9,则该组数据的变异系数为()22.在假设检验中,随着显著性水平α的减小,接受H0的可能性将会变()23.在回归分析,用判定系数说明回归直线的拟合程度,若判定系数r²越接近1,说明回归直线的()24.一个数列的平均数是75,标准差是6,则该数列的变异系数是()25.假设检验的基本原理是()26.随着样本容量的增大,估计量的估计值愈来愈接近总体参数值,我们称此估计量具有()27.两个变量之间的简单相关系数r 的取值范围为()28.某种股票的价格周二上涨了10%,周三上涨了4%,两天累计涨幅达()29.在平面坐标系上,离散地描出两个变量各对取值的点所构成的图形被称作()30.在样本容量和抽样方式不变的情况下,提高置信度1-α时,置信区间的半径会变()三、计算题(共10题,共30分)31.四个士兵进行射击训练,他们的命中率分别为75%、80%、85%、90%。

2008年7月份《数量方法二》试题

2008年7月份《数量方法二》试题
一二三四 年份 季 季 季 季
度度度度
1997 51 75 87 54
1998 65 67 82 62
1999 76 77 89 73
试用按季平均法计算季节指数。
31.设有三种股票的价格和发行量资料如下:
股票 基期价格 本日收盘价
名称 (元)
(元)
A
10
15
B
20
18
C
18
25
以发行量为权数计算股票价格指数。
方次数应为_________。
三、计算题(本大题共6小题,每小题5分,共30分) 26.某班20名同学《数量方法》考试成绩如下:
97 86 89 60 82 67 74 76 88 89 93 64 54 82 77 79 68 78 85 73 请按照如下的分组界限进行组距式分组:60分以下、[60,70)、[70, 80)、[80,90)、[90,100],并编制频数分布表(仅给出每一组的频 数和频率)。 27.王某从外地来本市参加会议。他乘火车、轮船、汽车、飞机的概率 分别为0.3、0.2、0.1、0.4,而他乘火车、轮船、汽车、飞机准时到达的 概率分别为0.9、0.6、0.8、0.95。如果他准时到达了,则他乘汽车来的 概率是多少? 28.3名射手射击同一目标,各射手的命中率均为0.7,求在一次同时射 击中 (1)目标被击中的概率; (2)目标被击中的期望数。 29.在某城市一项针对某年龄段的调查中,询问了1000人关于他们获取 新闻的主要来源,其中350人表示他们获取新闻的主要来源是互联网。 试以95%的可靠性估计该年龄段人口主要通过互联网获取新闻的人数所 占比例p的置信区间。(Z0.05=1.645 , Z0.025=1.96) 30.某信托公司1997~1999年各季的投资收入资料如下(单位:万 元):

2010数量方法试题

2010数量方法试题

2010年1月高等教育自学考试中英合作商务管理专业考试数量方法试题(课程代码00799)(考试时间150分钟满分100分)命题人:石海平注意事项:1.试题包括必答题与选答题两部分,必答题满分60分,选答题满分40分。

必答题为一、二、三题,每题20分,选答题为四、五、六、七题,每题20分。

任选两题回答,不得多选,多选者只按选答的前两题计分。

60分为及格线2.用圆珠笔或钢笔把答案按题号写在答题纸上。

3.可使用计算器、直尺等文具。

第一部分必答题(满分60分)一、本题包括1—20小题,每小题1分,共20分。

在每小题给出的四个选项中只有一项符合题目要求,把所选项前的字母写在括号内。

1. 下列是对深圳大学6名学生每月零花钱(单位:元)的情况作调查,得到如下数据:320、580、390、440、900、1200则每月零花钱支出的中位数为()A 380B 440C 510D 4152.下面是某次公务员考试10名学校行政职能测试的成绩如下:80、79、63、64、63、80、79、80、94、95则这组数的众数为()A 63B 79C 64D 803.下列是某公司11名员工的月工资数据制作的茎叶图:31 85,92,3332 04,42,99,9933 88,76,79,00则月工资的极差为()A 115B 255C 203D 1674.()A 7%B 5%C 38%D 6.5%5.若某事件发生的概率为20%,如果试验50次则该事件()A 发生的次数不确定B 一定会发生10次C一定会发生50次D至少会发生10次6.设B≤A若P(A)=0.62,P(B)=0.4,则P(B-A)= ( )A.0.22 B.0.62 C.0.4 D.0.2487则随机变量的E(x)= k= 。

( ) A.4.55 0.25 B.4.55 0.15 C.0.15 4.55 D.0.15 4.28.对西丽果场10000棵荔枝树病虫害状况进行调查,把所有的荔枝树从1至10000进行编号,然后每间隔一定的数量抽取一个样本,这种抽样方法称为()A.简单随机抽样B.分层抽样C.整群抽样D.系统抽样9.深圳市某小区经常被盗,最近对该小区安全因素进行调查发现,进入小区被保安员发现的概率为0.60,被监控探头发现的概率为0.8,则小偷进入该小区没被发现的概率最可能为()A.0.8 B.0.48 C.0.92 D.0.7410.某顾客通过海雅百货结算口所花费的时间服从正态分布N(5,16),则一个顾客通过结算口花费时间不超过8分钟的概率(用Φ)表示()A.Φ (0.75) B.Φ(5)C.Φ(0.19)D.Φ(2)11.某健身俱乐部业务员向顾客推荐健身卡,成功的概率为15%,在某天他接待了20位顾客,则有6位顾客购买该健身卡的概率为()A.0.733 B.0.377 C.0.045 D.012.已知某窗口平均每小时有20人在排队,,则在1小时内有13人在排队等候的概率为()A.0.3150 B.0.2711 C.0.3115 D.0.027113.设X与Y是两随机变量E(X)=4,E(Y)= -3,则E(2X – 3)= ()A.- 1 B.-12 C.-2 D.1714.已知某个总体方差为900,有效地抽取一个容量为25的样本,则样本均值的抽样标准误差为()A.6 B.30 C.180 D.515.设X1,X2,X3,X4是来自总体N(μ,σ2)的样本,μ为总体X的均值,则Μr无偏估计量为_____()A.X1+X2+X3+X4 B X1+X2+X3+X4 C.X1+X2+X3+X4D. 1/n∑X i 、2 416.某企业2004年—2008年上交税收(单位:万元)分别为380,420,490,580,760则该企业上交税收年平均增长量为()A.76 B.95 C.380 D.19017.已知桃源小区2008年家庭年平均收入为148000,2009年家庭年平均收入为183400,则2009年与2008年相比,每增一个百分点增加的收入额为()A.1834 B.1480 C.123.92% D.14818.在假设检验中第一类错误是指()A.P(拒绝H O | H O为真)B.P(拒绝H1 | H1为真)C.P(接受H O | H O为假) D.P(接受H1 | H1为假)19.已知从某总体中抽样一个样本量为25的样本,得到平均值为120千克,标准差为16千克,能否认为总体平均值明显大于115千克,正态总体平均值μ的显著性水平为0.05的假设检验的拒绝域为()A.t < -t0.05B.Ζ>Ζ0.05 C.t > t0.25 D.t > t0.0520.已知华为公司2009年产品总销售额增长了14%,销售增长了8%,则产品的单位价格增减的百分比为()A.6% B.22% C.100% D.5.6%二、本题包括21—24四小题,共26分。

自考数量方法二计算题、应用题题目与答案汇总

自考数量方法二计算题、应用题题目与答案汇总

27.灯管厂生产出一批灯管,拿出5箱给收货方抽检。

这5箱灯管被收货方抽检到的概率分别为0.2,0.3,0.1,0.1,0.3。

其中,第一箱的次品率为0.02,第二箱的次品率为0,第三箱的次品率为0.03,第四箱的次品率为0.01,第五箱的次品率为0.01。

收货方从所有灯管中任取一只,问抽得次品的概率是多少?28.某型号零件的寿命服从均值为1200小时,标准差为250小时的正态分布。

随机抽取一个零件,求它的寿命不低于1300小时的概率。

(已知000(0.3)0.6179,(0.4)0.6554,(0.5)0.6915Φ=Φ=Φ=)29.假设某单位员工每天用于阅读书籍的时间服从正态分布,现从该单位随机抽取了16名员工,己知他们用于阅读书籍的平均时间为50分钟,样本标准差为20分钟,试以95%的置信度估计该单位员工用于阅读书籍的平均时间的置信区间。

(已知t 0.025(15)=2.13, t 0.025(16)=2.12,t 0.05(15)=1.753, t 0.05(16)=1.746)30.某煤矿2005年煤炭产量为25万吨,“十一五”期间(2006-2010)每年平均增长4%,以后每年平均增长5%,问到2015年该煤矿的煤碳产量将达到什么水平?题31表要求:(1)计算销售额指数;(2)以基期销售额为权数计算销售量指数。

四、应用题(本大题共2小题,每小题10分,共20分)32.某农场种植的苹果优等品率为40%,为提高苹果的优等品率,该农场采用了一种新的种植技术,采用后对于500个苹果组成的随机样本的测试表明,其中有300个苹果为优等品。

(1)求该农场种植苹果的样本优等品率。

(2分)(2)该农场种植苹果的优等品率是否有显著提高(可靠性取95%)并说明理由?请给出相应假设检验的原假设和备择假设。

(8分)(z 0.05=1.645, z 0.025=l.96)33表所示:题33表要求:(1)计算人均月销售额与利润率之间的简单相关系数;(3分)(2)以利润率为因变量,人均月销售额为自变量,建立线性回归方程;(5分) (3)计算估计标准误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年7月高等教育自学考试全国统一命题考试
数量方法(二)试题
课程代码:00994
一、单项选择题(本大题共20小题,每小题2分,共40分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.一个数列的平均数是8,变异系数是0.25,则该数列的标准差是( )
A.2
B.4
C.16
D.32
2.一般用来表现两个变量之间相互关系的图形是( )
A.柱形图
B.饼形图
C.散点图
D.曲线图
3.A与B为互斥事件,则A B为( )
A.AB
B.B
C.A
D.A+B
4.从1到100这100个自然数中任意取一个,取到能被3整除的偶数的概率是( )
A.0.16
B.0.18
C.0.2
D.0.21
5.设A、B为两个事件,则表示( )
A.“A发生且B不发生”
B.“A、B都不发生”
C.“A、B都发生”
D.“A不发生或者B发生”
6.设A、B为两个事件,P(A)=0.5,P(A-B)=0.2,则P(AB)为( )
A.0.2
B.0.3
C.0.7
D.0.8
7.某工厂用送样品的方式推销产品,平均每送10份样品,就收到两份订单,假定用户间的决策互不影响。

当该工厂发出30份样品时,它将收到订单的数量是( )
A.2
B.4
C.6
D.无法确定
8.已知离散型随机变量X概率函数为P{X=i}=p i+1,i=0,1。

则p的值为( )
A.(-1-51/2)/2
B.(-l+51/2)/2
C.(-l±51/2)/2
D.P=1/2
9.对随机变量离散
..程度进行描述时,通常采用( )
A.分布律
B.分布函数
C.概率密度函数
D.方差
10.对于一列数据来说,其众数( )
A.一定存在
B.可能不存在
C.是唯一的
D.是不唯一的
11.在一次知识竞赛中,参赛同学的平均得分是80分,方差是16,则得分的变异系数是( )
A.0.05
B.0.2
C.5
D.20
12.样本估计量的数学期望与待估总体的真实参数之间的离差
..称为( )
A.偏差
B.方差
C.标准差
D.相关系数
13.在评价总体真实参数的无偏估计量和有偏估计量的有效性时,衡量标准为( )
A.偏差
B.均方误
C.标准差
D.抽样误差
14.在假设检验中,如果仅仅关心总体均值与某个给定值是否有显著区别,应采用( ) A.单侧检验 B.单侧检验或双侧检验 C.双侧检验 D.相关性检验 15.某销售商声称其销售的某种商品次品率P 低于1%,则质检机构对其进行检验时设立的原假设应为( )
A.H 0:P<0.01
B.H 0:P ≤0.01
C.H 0:P=0.01
D.H 0:P ≥0.01
16.在直线回归方程i y
ˆ=a+bx 中,若回归系数b=0,则表示( ) A.y 对x 的影响显著 B.y 对x 的影响不显著 C.x 对y 的影响显著
D.x 对y 的影响不显著
17.如果回归平方和SSR 与剩余平方和SSE 的比值为4∶1,则判定系数为( ) A.0.2 B.0.4 C.0.6 D.0.8 18.若平均工资提高了5%,职工人数减少5%,则工资总额( ) A.降低2.5% B.提高2.5% C.降低0.25%
D.提高0.25%
19.反映城乡商品零售价格变动趋势的一种经济指数被称为( ) A.数量指数 B.零售价格指数 C.质量指数
D.总量指数
20.设p 为价格,q 为销售量,则指数001
0q p q p ∑∑( )
A.综合反映多种商品的销售量的变动程度
B.综合反映商品价格和销售量的变动程度
C.综合反映商品销售额的变动程度
D.综合反映多种商品价格的变动程度
二、填空题(本大题共5小题,每小题2分,共10分)
请在每小题的空格中填上正确答案。

填错、不填均无分。

21.数列2、3、3、4、1、5、3、2、4、3、6的众数是__________。

22.从总体X ~N(μ,σ2)中随机抽取一个容量为n 的样本,总体方差已知,则总体均值μ的置信度为l-α的置信区间为___________。

23.假设检验的基本原理是____________。

24.两个变量之间的相关系数r=l ,说明这两个变量之间存在_______________关系。

25.根据各年的季度数据计算季节指数,各月季节指数的平均数应等于____________。

三、计算题(本大题共6小题,每小题5分,共30分)
26.某集团下属20
):
试计算平均数和方差。

27.某射击队中,一级射手占25%,二级射手占30%,三级射手占40%,四级射手占50%。

一、
二、三、四级射手通过选拔进入省队的概率分别为0.8,0.6,0.3,0.1。

现从该射击队随机抽取一名射手,求其能通过选拔进入省队的概率。

28.设X与Y为随机变量,E(X)=3,E(Y)=-2,D(X)=9,D(Y)=4,Cov(X,Y)=1,求E(3X—Y)和D(3X—Y)。

29.从某食糖生产厂的流水线上随机抽取了10袋食糖,重量分别为505,504,500,502,510,505,515,499,510,510克。

已知每袋食糖的重量服从正态分布,求每袋食糖平均重量的置信度为95%的置信区间。

(t0.05(9)=1.83,t0.025(9)=2.26)
30.
计算该公司第二季度人均商品销售额。

31.
要求:(1)计算总工资指数;
(2)计算总工资变动的绝对额。

四、应用题(本大题共2小题,每小题10分,共20分)
32.某网站称其50%以上的浏览者为本科以上高学历者。

一个由200位浏览者组成的随机样本表明,其中有90人为高学历者。

(1)求该网站浏览者中高学历者的样本比率。

(2)试检验该网站的声明是否可信(可靠性取95%)?(请给出相应假设检验的原假设和备择假设。

)(z0.05=1.645,z0.025=1.96)
33.为了研究某行业企业年销售与年广告支出之间的关系,调查获得了5家企业2005年的有关
要求:(1)计算年广告支出与年销售额之间的简单相关系数;
(2)以年广告支出为自变量,年销售额为因变量,建立回归直线方程;
(3)估计年广告支出为30万元时企业的预期销售额。

相关文档
最新文档