2011年广东省中考数学试卷

合集下载

2011-2017年广州中考数学试题及参考答案

2011-2017年广州中考数学试题及参考答案

2011-2017年广州中考数学试题及参考答案目录2011年广州中考数学试题 (1)2012年广州中考数学试题 (5)2013年广州中考数学试题 (9)2014年广州中考数学试题 (13)2015年广州中考数学试题 (17)2016年广州中考数学试题 (21)2017年广州中考数学试题 (25)2011年广州中考数学试题参考答案 (29)2012年广州中考数学试题参考答案 (35)2013年广州中考数学试题参考答案 (43)2014年广州中考数学试题参考答案 (50)2015年广州中考数学试题参考答案 (59)2016年广州中考数学试题参考答案 (67)2017年广州中考数学试题参考答案 (74)2011年广东省广州市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)四个数﹣5,﹣0.1,,中为无理数的是()A.﹣5 B.﹣0.1 C.D.2.(3分)已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.283.(3分)某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是()A.4 B.5 C.6 D.10 4.(3分)将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1)B.(2,﹣1)C.(4,1)D.(2,3)5.(3分)下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x﹣1 C.D.6.(3分)若a<c<0<b,则abc与0的大小关系是()A.abc<0 B.abc=0 C.abc>0 D.无法确定7.(3分)下面的计算正确的是()A.3x2•4x2=12x2B.x3•x5=x15C.x4÷x=x3D.(x5)2=x78.(3分)如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A.B. C. D.9.(3分)当实数x的取值使得有意义时,函数y=4x+1中y的取值范围是()A.y≥﹣7 B.y≥9 C.y>9 D.y≤910.(3分)如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.B.C.πD.二、填空题:(每小题3分,共18分)11.(3分)9的相反数是 .12.(3分)已知∠α=26°,则∠α的补角是 度. 13.(3分)方程的解是.14.(3分)如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A ′B ′C ′D ′E ′,已知OA=10cm ,OA ′=20cm ,则五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长的比值是 .15.(3分)已知三条不同的直线a 、b 、c 在同一平面内,下列四条命题: ①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 .(填写所有真命题的序号) 16.(3分)定义新运算“⊗”,,则12⊗(﹣1)= .三、解答题(本大题共9大题,满分102分) 17.(9分)解不等式组.18.(9分)如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE=AF . 求证:△ACE ≌△ACF .19.(10分)分解因式:8(x 2﹣2y 2)﹣x (7x+y )+xy .20.(10分)5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位) (2)画出该几何体的主视图和左视图.21.(12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?22.(12分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求a的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少有1人的上网时间在8~10小时.23.(12分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=.(1)求k的值和边AC的长;(2)求点B的坐标.24.(14分)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.25.(14分)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.2012年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)实数3的倒数是()A.﹣ B.C.﹣3 D.32.(3分)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)23.(3分)一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.(3分)下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b5.(3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.206.(3分)已知|a﹣1|+=0,则a+b=()A.﹣8 B.﹣6 C.6 D.87.(3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.8.(3分)已知a>b,若c是任意实数,则下列不等式中总成立的是()A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc9.(3分)在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形10.(3分)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是()A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>1二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD= 度.12.(3分)不等式x﹣1≤10的解集是.13.(3分)分解因式:a2﹣8a= .14.(3分)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为.15.(3分)已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为.16.(3分)如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的倍,第n个半圆的面积为(结果保留π)三、解答题(本大题共9小题,满分102分.解答应写出文字说明,证明过程或演算步骤)17.(9分)解方程组.18.(9分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.19.(10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.20.(10分)已知(a≠b),求的值.21.(12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.22.(12分)如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.(2)若点N在(1)中的⊙P′上,求PN的长.23.(12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?24.(14分)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.25.(14分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.2013年广东省广州市中考数学试卷一、选择题:1.(3分)比0大的数是()A.﹣1 B.C.0 D.12.(3分)如图所示的几何体的主视图是()A.B.C.D.3.(3分)在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格 B.向上移动1格 C.向上移动2格 D.向下移动2格4.(3分)计算:(m3n)2的结果是()A.m6n B.m6n2C.m5n2D.m3n25.(3分)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图所示,该调查的方式是(),图中的a的值是()A.全面调查,26 B.全面调查,24 C.抽样调查,26 D.抽样调查,246.(3分)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.7.(3分)实数a在数轴上的位置如图所示,则|a﹣2.5|=()A.a﹣2.5 B.2.5﹣a C.a+2.5 D.﹣a﹣2.58.(3分)若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠19.(3分)若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法判断10.(3分)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()A.2 B.2 C.D.二.填空题(本大题共6小题,每小题3分,满分18分)11.(3分)点P在线段AB的垂直平分线上,PA=7,则PB= .12.(3分)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.13.(3分)分解因式:x 2+xy= .14.(3分)一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是 .15.(3分)如图,Rt △ABC 的斜边AB=16,Rt △ABC 绕点O 顺时针旋转后得到Rt △A ′B ′C ′,则Rt △A ′B ′C ′的斜边A ′B ′上的中线C ′D 的长度为 .16.(3分)如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与x 轴交于O ,A 两点,点A 的坐标为(6,0),⊙P 的半径为,则点P的坐标为.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(9分)解方程:x 2﹣10x+9=0.18.(9分)如图,四边形ABCD 是菱形,对角线AC 与BD 相交于O ,AB=5,AO=4,求BD 的长.19.(10分)先化简,再求值:,其中.20.(10分)已知四边形ABCD 是平行四边形(如图),把△ABD 沿对角线BD 翻折180°得到△A ′BD . (1)利用尺规作出△A ′BD .(要求保留作图痕迹,不写作法); (2)设DA ′与BC 交于点E ,求证:△BA ′E ≌△DCE .21.(12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下表:(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(12分)如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B 的北偏西35°方向,AP的距离为30海里(参考数据:sin32°≈0.53,sin55°≈0.82).(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.23.(12分)如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图象经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.24.(14分)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=时(如图),求证:CD是⊙O的切线;(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.25.(14分)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C(),求当x≥1时y1的取值范围.2014年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)a(a≠0)的相反数是()A.﹣a B.a2C.|a| D.2.(3分)下列图形中,是中心对称图形的是()A.B.C. D.3.(3分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.4.(3分)下列运算正确的是()A.5ab﹣ab=4 B.+=C.a6÷a2=a4D.(a2b)3=a5b35.(3分)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()A.外离 B.外切 C.内切 D.相交6.(3分)计算,结果是()A.x﹣2 B.x+2 C.D.7.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9 C.平均数是8 D.极差是78.(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.29.(3分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<010.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)11.(3分)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.12.(3分)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.13.(3分)代数式有意义时,x应满足的条件为.14.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:,该逆命题是命题(填“真”或“假”).16.(3分)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.三、解答题(共9小题,满分102分)17.(9分)解不等式:5x﹣2≤3x,并在数轴上表示解集.18.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE ≌△COF.19.(10分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.21.(12分)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(12分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24.(14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.2015年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分。

2011年广东省广州市数学中考试题

2011年广东省广州市数学中考试题

2011年广东省广州市数学中考试题一、选择题(每小题3分,共30分)1.四个数-5,-0.1,21,3中为无理数的是()A. -5B. -0.1C.21D. 32.已知□ABCD的周长为32,AB=4,则BC=()A. 4B. 121C. 24D. 283.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是( )A. 4B. 5C. 6D. 104.将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是()A. (0,1)B. (2,-1)C. (4,1)D. (2,3)5.下列函数中,当x>0时,y值随x值增大而减小的是()A.2xy= B. 1-=xy C. xy43= D.xy1=6.若a<c<0<b,则abc与0的大小关系是()A. abc<0B. abc=0C. abc>0D. 无法确定7.下面的计算正确的是()A. 2221243xxx=⋅ B. 1553xxx=⋅ C. 34xxx=÷ D. 725)(xx=8.如图所示,将矩形纸片先沿虚线AB按箭头方向向右..对折,接着对折后的纸片沿虚线CD向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()9.当实数x的取值使得2-x有意义时,函数y=4x+1中y的取值范围是()A.y≥-7B. y≥9C. y>9D. y≤910.如图,AB切⊙O于点B,OA=23,AB=3,弦BC//OA,则劣弧BC的弧长为()A.π33B. π23C. πD. π23二、填空题:(每小题3分,共18分)11.9的相反数是______12.已知α∠=260,则α∠的补角是______度。

13.方程231+=xx的解是______14.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形EDCBA''''',已知OA=10cm,AO'=20cm,则五边形ABCDE的周长与五边形EDCBA'''''的周长的比值是______15.已知三条不同的直线a、b、c在同一平面内,下列四条命题:(①如果a //b ,a ⊥b ,那么b ⊥c ; ②如果b //a ,c //a ,那么b//c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b//c. 其中真命题的是_________。

广东中考数学真题试卷及答案

广东中考数学真题试卷及答案

2011年广东省初中毕业生学业考试数学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是()A.2B.-2C.12D.122.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()7吨B.5.464×108吨C.5.464×109吨D.5.464×1010吨A.5.464×103.将左下图中的箭头缩小到原来的12,得到的图形是()题3图A.B.C.D.4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.15B.13C.58D.385.正八边形的每个内角为()A.120oB.135oC.140oD.144o二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数ky的图象经过(1,-2),则k____________.x7.使x2在实数范围内有意义的x的取值范围是___________.8.按下面程序计算:输入x3,则输出的答案是_______________.输入x立方-x÷2答案9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C.若∠A=40o,则∠C=_____.BCAO题9图10.如图(1),将一个正六边形各边延长,构成一个正六角星形A F BDC E,它为1;取△ABC 和△ DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边 中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去⋯,则正六角星形A 4F 4B 4D 4C 4E 4 的面积为_________________. AAA FE A 1 FE F1E 1 A 1 FE A2 F1E1F 2E 2 BCB 1C1 BCD 1B2C 2 B 1C 1D2 BC D 1D DD 题10图(1)题10图(2)题10图(3) 三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:018sin4522(20111). 12.解不等式组:2x 8 1 2x 3, x ,并把解集在数轴上表示出来. 1 y 13.已知:如图,E ,F 在AC 上,AD//CB 且AD=CB ,∠D=∠B .3 求证:AE=CF . AD2 1FE-6- -4-2 -O123- -x-2BC题13图-3 题14图14.如图,在平面直角坐标系中,个单位⊙P 1. (1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系; (2)设⊙P 1与x 轴正半轴,果保留π).12 15.已知抛物线yxxc2 (1)求c的取值范围;与x轴没有交点.(2)试确定直线ycx1经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?17.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=30o,∠ABD=45o,BC=50m.请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:21.414,31.732).DBClA第17题图18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?E频数(学生人数)24DAF13810 1020304050 时间(分钟) BC题18图题19图19.如图,直角梯形纸片ABCD中,AD//BC,∠A=90o,∠C=30o.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.1 234 5678910111213141516 171819202122232425 2627282930313233343536⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有 ____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB=AC=EF=9,∠BAC=∠DEF=90o , 固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结 束时重合的情况,设DE ,DF(或它们的延长线)分别交BC(或它的延长线)于G ,H 点,如图(2)A (D )A (D )FFBGCHC (E )B题21图(1)E 题21图(2)(1)问:始终与△AGC 相似的三角形有及;(2)设CG=x ,BH=y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形.521722.如图,抛物线yx1与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 44作BC ⊥x 轴,垂足为点C(3,0). (1)求直线AB 的函数关系式;(2)动点P O C上从原点出发以每秒一个单位C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 关系 N(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况), CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形? 问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由. M A OPCx题22图2011年广东省初中毕业生学业考试数学参考答案一、 1-5、DBACB 二、6、-27、___x ≥2__8、___12__9、__25o__10、 1 256三、11、原式=-612、x ≥313、由△ADF ≌△CBE ,得AF=CE ,故得:AE=CF 14、(1)⊙P 与⊙P 1外切。

2011年广东省中考数学试卷(内含解析)

2011年广东省中考数学试卷(内含解析)

2011年广东省中考数学试卷2011年广东省中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2011•孝感)﹣2的倒数是()A.2 B.﹣2 C.D.2.(2011•广东)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A.5.464×107吨B.5.464×108吨C.5.464×109吨D.5.464×1010吨3.(2011•广东)将下图中的箭头缩小到原来的,得到的图形是()A.B.C.D.4.(2011•广东)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.B.C.D.5.(2011•广东)正八边形的每个内角为()A.120°B.135°C.140°D.144°二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(2011•广东)已知反比例函数解析式的图象经过(1,﹣2),则k=_________.7.(2011•广东)使在实数范围内有意义的x的取值范围是_________.8.(2011•广东)按下面程序计算:输入x=3,则输出的答案是_________.9.(2011•广东)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=_________.10.(2011•广东)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC 和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(2011•广东)计算:.12.(2011•广东)解不等式组,并把解集在数轴上表示出来.13.(2011•广东)已知:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.14.(2011•广东)如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)15.(2011•广东)已知抛物线与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2011•广东)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?17.(2011•广东)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)18.(2011•广东)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.(2011•广东)如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(2011•广东)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是_________,它是自然数_________的平方,第8行共有_________个数;(2)用含n的代数式表示:第n行的第一个数是_________,最后一个数是_________,第n行共有_________个数;(3)求第n行各数之和.21.(2011•广东)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有_________及_________;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.22.(2011•广东)如图,抛物线y=﹣x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN 为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.2011年广东省中考数学试卷参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2011•孝感)﹣2的倒数是()A.2 B.﹣2 C.D.考点:倒数。

2011广东广州中考数学(word)

2011广东广州中考数学(word)

2011年广州市初中毕业生学业考试数学第一部分选择题(共30分)一、选择题(本大题共10小题,第小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C. 12D. 3【答案】D2.(2011广东广州市,2,3分)已知□ABCD的周长为32,AB=4,则BC=(). A.4 B.12 C.24 D.28【答案】B3.(2011广东广州市,3,3分)某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是().A.4B.5C.6D.10【答案】B4.(2011广东广州市,4,3分)将点A(2,1)向左..平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1) B.(2,-1) C.(4,1) D.(2,3)【答案】A5.(2011广东广州市,5,3分)下列函数中,当x>0时y值随x值增大而减小的是().A.y = x2B.y = x-1C.y = 34x D.y =1x【答案】D6.(2011广东广州市,6,3分)若a < c < 0 < b ,则abc与0的大小关系是().A.abc < 0 B.abc = 0 C.abc > 0 D.无法确定【答案】C7.(2011广东广州市,7,3分)下面的计算正确的是().A.3x2·4x2=12x2B.x3·x5=x15C.x4÷x=x3D.(x5)2=x7【答案】C8.(2011广东广州市,8,3分)如图1所示,将矩形纸片先沿虚线AB按箭头方向向右..对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A .B .C .D .【答案】D9.(2011广东广州市,9,3分)当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ). A .y ≥-7 B .y ≥9 C .y >9 D .y ≤9 【答案】B10.(2011广东广州市,10,3分)如图2,AB 切⊙O 于点B ,OA =23,AB =3,弦BC ∥OA ,则劣弧 ⌒BC 的弧长为( ). A .33π B .32πC .πD .32π图2 【答案】A第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.(2011广东广州市,11,3分)9的相反数是 . 【答案】-9 12.(2011广东广州市,12,3分)已知∠α=26°,则∠α的补角是 度. 【答案】15413.(2011广东广州市,13,3分)方程1x = 3x+2的解是 .【答案】x =1 14.(2011广东广州市,14,3分)如图3,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA ′=20cm ,则五边形ABCDE 的周长与五边形B 图1A′B′C′D′E′的周长的比值是 .【答案】1215.(2011广东广州市,15,3分)已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 .(填写所有真命题的序号) 【答案】①②④16.(2011广东广州市,16,3分)定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗ (-1)= . 【答案】8三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(2011广东广州市,17,9分)解不等式组⎩⎨⎧x -1<32x +1>0.【答案】解不等式①得x <4 解不等式②得x >-12所以原不等式组的解集为-12<x <4.18.(2011广东广州市,18,9分)如图4,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .图3′图4【答案】∵四边形ABCD 为菱形 ∴∠BAC=∠DAC 又∵AE=AF ,AC=AC∴△ACE ≌△ACF (SAS ) 19.(2011广东广州市,19,10分) 分解因式8(x 2-2y 2)-x (7x +y )+xy .【答案】8(x 2-2y 2)-x (7x +y )+xy =8x 2-16y 2-7x 2-xy +xy =x 2-16y 2=(x +4y )(x -4y )20.(2011广东广州市,20,10分)5个棱长为1的正方体组成如图5的几何体. (1)该几何体的体积是 (立方单位),表面积是 (平方单位) (2)画出该几何体的主视图和左视图【答案】(1)5,22(2主视图左视图 21.(2011广东广州市,21,12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算? 【答案】(1)120×0.95=114(元) 所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x 解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算. 22.(2011广东广州市,22,12分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数正面图5分布直方图(图6),根据图中信息回答下列问题: (1)求a 的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.图6 【答案】(1)a =50―6―25―3―2=14(2)设上网时间为6~8小时的三个学生为A 1,A 2,A 3,上网时间为8~10个小时的2名学生为B 1,B 2,则共有A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 2A 3,A 2B 1,A 2B 2 A 3B 1,A 3B 2 B 1B 210种可能,其中至少1人上网时间在8~10小时的共有7种可能,故 P (至少1人的上网时间在8~10小时)=0.7 23.(2011广东广州市,23,12分) 已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x 的图象上,且sin ∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.【答案】(1)把C (1,3)代入y = kx 得k =3 设斜边AB 上的高为CD ,则 sin ∠BAC =CD AC =35∵C (1,3)∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有: AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254频数∴OB=AB -AO=254-3=134此时B 点坐标为(134,0)图1 图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).24.(2011广东广州市,24,14分)已知关于x 的二次函数y =ax 2+bx +c (a >0)的图象经过点C (0,1),且与x 轴交于不同的两点A 、B ,点A 的坐标是(1,0). (1)求c 的值;(2)求a 的取值范围;(3)该二次函数的图象与直线y=1交于C 、D 两点,设A 、B 、C 、D 四点构成的四边形的对角线相交于点P ,记△PCD 的面积为S 1,△P AB 的面积为S 2,当0<a <1时,求证:S 1-S 2为常数,并求出该常数. 【答案】(1)c =1 (2)将C (0,1),A (1,0)得 a +b +1=0 故b=―a ―1由b 2-4ac >0,可得 (-a -1)2-4a >0 即(a -1)2>0 故a ≠1,又a >0所以a 的取值范围是a >0且a ≠1. (3)由题意0<a <1,b=―a ―1可得-b 2a>1,故B 在A 的右边,B 点坐标为(-ba -1,0)C (0,1),D (-ba ,1)|AB|=-b a -1-1=-ba -2 |CD|=-baS 1-S 2=S △CDA -S ABC =12×|CD|×1-12×|AB|×1=12×(-b a )×1-12×(-b a -2)×1=1所以S 1-S 2为常数,该常数为1. 25.(2011广东广州市,25,14分)如图7,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中 ∠DCE 是直角,点D 在线段AC 上. (1)证明:B 、C 、E 三点共线;(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN=2OM ; (3)将△DCE 绕点C 逆时针旋转α(0°<α<90°)后,记为△D 1CE 1(图8),若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若是,请证明;若不是,说明理由.【答案】(1)∵AB 为⊙O 直径 ∴∠ACB=90°∵△DCE 为等腰直角三角形 ∴∠ACE=90°∴∠BCE=90°+90°=180° ∴B 、C 、E 三点共线. (2)连接BD ,AE ,ON . ∵∠ACB=90°,∠ABC =45° ∴AB=AC ∵DC=DE∠ACB=∠ACE=90°1图8图7∴△BCD ≌△ACE∴AE=BD ,∠DBE=∠EAC ∴∠DBE+∠BEA=90° ∴BD ⊥AE ∵O ,N 为中点 ∴ON ∥BD ,ON=12BD同理OM ∥AE ,OM=12AE∴OM ⊥ON ,OM=ON∴MN=2OM (3)成立证明:同(2)旋转后∠BCD 1=∠BCE 1=90°-∠ACD 1 所以仍有△BCD 1≌△ACE 1,所以△ACE 1是由△BCD 1绕点C 顺时针旋转90°而得到的,故BD 1⊥AE 1 其余证明过程与(2)完全相同.。

2011年广东省东莞市中考数学试卷及答案详解

2011年广东省东莞市中考数学试卷及答案详解

2011年广东省东莞市中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2017•达州)2-的倒数是()A .2B .2-C .12D .12-2.(3分)(2011•东莞)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A.75.46410⨯吨B.85.46410⨯吨C.95.46410⨯吨D.105.46410⨯吨3.(3分)(2011•东莞)将下图中的箭头缩小到原来的12,得到的图形是()A.B.C.D.4.(3分)(2011•东莞)在一个不透明的口袋中,装有5 个红球3 个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A .15B .13C .58D .385.(3分)(2011•东莞)正八边形的每个内角为()A.120︒B.135︒C.140︒D.144︒二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)(2011•东莞)已知反比例函数解析式kyx=的图象经过(1,2)-,则k=.7.(4分)(2013•徐州)要使x应满足的条件是.8.(4分)(2011•东莞)按下面程序计算:输入3x =,则输出的答案是 .9.(4分)(2011•东莞)如图,AB 与O 相切于点B ,AO 的延长线交O 于点C ,连接BC ,若40A ∠=︒,则C ∠= .10.(4分)(2011•东莞)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1,取ABC ∆和DEF ∆各边中点,连接成正六角星形111111A F B DC E ,如图(2)中阴影部分,取△111A B C 和△111D E F 各边中点,连接成正六角星形222222A F B D C E ,如图(3)中阴影部分,如此下去⋯,则正六角星形444444A F B D C E 的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.(6分)(2011•东莞)计算:021)452︒-.12.(6分)(2011•东莞)解不等式组213821x x x +>-⎧⎨--⎩…,并把解集在数轴上表示出来.13.(6分)(2011•东莞)已知:如图,E 、F 在AC 上,//AD CB 且AD CB =,D B ∠=∠.求证:AE CF =.14.(6分)(2011•东莞)如图,在平面直角坐标系中,点P 的坐标为(4,0)-,P 的半径为2,将P 沿x 轴向右平移4个单位长度得1P (1)画出1P ,并直接判断P 与1P 的位置关系; (2)设1P 与x 轴正半轴,y 轴正半轴的交点分别为A 、B .求劣弧AB 与弦AB 围成的图形的面积(结果保留)π15.(6分)(2011•东莞)已知抛物线212y x x c =++与x 轴没有交点. (1)求c 的取值范围; (2)试确定直线1y cx =+经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(7分)(2011•东莞)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?17.(7分)(2011•东莞)如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路,现新修一条路AC 到公路l ,小明测量出30ACD ∠=︒,45ABD ∠=︒,50BC m =,请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m 1.414≈ 1.732)≈18.(7分)(2011•东莞)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.(7分)(2011•东莞)如图,直角梯形纸片ABCD 中,//AD BC ,90A ∠=︒,30C ∠=︒,折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且8BF CF ==.(1)求BDF ∠的度数;(2)求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(9分)(2011•东莞)如下数表是由从 1 开始的连续自然数组成, 观察规律并完成各题的解答 .(1) 表中第 8 行的最后一个数是 ,它是自然数 的平方, 第 8行共有 个数;(2) 用含n 的代数式表示: 第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3) 求第n 行各数之和 .21.(9分)(2011•东莞)如图(1),ABC ∆与EFD ∆为等腰直角三角形,AC 与DE 重合,9AB AC EF ===,90BAC DEF ∠=∠=︒,固定ABC ∆,将DEF ∆绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它们的延长线)所在的直线于G ,H 点,如图(2).(1)问:始终与AGC ∆相似的三角形有 及 ;(2)设CG x =,BH y =,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x 为何值时,AGH ∆是等腰三角形.22.(9分)(2011•东莞)如图,抛物线2517144y x x =-++与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC x ⊥轴,垂足为点(3,0)C(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,PN xMN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.2011年广东省东莞市中考数学试卷参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)2-的倒数是()A .2B .2-C .12D .12-【考点】17 :倒数【分析】根据倒数的定义,若两个数的乘积是 1 ,我们就称这两个数互为倒数.【解答】解:12()12-⨯-=,2∴-的倒数是12 -.故选:D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是 1 ,我们就称这两个数互为倒数,属于基础题.2.(3分)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A.75.46410⨯吨B.85.46410⨯吨C.95.46410⨯吨D.105.46410⨯吨【考点】1I:科学记数法-表示较大的数【专题】1:常规题型【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<…,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1>时,n是正数;当原数的绝对值1<时,n是负数.【解答】解:将546400000用科学记数法表示为85.46410⨯.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中1||10a<…,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)将下图中的箭头缩小到原来的12,得到的图形是()A.B.C.D.【考点】5S:相似图形【专题】12:应用题【分析】根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.【解答】解:图中的箭头要缩小到原来的12,∴箭头的长、宽都要缩小到原来的12;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选:A.【点评】本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4.(3分)在一个不透明的口袋中,装有5 个红球3 个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A .15B .13C .58D .38【考点】4X:概率公式【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【解答】解:共8 球在袋中,其中 5 个红球,故摸到红球的概率为58,故选:C.【点评】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =,难度适中.5.(3分)正八边形的每个内角为()A.120︒B.135︒C.140︒D.144︒【考点】3L:多边形内角与外角【专题】16:压轴题【分析】根据正多边形的内角求法,得出每个内角的表示方法,即可得出答案.【解答】解:根据正八边形的内角公式得出:[(2)180][(82)180]8135n n-⨯÷=-⨯÷=︒.故选:B.【点评】此题主要考查了正多边形的内角公式运用,正确的记忆正多边形的内角求法公式是解决问题的关键.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)已知反比例函数解析式kyx=的图象经过(1,2)-,则k=2-.【考点】7G:待定系数法求反比例函数解析式【专题】11:计算题【分析】将(1,2)-代入式kyx=即可得出k的值.【解答】解:反比例函数解析式kyx=的图象经过(1,2)-,2k xy∴==-,故答案为:2-.【点评】此题比较简单,考查了用待定系数法求反比例函数的解析式,是中学阶段的重点.7.(4x应满足的条件是2x….【考点】72 :二次根式有意义的条件【分析】根据二次根式的性质,被开方数大于或等于0 ,列不等式求解.【解答】解:x 应满足的条件20x -…,即2x ….【点评】主要考查了二次根式的意义和性质 . 概念: 0)a …叫二次根式 . 性质: 二次根式中的被开方数必须是非负数, 否则二次根式无意义 .8.(4分)按下面程序计算:输入3x =,则输出的答案是 12 .【考点】33:代数式求值【专题】27:图表型【分析】根据输入程序,列出代数式,再代入x 的值输入计算即可.【解答】解:根据题意得:3()2x x -÷3x =,∴原式(273)224212=-÷=÷=.故答案为:12.【点评】本题考查了代数式求值,解题关键是弄清题意,根据题意把x 的值代入,按程序一步一步计算.9.(4分)如图,AB 与O 相切于点B ,AO 的延长线交O 于点C ,连接BC ,若40A ∠=︒,则C ∠= 25︒ .【考点】5M :圆周角定理;MC :切线的性质【专题】11:计算题【分析】连接OB ,AB 与O 相切于点B ,得到90OBA ∠=︒,根据三角形内角和得到AOB ∠的度数,然后用三角形外角的性质求出C ∠的度数.【解答】解:如图:连接OB , AB 与O 相切于点B ,90OBA ∴∠=︒, 40A ∠=︒, 50AOB ∴∠=︒, OB OC =, C OBC ∴∠=∠,2AOB C OBC C ∠=∠+∠=∠, 25C ∴∠=︒.故答案是:25︒.【点评】本题考查的是切线的性质,根据求出的性质得到OBA ∠的度数,然后在三角形中求出C ∠的度数.10.(4分)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1,取ABC ∆和DEF ∆各边中点,连接成正六角星形111111A F B DC E ,如图(2)中阴影部分,取△111A B C 和△111D E F 各边中点,连接成正六角星形222222A F B D C E ,如图(3)中阴影部分,如此下去⋯,则正六角星形444444A F B D C E 的面积为1256.【考点】KX :三角形中位线定理;6S :相似多边形的性质 【专题】16:压轴题;2A :规律型【分析】先分别求出第一个正六角星形AFBDCE 与第二个边长之比,再根据相似多边形面积的比等于相似比的平方,找出规律即可解答. 【解答】解:1A 、1F 、1B 、1D 、1C 、1E 分别是ABC ∆和DEF ∆各边中点,∴正六角星形AFBDCE ∽正六角星形111111A F B DC E ,且相似比为2:1, 正六角星形AFBDCE 的面积为1,∴正六角星形111111A F B DC E 的面积为14, 同理可得,第三个六角形的面积为:311464=,第四个六角形的面积为:4114256=,故答案为:1256.【点评】本题考查的是相似多边形的性质及三角形中位线定理,解答此题的关键是熟知相似多边形面积的比等于相似比的平方.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(6分)计算:021)452︒-. 【考点】6E :零指数幂;5T :特殊角的三角函数值【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式的化简,乘方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式14=+, 134=+-, 0=.【点评】此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式的化简等考点的运算.12.(6分)解不等式组213821x x x +>-⎧⎨--⎩…,并把解集在数轴上表示出来.【考点】CB :解一元一次不等式组;4C :在数轴上表示不等式的解集【专题】31:数形结合【分析】分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.【解答】解:213821x x x +>-⎧⎨-≤-⎩①②,由①得,2x >-,由②得,3x …, 故原不等式组的解集为:3x …, 在数轴上表示为:【点评】本题考查的是解一元一次不等式组及在数轴上表示一元一次不等式组的解集,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.13.(6分)已知:如图,E 、F 在AC 上,//AD CB 且AD CB =,D B ∠=∠.求证:AE CF =.【考点】KD :全等三角形的判定与性质 【专题】14:证明题【分析】根据两直线平行内错角相等即可得出A C ∠=∠,再根据全等三角形的判定即可判断出ADF CBE ∆≅∆,得出AF CE =,进而得出AE CF =. 【解答】证明://AD CB ,A C ∴∠=∠,在ADF ∆和CBE ∆中,A CAD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADF CBE ASA ∴∆≅∆,AF CE ∴=,AF EF CE EF ∴+=+,即AE CF =.【点评】本题考查了平行线的性质以及全等三角形的判定及性质,难度适中. 14.(6分)如图,在平面直角坐标系中,点P 的坐标为(4,0)-,P 的半径为2,将P 沿x 轴向右平移4个单位长度得1P(1)画出1P ,并直接判断P 与1P 的位置关系;(2)设1P 与x 轴正半轴,y 轴正半轴的交点分别为A 、B .求劣弧AB 与弦AB 围成的图形的面积(结果保留)π【考点】MJ :圆与圆的位置关系;MO :扇形面积的计算;5D :坐标与图形性质【分析】(1)根据题意作图即可求得答案,注意圆的半径为2;(2)首先根据题意求得扇形1BP A 与1BP A ∆的面积,再作差即可求得劣弧AB 与弦AB 围成的图形的面积. 【解答】解:(1)如图:P ∴与1P 的位置关系是外切;(2)如图:190BPA ∠=︒,112PA PB ==,21902360BP AS π⨯⨯∴=扇形,π=,112222AP B S ∆=⨯⨯=, ∴劣弧AB 与弦AB 围成的图形的面积为:2π-.【点评】此题考查了圆与圆的位置关系以及扇形面积的求解方法.题目难度不大,解题的关键是注意数形结合思想的应用. 15.(6分)已知抛物线212y x x c =++与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1y cx =+经过的象限,并说明理由.【考点】HA :抛物线与x 轴的交点;5F :一次函数的性质 【专题】151:代数综合题【分析】(1)根据题意的判别式小于0,从而得出c 的取值范围即可; (2)根据c 的值,判断直线所经过的象限即可. 【解答】解:(1)抛物线212y x x c =++与x 轴没有交点. 1141202c c ∴∆=-⨯=-<,解得12c >;(2)12c >, ∴直线过一、三象限, 10b =>,∴直线与y 轴的交点在y 轴的正半轴, ∴直线1y cx =+经过第一、二、三象限.【点评】本题考查了抛物线和x 轴的交点问题以及一次函数的性质,是基础知识要熟练掌握.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(7分)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶? 【考点】7B :分式方程的应用 【专题】12:应用题【分析】根据等量关系:不赠送时每瓶的价格-赠送3瓶时每瓶的平均价格0.6=,依此列出方程求解即可.【解答】解:设该品牌饮料一箱有x 瓶,依题意,得26260.63x x -=+, 化简,得231300x x +-=,解得113x =-(不合题意,舍去),210x =,经检验:10x =符合题意, 答:该品牌饮料一箱有10瓶.【点评】本题考查了分式方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系.注意“买一送三”的含义.17.(7分)如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路,现新修一条路AC 到公路l ,小明测量出30ACD ∠=︒,45ABD ∠=︒,50BC m =,请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m 1.414≈ 1.732)≈【考点】8T :解直角三角形的应用【分析】根据AD xm =,得出BD xm =,进而利用解直角三角形的知识解决,注意运算的正确性.【解答】解:假设AD xm =,AD xm =, BD xm ∴=,30ACD ∠=︒,45ABD ∠=︒,50BC m =, tan 3050AD xBD BC x ∴︒==++,50xx =+,1)68.3AD m ∴=≈.【点评】此题主要考查了解直角三角形的应用,根据已知假设出AD 的长度,进而表示出tan 30ADBD BC︒=+是解决问题的关键.18.(7分)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?V:频数(率)分布直方图【考点】8【专题】27:图表型;31:数形结合【分析】(1)总体所调查对象的全体,由此确定调查的总体;-分(2)由于已知总人数,利用总人数减去其他四个小组的人数即可得到3040钟小组的人数,然后即可补全频数分布直方图;(3)用30分钟以上的人数除以总人数50即可得到在30分钟以上(含30分钟)的人数占全班人数的百分比.【解答】解:(1)总体所调查对象的全体,∴“班上50名学生上学路上花费的时间”是总体;(2)如图所示:(3)依题意得在30分钟以上(含30分钟)的人数为5人,∴+÷=,(41)5010%∴该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是10%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(7分)如图,直角梯形纸片ABCD 中,//AD BC ,90A ∠=︒,30C ∠=︒,折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且8BF CF ==. (1)求BDF ∠的度数; (2)求AB 的长.【考点】LI :直角梯形;PB :翻折变换(折叠问题);7T :解直角三角形 【专题】152:几何综合题【分析】(1)利用等边对等角可以得到30FBC C ∠=∠=︒,再利用折叠的性质可以得到30EBF CBF ∠=∠=︒,从而可以求得所求角的度数.(2)利用上题得到的结论可以求得线段BD ,然后在直角三角形ABD 中求得AB 即可.【解答】解:(1)8BF CF ==,30FBC C ∴∠=∠=︒,折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,30EBF CBF ∴∠=∠=︒, 60EBC ∴∠=︒, 90BDF ∴∠=︒;(2)60EBC ∠=︒60ADB ∴∠=︒, 8BF CF ==.sin60BD BF ∴=︒=∴在Rt BAD ∆中, sin 606AB BD =⨯︒=.【点评】本题考查梯形,直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(9分)如下数表是由从 1 开始的连续自然数组成, 观察规律并完成各题的解答 .(1) 表中第 8 行的最后一个数是 64 ,它是自然数 的平方, 第 8 行共有 个数;(2) 用含n 的代数式表示: 第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数; (3) 求第n 行各数之和 .【考点】37 :规律型: 数字的变化类;4I :整式的混合运算【分析】(1) 数为自然数, 每行数的个数为 1 , 3 , 5 ,⋯的奇数列, 很容易得到所求之数;(2) 知第n 行最后一数为2n ,则第一个数为222n n -+,每行数由题意知每行数的个数为 1 , 3 , 5 ,⋯的奇数列, 故个数为21n -; (3) 通过以上两步列公式从而解得 .【解答】解: (1) 每行数的个数为 1 , 3 , 5 ,⋯的奇数列, 由题意最后一个数是该行数的平方即得 64 ,其他也随之解得: 8 , 15 ;(2) 由 (1) 知第n 行最后一数为2n ,且每行个数为(21)n -,则第一个数为22(21)122n n n n --+=-+,每行数由题意知每行数的个数为 1 , 3 , 5 ,⋯的奇数列,故个数为21n -;(3) 第n 行各数之和:22222(21)(1)(21)2n n n n n n n -++⨯-=-+-. 【点评】本题考查了整式的混合运算, (1) 看数的规律, 自然数的排列, 每排个数 1 , 3 , 5 ,⋯从而求得; (2) 最后一数是行数的平方, 则第一个数即求得; (3) 通过以上两步列公式从而解得 . 本题看规律为关键, 横看, 纵看 .21.(9分)如图(1),ABC ∆与EFD ∆为等腰直角三角形,AC 与DE 重合,9AB AC EF ===,90BAC DEF ∠=∠=︒,固定ABC ∆,将DEF ∆绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它们的延长线)所在的直线于G ,H 点,如图(2).(1)问:始终与AGC ∆相似的三角形有 HAB ∆ 及 ;(2)设CG x =,BH y =,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x 为何值时,AGH ∆是等腰三角形.【考点】KW :等腰直角三角形;KH :等腰三角形的性质;2R :旋转的性质;9S :相似三角形的判定与性质【专题】16:压轴题;153:代数几何综合题【分析】(1)根据ABC ∆与EFD ∆为等腰直角三角形,AC 与DE 重合,利用相似三角形的判定定理即可得出结论.(2)由A G C H A B ∆∆∽,利用其对应边成比例列出关于x 、y 的关系式:9::9y x =即可.(3)此题要采用分类讨论的思想,当12CG BC <时,当12CG BC =时,当12CG BC >时分别得出即可.【解答】解:(1)ABC ∆与EFD ∆为等腰直角三角形,AC 与DE 重合, 45H HAC ∠+∠=︒,45HAC CAG ∠+∠=︒,H CAG ∴∠=∠,45ACG B ∠=∠=︒,AGC HAB ∴∆∆∽,∴同理可得出:始终与AGC ∆相似的三角形有HAB ∆和HGA ∆;故答案为:HAB ∆和HGA ∆.(2)AGC HAB ∆∆∽,::AC HB GC AB ∴=,即9::9y x =,81y x ∴=,9AB AC ==,90BAC ∠=︒,BC ∴===答:y 关于x 的函数关系式为81(0)y x x =>.(3)①当12CG BC <时,GAC H HAG ∠=∠<∠,AG GH ∴<,GH AH <,AG CH GH ∴<<,又AH AG >,AH GH >,此时,AGH ∆不可能是等腰三角形, ②当12CG BC =时,G 为BC 的中点,H 与C 重合,AGH ∆是等腰三角形,此时,GC =x = ③当12CG BC >时,由(1)AGC HGA ∆∆∽, 所以,若AGH ∆必是等腰三角形,只可能存在GH AH =,若GH AH =,则AC CG =,此时9x =,如图(3),当CG BC =时,注意:DF 才旋转到与BC 垂直的位置,此时B ,E ,G 重合,45AGH GAH ∠=∠=︒,所以AGH ∆为等腰三角形,所以CG =综上所述,当9x =或x =时,AGH ∆是等腰三角形.【点评】此题主要考查学生对相似三角形的判定与性质,等腰三角形的性质,等腰直角三角形的性质,旋转的性质等知识点的理解和掌握,综合性较强,难易程度适中,是一道很典型的题目.22.(9分)如图,抛物线2517144y x x =-++与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC x ⊥轴,垂足为点(3,0)C(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN x ⊥轴,交直线AB 于点M ,交抛物线于点N .设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.【考点】HF :二次函数综合题【专题】16:压轴题【分析】(1)由题意易求得A 与B 的坐标,然后有待定系数法,即可求得直线AB的函数关系式;(2)由s M N N P M P ==-,即可得251711(1)442s t t t =-++-+,化简即可求得答案;(3)若四边形B C M N 为平行四边形,则有M N B C =,即可得方程:25155442t t -+=,解方程即可求得t 的值,再分别分析t 取何值时四边形BCMN 为菱形即可.【解答】解:(1)当0x =时,1y =,(0,1)A ∴,当3x =时,2517331 2.544y =-⨯+⨯+=, (3,2.5)B ∴,设直线AB 的解析式为y kx b =+,则:13 2.5b k b =⎧⎨+=⎩, 解得:112b k =⎧⎪⎨=⎪⎩, ∴直线AB 的解析式为112y x =+; (2)根据题意得:2251715151(1)(03)44244s MN NP MP t t t t t t ==-=-++-+=-+剟;(3)若四边形BCMN 为平行四边形,则有MN BC =,此时,有25155442t t -+=, 解得11t =,22t =,∴当1t =或2时,四边形BCMN 为平行四边形.①当1t =时,32MP =,4NP =,故52MN NP MP =-=, 又在Rt MPC ∆中,52MC ==,故MN MC =,此时四边形BCMN 为菱形,②当2t =时,2MP =,92NP =,故52MN NP MP =-=, 又在Rt MPC ∆中,MC ==故M N M C ≠,此时四边形BCMN 不是菱形.【点评】此题考查了待定系数法求函数的解析式,线段的长与函数关系式之间的关系,平行四边形以及菱形的性质与判定等知识.此题综合性很强,难度较大,解题的关键是数形结合思想的应用.。

广东省2011年中考数学试卷精选2

广东省2011年中考数学试卷精选2

广东省2011年中考数学试卷精选2 姓名: 班别: 成绩:一、选择题(本大题共5小题,每小题3分,共15分) 1.不等式组⎩⎨⎧≥+<-0302x x 的解集在数轴上正确..表示的是2.如图2,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是3.如图,⊙1o 、⊙2o 相内切于点A ,其半径分别是8和4,将⊙2o 沿直线1o 2o 平移至两圆相外切时,则点2o 移动的长度是( ) A .4 B .8 C .16 D .8 或164.如图,已知:9045<<A ,则下列各式成立的是A .sinA=cosAB .sinA>cosAC .sinA>tanAD .sinA<cosA5.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2B .2π C .π21 D .π2第4题图第3题图 第5题图二、填空题(本大题共5小题,每小题4分,共20分.)6.(11·佛山)在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,若AB =OB =4,则AD = ;7.(2011•湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算 A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 8.凸n 边形的对角线的条数记作(4)nn a ≥,例如:42a=,那么:①___________5a =;②____________65a a-=;③____________1n n a a +-=.(4n ≥,用n 含的代数式表示) 9.(11·清远)如图4,在□ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若 △ECF 的面积为1,则四边形ABCE 的面积为 _ .10.(11·佛山)如图物体从点A 出发,按照A →B (第1步)→C (第2)→D →A →E →F →G →A →B →……的顺序循环运动,则第2011步到达点 处;三、解答题(每小题6分,共30分) 11. (11·佛山)如图,已知AB 是⊙O 的弦,半径OA =20cm ,∠AOB =120°,求△AOB的面积;A BC D 图4E FAFGDC BE A OB12. (11河源)如图4,在平面直角坐标系中,点A (-4,4),点B (-4,0),将△ABO 绕原点O 按顺时针方向旋转135°得到△11A B O 。

2011年广东省深圳市中考数学试卷

2011年广东省深圳市中考数学试卷

2011年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的相反数是()A.B.﹣ C.2 D.﹣22.(3分)如图所示的物体是一个几何体,其主视图是()A.B.C.D.3.(3分)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为()A.5.6×103B.5.6×104C.5.6×105D.0.56×1054.(3分)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x65.(3分)某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为()A.4 B.4.5 C.3 D.26.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元7.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.8.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.B.C.D.9.(3分)已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()A.a+c>b+c B.c﹣a<c﹣b C.D.a2>ab>b210.(3分)对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)11.(3分)下列命题是真命题的个数有()①垂直于半径的直线是圆的切线②平分弦的直径垂直于弦③若是方程x﹣ay=3的一个解,则a=﹣1④若反比例函数的图象上有两点,则y1<y2.A.1个 B.2个 C.3个 D.4个12.(3分)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:1 B.:1 C.5:3 D.不确定二、填空题(共4小题,每小题3分,满分12分)13.(3分)分解因式:a3﹣a=.14.(3分)如图,在⊙O中,圆心角∠AOB=120°,弦AB=2cm,则OA=cm.15.(3分)如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.三、解答题(共7小题,满分52分)17.(5分)计算:.18.(6分)解分式方程:.19.(7分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是人.20.(8分)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)21.(8分)如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.22.(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:表1甲地乙地出发地目的地A馆800元/台700元/台B馆500元/台600元/台表2甲地乙地出发地目的地A馆x台(台)B馆(台)(台)(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?23.(9分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.2011年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的相反数是()A.B.﹣ C.2 D.﹣2【解答】解:根据概念得:﹣的相反数是.故选:A.2.(3分)如图所示的物体是一个几何体,其主视图是()A.B.C.D.【解答】解:从物体正面看,看到的是一个等腰梯形.故选C.3.(3分)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为()A.5.6×103B.5.6×104C.5.6×105D.0.56×105【解答】解:56000=5.6×104.故选:B.4.(3分)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x6【解答】解:A、x2+x3≠x5,故本选项错误;B、(x+y)2=x2+y2+2xy,故本选项错误;C、x2•x3=x5,故本选项错误;D、(x2)3=x6,故本选项正确.故选:D.5.(3分)某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为()A.4 B.4.5 C.3 D.2【解答】解:2,2,2,3,5,6,6,7在中间位置的是3和5,所以平均数是=4.故选:A.6.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元【解答】解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故选:A.7.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【解答】解:已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.8.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.B.C.D.【解答】解:画树状图得:∴一共有9种等可能的结果,指针指向的数字和为偶数的有4种情况,∴指针指向的数字和为偶数的概率是:.故选:C.9.(3分)已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()A.a+c>b+c B.c﹣a<c﹣b C.D.a2>ab>b2【解答】解:A,根据不等式的性质一,不等式两边同时加上c,不等号的方向不变,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项正确;∴c2>0,∵a>b.∴,故此选项正确;D,∵a>b,a不知正数还是负数,∴a2,与ab,的大小不能确定,故此选项错误;故选:D.10.(3分)对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)【解答】解:A、∵△=22﹣4×(﹣1)×(﹣3)=﹣8<0,抛物线与x轴无交点,本选项错误;B、∵二次项系数﹣1<0,抛物线开口向下,本选项错误;C、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),本选项错误;D、∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),本选项正确.故选:D.11.(3分)下列命题是真命题的个数有()①垂直于半径的直线是圆的切线②平分弦的直径垂直于弦③若是方程x﹣ay=3的一个解,则a=﹣1④若反比例函数的图象上有两点,则y1<y2.A.1个 B.2个 C.3个 D.4个【解答】解:①经过半径的外端点并且垂直于这条半径的直线是圆的切线,故本选项错误,②平分弦(不是直径)的直径垂直于弦,故本选项错误,③若是方程x﹣ay=3的一个解,则a=﹣1,故本选项正确,④∵0<<1,当x>0时,反比例函数的图象y随x的增大而增大,∴y1<y2,故本选项正确,故选:B.12.(3分)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:1 B.:1 C.5:3 D.不确定【解答】解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1.故选:A.二、填空题(共4小题,每小题3分,满分12分)13.(3分)分解因式:a3﹣a=a(a+1)(a﹣1).【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).14.(3分)如图,在⊙O中,圆心角∠AOB=120°,弦AB=2cm,则OA=2cm.【解答】解:过点O作OC⊥AB,∴AC=AB,∵AB=2cm,∴AC=cm,∵∠AOB=12O°,OA=OB,∴∠A=30°,在直角三角形OAC中,cos∠A==,∴OA==2cm,故答案为2.15.(3分)如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是2+n.【解答】解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为:2+n.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.【解答】解:根据三角形内心的特点知∠ABO=∠CBO,∵已知点C、点B的坐标,∴OB=OC,∠OBC=45°,∠ABC=90°可知△ABC为直角三角形,BC=2,∵点A在直线AC上,设A点坐标为(x,x﹣1),根据两点距离公式可得:AB2=x2+,AC2=(x﹣2)2+,在Rt△ABC中,AB2+BC2=AC2,解得:x=﹣6,y=﹣4,∴AB=6,∴tanA===.故答案为:.三、解答题(共7小题,满分52分)17.(5分)计算:.【解答】解:原式=+×+5﹣1=++5﹣1=6.故答案为:6.18.(6分)解分式方程:.【解答】解:去分母,得2x(x﹣1)+3(x+1)=2(x+1)(x﹣1),去括号,得2x2﹣2x+3x+3=2x2﹣2,移项,合并,解得x=﹣5,检验:当x=﹣5时,(x+1)(x﹣1)≠0,∴原方程的解为x=﹣5.19.(7分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了200名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于36度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是180人.【解答】解:(1)80÷40%=200人,(2)20÷200×360°=36°,(3)200×30%=60(人),如图所示:(4)600×30%=180人,故答案为:(1)200,(2)36,(4)180.20.(8分)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)【解答】(1)证明:连接CB,AB,CE,∵点C为劣弧AB上的中点,∴CB=CA,又∵CD=CA,∴AC=CD=BC,∴∠ABC=∠BAC,∠DBC=∠D,∵Rt△斜边上的中线等于斜边的一半,∴∠ABD=90°,∴∠ABE=90°,即弧AE的度数是180°,∴AE是⊙O的直径;(2)解:∵AE是⊙O的直径,∴∠ACE=90°,∵AE=10,AC=4,∴根据勾股定理得:CE=2,∴S阴影=S半圆﹣S△ACE=12.5π﹣×4×2=12.5π﹣4.21.(8分)如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.【解答】(1)证明:∵沿对角线BD对折,点C落在点C′的位置,∴∠A=∠C′,AB=C′D∴在△GAB与△GC′D中,∴△GAB≌△GC′D∴AG=C′G;(2)解:∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,在Rt△ABD中,BD==10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,∴MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.22.(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:表1出发地甲地乙地目的地A馆800元/台700元/台B馆500元/台600元/台表2出发地甲地乙地目的地A馆x台18﹣x(台)B馆17﹣x(台)x﹣3(台)(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?【解答】解:(1)根据题意得:甲地运往A馆的设备有x台,∴乙地运往A馆的设备有(18﹣x)台,∵甲地生产了17台设备,∴甲地运往B馆的设备有(17﹣x)台,乙地运往B馆的设备有14﹣(17﹣x)=(x﹣3)台,∴y=800x+700(18﹣x)+500(17﹣x)+600(x﹣3),=200x+19300(3≤x≤17);(2)∵要使总运费不高于20200元,∴200x+19300≤20200,解得:x≤4.5,又x﹣3≥0,x≥3,∴x=3或4,故该公司设计调配方案有:甲地运往A馆4台,运往B馆13台,乙地运往A馆14台,运往B馆1台;甲地运往A馆3台,运往B馆14台,乙地运往A馆15台,运往B馆0台;∴共有两种运输方案;(3)∵y=200x+19300,∵200>0,∴y随x的增大而增大,∴当x为3时,总运费最小,最小值是y=200×3+19300=19900元.23.(9分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为:y=a(x﹣1)2+4,∵点B的坐标为(3,0).∴4a+4=0,∴a=﹣1,∴此抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在.抛物线的对称轴方程为:x=1,∵点E的横坐标为2,∴y=﹣4+4+3=3,∴点E(2,3),∴设直线AE的解析式为:y=kx+b,∴,∴,∴直线AE的解析式为:y=x+1,∴点F(0,1),∵D(0,3),∴D与E关于x=1对称,作F关于x轴的对称点F′(0,﹣1),连接EF′交x轴于H,交对称轴x=1于G,四边形DFHG的周长即为最小,设直线EF′的解析式为:y=mx+n,∴,解得:,∴直线EF′的解析式为:y=2x﹣1,∴当y=0时,2x﹣1=0,得x=,即H(,0),当x=1时,y=1,∴G(1,1);∴DF=2,FH=F′H==,DG==,∴使D、G,H、F四点所围成的四边形周长最小值为:DF+FH+GH+DG=2+++=2+2;(3)存在.∵BD==3,设M(c,0),∵MN∥BD,∴,即=,∴MN=(1+c),DM=,要使△DNM∽△BMD,需,即DM2=BD•MN,可得:9+c2=3×(1+c),解得:c=或c=3(舍去).当x=时,y=﹣(﹣1)2+4=.∴存在,点T的坐标为(,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年广东省中考数学试卷2011年广东省中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2012•呼和浩特)﹣2的倒数是()A .2 B.﹣2 C.D.2.(3分)(2011•东莞)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A .5.464×107吨B.5.464×108吨C.5.464×109吨D.5.464×1010吨3.(3分)(2011•东莞)将下图中的箭头缩小到原来的,得到的图形是()A .B.C.D.4.(3分)(2011•东莞)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A .B.C.D.5.(3分)(2011•东莞)正八边形的每个内角为()A .120°B.135°C.140°D.144°二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.(4分)(2011•东莞)已知反比例函数解析式的图象经过(1,﹣2),则k=_________.7.(4分)(2012•宿迁)使在实数范围内有意义,x的取值范围是_________.8.(4分)(2011•东莞)按下面程序计算:输入x=3,则输出的答案是_________.9.(4分)(2011•东莞)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C= _________.10.(4分)(2011•东莞)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(6分)(2011•东莞)计算:.12.(6分)(2011•东莞)解不等式组,并把解集在数轴上表示出来.13.(6分)(2011•东莞)已知:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.14.(6分)(2011•东莞)如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)15.(6分)(2011•东莞)已知抛物线与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(7分)(2011•东莞)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?17.(7分)(2011•东莞)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)18.(7分)(2011•东莞)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.(7分)(2011•东莞)如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(9分)(2011•东莞)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是_________,它是自然数_________的平方,第8行共有_________个数;(2)用含n的代数式表示:第n行的第一个数是_________,最后一个数是_________,第n行共有_________个数;(3)求第n行各数之和.21.(9分)(2011•东莞)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有_________及_________;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.22.(9分)(2011•东莞)如图,抛物线y=﹣x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN 为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.2011年广东省中考数学试卷参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2012•呼和浩特)﹣2的倒数是()A .2 B.﹣2 C.D.考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(3分)(2011•东莞)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A .5.464×107吨B.5.464×108吨C.5.464×109吨D.5.464×1010吨考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将546400000用科学记数法表示为5.464×108.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2011•东莞)将下图中的箭头缩小到原来的,得到的图形是()A .B.C.D.考点:相似图形.专题:应用题.分析:根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.解答:解:∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选:A.点评:本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4.(3分)(2011•东莞)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A .B.C.D.考点:概率公式.分析:先求出球的所有个数与红球的个数,再根据概率公式解答即可.解答:解:共8球在袋中,其中5个红球,故摸到红球的概率为,故选:C.点评:本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.5.(3分)(2011•东莞)正八边形的每个内角为()A .120°B.135°C.140°D.144°考点:多边形内角与外角.专题:压轴题.分析:根据正多边形的内角求法,得出每个内角的表示方法,即可得出答案.解答:解:根据正八边形的内角公式得出:[(n﹣2)×180]÷n=[(8﹣2)×180]÷8=135°.故选B.点评:此题主要考查了正多边形的内角公式运用,正确的记忆正多边形的内角求法公式是解决问题的关键.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)(2011•东莞)已知反比例函数解析式的图象经过(1,﹣2),则k=﹣2.考点:待定系数法求反比例函数解析式.专题:计算题.分析:将(1﹣2)代入式即可得出k的值.解答:解:∵反比例函数解析式的图象经过(1,﹣2),∴k=xy=﹣2,故答案为﹣2.点评:此题比较简单,考查了用待定系数法求反比例函数的解析式,是中学阶段的重点.7.(4分)(2012•宿迁)使在实数范围内有意义,x的取值范围是x≥2.考点:二次根式有意义的条件.专题:探究型.分析:先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.解答:解:∵使在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.8.(4分)(2011•东莞)按下面程序计算:输入x=3,则输出的答案是12.考点:代数式求值.专题:图表型.分析:根据输入程序,列出代数式,再代入x的值输入计算即可.解答:解:根据题意得:(x3﹣x)÷2∵x=3,∴原式=(27﹣3)÷2=24÷2=12.故答案为:12.点评:本题考查了代数式求值,解题关键是弄清题意,根据题意把x的值代入,按程序一步一步计算.9.(4分)(2011•东莞)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=25°.考点:切线的性质;圆周角定理.专题:计算题;压轴题.分析:连接OB,AB与⊙O相切于点B,得到∠OBA=90°,根据三角形内角和得到∠AOB的度数,然后用三角形外角的性质求出∠C的度数.解答:解:如图:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∵∠A=40°,∴∠AOB=50°,∵OB=OC,∴∠C=∠OBC,∵∠AOB=∠C+∠OBC=2∠C,∴∠C=25°.故答案是:25°.点评:本题考查的是切线的性质,根据求出的性质得到∠OBA的度数,然后在三角形中求出∠C的度数.10.(4分)(2011•东莞)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为.考点:相似多边形的性质;三角形中位线定理.专题:压轴题;规律型.分析:先分别求出第一个正六角星形AFBDCE与第二个边长之比,再根据相似多边形面积的比等于相似比的平方,找出规律即可解答.解答:解:∵A1、F1、B1、D1、C1、E1分别是△ABC和△DEF各边中点,∴正六角星形AFBDCE∽正六角星形A1F1B1D1C1E1,且相似比为2:1,∵正六角星形AFBDCE的面积为1,∴正六角星形A1F1B1D1C1E1的面积为,同理可得,第三个六角形的面积为:=,第四个六角形的面积为:××=,故答案为:.点评:本题考查的是相似多边形的性质及三角形中位线定理,解答此题的关键是熟知相似多边形面积的比等于相似比的平方.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(6分)(2011•东莞)计算:.考点:特殊角的三角函数值;零指数幂.分析:本题涉及零指数幂、特殊角的三角函数值、二次根式的化简,乘方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+3×﹣4,=1+3﹣4,=0.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式的化简等考点的运算.12.(6分)(2011•东莞)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:数形结合.分析:分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.解答:解:,由①得,x>﹣2,由②得,x≥3,故原不等式组的解集为:x≥3,在数轴上表示为:点评:本题考查的是解一元一次不等式组及在数轴上表示一元一次不等式组的解集,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.13.(6分)(2011•东莞)已知:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.考点:全等三角形的判定与性质.专题:证明题;压轴题.分析:根据两直线平行内错角相等即可得出∠A=∠C,再根据全等三角形的判定即可判断出△ADF≌△CBE,得出AF=CE,进而得出AE=CF.解答:证明:∵AD∥CB,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),∴AF=CE,∴AF+EF=CE+EF,即AE=CF.点评:本题考查了平行线的性质以及全等三角形的判定及性质,难度适中.14.(6分)(2011•东莞)如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)考点:圆与圆的位置关系;坐标与图形性质;扇形面积的计算.专题:压轴题.分析:(1)根据题意作图即可求得答案,注意圆的半径为2;(2)首先根据题意求得扇形BP1A与△BP1A的面积,再作差即可求得劣弧与弦AB围成的图形的面积.解答:解:(1)如图:∴⊙P与⊙P1的位置关系是外切;(2)如图:∠BP1A=90°,P1A=P1B=2,∴S扇形BP1A=,=π,S△AP1B=×2×2=2,∴劣弧与弦AB围成的图形的面积为:π﹣2.点评:此题考查了圆与圆的位置关系以及扇形面积的求解方法.题目难度不大,解题的关键是注意数形结合思想的应用.15.(6分)(2011•东莞)已知抛物线与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.考点:抛物线与x轴的交点;一次函数的性质.专题:代数综合题;压轴题.分析:(1)根据题意的判别式小于0,从而得出c的取值范围即可;(2)根据c的值,判断直线所经过的象限即可.解答:解:(1)∵抛物线与x轴没有交点.∴△=1﹣4×c=1﹣2c<0,解得c>;(2)∵c>,∴直线过一、三象限,∵b=1>0,∴直线与y轴的交点在y轴的正半轴,∴直线y=cx+1经过第一、二、三象限.点评:本题考查了抛物线和x轴的交点问题以及一次函数的性质,是基础知识要熟练掌握.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(7分)(2011•东莞)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?考点:分式方程的应用.专题:应用题.分析:根据等量关系:不赠送时每瓶的价格﹣赠送3瓶时每瓶的平均价格=0.6,依此列出方程求解即可.解答:解:设该品牌饮料一箱有x瓶,依题意,得,化简,得x2+3x﹣130=0,解得x1=﹣13(不合题意,舍去),x2=10,经检验:x=10符合题意,答:该品牌饮料一箱有10瓶.点评:本题考查了分式方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系.注意“买一送三”的含义.17.(7分)(2011•东莞)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)考点:解直角三角形的应用.专题:压轴题.分析:根据AD=xm,得出BD=xm,进而利用解直角三角形的知识解决,注意运算的正确性.解答:解:假设AD=xm,∵AD=xm,∴BD=xm,∵∠ACD=30°,∠ABD=45°,BC=50m,∴tan30°==,∴=,∴AD=25(+1)≈68.3m.点评:此题主要考查了解直角三角形的应用,根据已知假设出AD的长度,进而表示出tan30°=是解决问题的关键.18.(7分)(2011•东莞)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?考点:频数(率)分布直方图.专题:压轴题;图表型;数形结合.分析:(1)总体所调查对象的全体,由此确定调查的总体;(2)由于已知总人数,利用总人数减去其他四个小组的人数即可得到30﹣40分钟小组的人数,然后即可补全频数分布直方图;(3)用30分钟以上的人数除以总人数50即可得到在30分钟以上(含30分钟)的人数占全班人数的百分比.解答:解:(1)∵总体所调查对象的全体,∴“班上50名学生上学路上花费的时间”是总体;(2)如图所示:(3)依题意得在30分钟以上(含30分钟)的人数为5人,∴(4+1)÷50=10%,∴该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是10%.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(7分)(2011•东莞)如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.考点:直角梯形;翻折变换(折叠问题);解直角三角形.专题:几何综合题.分析:(1)利用等边对等角可以得到∠FBC=∠C=30°,再利用折叠的性质可以得到∠EBF=∠CBF=30°,从而可以求得所求角的度数.(2)利用上题得到的结论可以求得线段BD,然后在直角三角形ABD中求得AB即可.解答:解:(1)∵BF=CF=8,∴∠FBC=∠C=30°,∵折叠纸片使BC经过点D,点C落在点E处,BF是折痕,∴∠EBF=∠CBF=30°,∴∠EBC=60°,∴∠BDF=90°;(2)∵∠EBC=60°∴∠ADB=60°,∵BF=CF=8.∴BD=BF•sin60°=4∴在Rt△BAD中,AB=BD×sin60°=6.点评:本题考查梯形,直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(9分)(2011•东莞)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是64,它是自然数8的平方,第8行共有15个数;(2)用含n的代数式表示:第n行的第一个数是n2﹣2n+2,最后一个数是n2,第n行共有2n﹣1个数;(3)求第n行各数之和.考点:整式的混合运算;规律型:数字的变化类.分析:(1)数为自然数,每行数的个数为1,3,5,…的奇数列,很容易得到所求之数;的个数为1,3,5,…的奇数列,故个数为2n﹣1;(3)通过以上两步列公式从而解得.解答:解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得64,其他也随之解得:8,15;(2)由(1)知第n行最后一数为n2,则第一个数为n2﹣2n+2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n﹣1;(3)第n行各数之和:×(2n﹣1)=(n2﹣n+1)(2n﹣1).点评:本题考查了整式的混合运算,(1)看数的规律,自然数的排列,每排个数1,3,5,…从而求得;(2)最后一数是行数的平方,则第一个数即求得;(3)通过以上两步列公式从而解得.本题看规律为关键,横看,纵看.21.(9分)(2011•东莞)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有△HAB及△HGA;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.考点:相似三角形的判定与性质;等腰三角形的性质;等腰直角三角形;旋转的性质.专题:代数几何综合题;压轴题.分析:(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似定定理即可得出结论.(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可.(3)此题要采用分类讨论的思想,当CG<BC时,当CG=BC时,当CG>BC时分别得出即可.解答:解:(1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合,∵∠H+∠HAC=45°,∠HAC+∠CAG=45°,∴∠H=∠CAG,∵∠ACG=∠B=45°,∴△AGC∽△HAB,∴同理可得出:始终与△AGC相似的三角形有△HAB和△HGA;故答案为:△HAB和△HGA.(2)B,∴AC:HB=GC:AB,即9:y=x:9,∴y=,∵AB=AC=9,∠BAC=90°,∴BC===9.答:y关于x 的函数关系式为y=(0<x<9).(3)①当CG <BC时,∠GAC=∠H<∠HAG,∴AG<GH,∵GH<AH,∴AG<CH<GH,又∵AH>AG,AH>GH,此时,△AGH 不可能是等腰三角形,②当CG=BC时,G为BC 的中点,H与C重合,△AGH是等腰三角形,此时,GC=,即x=,BC时,由(1)△AGC∽△HGA ,所以,若△AGH必是等腰三角形,只可能存在GH=AH,若GH=AH,则AC=CG,此时x=9,如图(3),当CG=BC时,注意:DF才旋转到与BC 垂直的位置,此时B,E,G 重合,∠AGH=∠GA H=45°,所以△AGH为等腰三角形,所以CG=9.综上所述,当x=9或x=或9时,△AGH是等腰三角形.点评:此题主要考查学生对相似三角形的判定与性质,等腰三角形的性质,等腰直角三角形的性质,旋转的性质等知识点的理解和掌握,综合性较强,难易程度适中,是一道很典型的题目.22.(9分)(2011•东莞)如图,抛物线y=﹣x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN 为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.考点:二次函数综专题:压轴题.分析:(1)由题意易求得A与B的坐标,然后有待定系数法,即可求得直线AB的函数关系式;(2)由s=MN=NP﹣MP,即可得s=﹣t2+t+1﹣(t+1),化简即可求得答案;(3)若四边形BCMN为平行四边形,则有MN=BC,即可得方程:﹣t2+t=,解方程即可求得t的值,再分别分析t取何值时四边形BCMN为菱形即可.解答:解:(1)∵当x=0时,y=1,∴A(0,1),当x=3时,y=﹣×32+×3+1=2.5,∴B(3,2.5),设直线AB的解析式为y=kx+b,则:解得:,∴直线AB的解析式为y=x+1;(2)根据题意得:s=MN=NP﹣MP=﹣t2+t+1﹣(t+1)=﹣t2+t(0≤t≤3);(3)若四边形BCMN为平行四边形,则有MN=BC,此时,有﹣t2+t=,解得t1=1,t2=2,∴当t=1或2时,四边形BCMN为平行四边形.①当t=1时,MP=,NP=4,故MN=NP﹣MP=,又在Rt△MPC 中,MC=,故时四边形BCMN为菱形,②当t=2时,MP=2,NP=,故MN=NP﹣MP=,又在Rt△MPC中,MC=,故MN≠MC,此时四边形BCMN不是菱形.点评:此题考查了待定系数法求函数的解析式,线段的长与函数关系式之间的关系,平行四边形以及菱形的性质与判定等知识.此题综合性很强,难度较大,解题的关键是数形结合思想的应用.参与本试卷答题和审题的老师有:leikun;zhqd;wangjc3;冯延鹏;gbl210;ZJX;bjy;WWF;sd2011;zcx;HLing;Liuzhx;sjzx;孙廷茂;fxx(排名不分先后)菁优网2014年12月18日。

相关文档
最新文档