TTL电平和CMOS电平总结
ttl与cmos高低电平区别比较

T T L与C M O S高低电平区别比较一.T T LT T L集成电路的主要型式为晶体管-晶体管逻辑门(t r a n s i s t o r-t r a n s i s t o r l o g i c g a t e),TT L大部分都采用5V电源。
1.输出高电平U o h和输出低电平U o lU o h≥2.4V,U o l≤0.4V2.输入高电平和输入低电平U i h≥2.0V,U i l≤0.8V二.C M O SC M O S电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。
C M OS电路的优点是噪声容限较宽,静态功耗很小。
1.输出高电平U o h和输出低电平U o lU o h≈V C C,U o l≈G N D2.输入高电平U o h和输入低电平U o lU i h≥0.7V C C,U i l≤0.2V C C(V C C为电源电压,G N D为地)从上面可以看出:在同样5V电源电压情况下,C O M S电路可以直接驱动T T L,因为C M O S的输出高电平大于 2.0V,输出低电平小于0.8V;而T T L电路则不能直接驱动C M O S电路,T T L的输出高电平为大于 2.4V,如果落在 2.4V~3.5V之间,则C M O S电路就不能检测到高电平,低电平小于0.4V满足要求,所以在T T L电路驱动C O M S电路时需要加上拉电阻。
如果出现不同电压电源的情况,也可以通过上面的方法进行判断。
如果电路中出现3.3V的C O M S电路去驱动5V C M O S电路的情况,如 3.3V单片机去驱动74H C,这种情况有以下几种方法解决,最简单的就是直接将74H C换成74H C T(74系列的输入输出在下面有介绍)的芯片,因为 3.3V C M O S可以直接驱动5V的T T L电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
TTL电平、CMOS电平和EIA电平的一些总结

TTL电平、CMOS电平和EIA电平的一些总结
手机串口一般是CMOS电平,当把android手机当做开发板上的一个器件(比如利用android系统自带的GPRS模块,wifi模块,语音视频模块等等)看待时,常常会涉及到自己重写底层协议和驱动的情况,同时也会涉及到不同开发板不同电平之间的转换。
最近在做一个利用android手机收发数据的实验,其中就涉及到了EIA电平和TTL电平的转换,TTL电平和CMOS电平的转换。
现简要的总结下常用的TTL电平,CMOS电平和EIA电平,以及一些与上述电平有关集成逻辑电路和rs232串口的一些基本知识:
一、集成逻辑电路的分类:
按电路组成的结构来分,可将数字电路分为分立元件电路和集成电路两类。
集成电路具有体积小、成本低、可靠性高等优点。
按制造工艺的不同,集成逻辑门可分为双极型逻辑门和单极型逻辑门两大类。
TTL(晶体管-晶体管逻辑)属于双极型逻辑门,速度快、抗干扰能力和带负载能力强。
功耗较大,集成度较低,不适合做成大规模集成电路,主要有
54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗肖特基型TTL(LS-TTL)五个系列。
TTL与CMOS高低电平区别比较

T T L与C M O S高低电平区别比较一.T T LT T L集成电路的主要型式为晶体管-晶体管逻辑门(t r a n s i s t o r-t r a n s i s t o r l o g i c g a t e),T T L大部分都采用5V电源。
1.输出高电平U o h和输出低电平U o lU o h≥2.4V,U o l≤0.4V2.输入高电平和输入低电平U i h≥2.0V,U i l≤0.8V二.C M O SC M O S电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。
C M O S电路的优点是噪声容限较宽,静态功耗很小。
1.输出高电平U o h和输出低电平U o lU o h≈V C C,U o l≈G N D2.输入高电平U o h和输入低电平U o lU i h≥0.7V C C,U i l≤0.2V C C(V C C为电源电压,G N D为地)从上面可以看出:在同样5V电源电压情况下,C O M S电路可以直接驱动T T L,因为C M O S的输出高电平大于2.0V,输出低电平小于0.8V;而T T L电路则不能直接驱动C M O S电路,T T L的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,则C M O S电路就不能检测到高电平,低电平小于0.4V满足要求,所以在T T L电路驱动C O M S电路时需要加上拉电阻。
如果出现不同电压电源的情况,也可以通过上面的方法进行判断。
如果电路中出现3.3V的C O M S电路去驱动5V C M O S电路的情况,如3.3V单片机去驱动74H C,这种情况有以下几种方法解决,最简单的就是直接将74H C换成74H C T(74系列的输入输出在下面有介绍)的芯片,因为3.3V C M O S可以直接驱动5V的T T L电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
TTL电平和CMOS电平区别和比较

一.TTLTTL集成电路的主要型式为晶体管-晶体管逻辑门〔transistor-transistorlogicgate〕,TTL大局部都采用5V电源。
1.输出高电平Uoh和输出低电平UolUoh≥2.4V,Uol≤0.4V2.输入高电平和输入低电平Uih≥2.0V,Uil≤0.8V二.CMOSCMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。
CMOS电路的优点是噪声容限较宽,静态功耗很小。
1.输出高电平Uoh和输出低电平UolUoh≈VCC,Uol≈GND2.输入高电平Uoh和输入低电平UolUih≥0.7*VCC,Uil≤0.2VCC〔VCC为电源电压,GND为地〕从上面可以看出:在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路那么不能直接驱动CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,那么CMOS电路就不能检测到高电平,低电平小于0.4V 满足要求,所以在TTL电路驱动COMS电路时需要加上拉电阻。
如果出现不同电压电源的情况,也可以通过上面的方法进展判断。
如果电路中出现3.3V的COMS电路去驱动5VCMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT〔74系列的输入输出在下面有介绍〕的芯片,因为3.3VCMOS可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
三.74系列简介74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:74LS,74HC,74HCT这三种,这三种系列在电平方面的区别如下:TTL和CMOS电平1、TTL电平(什么是TTL电平):输出高电平>2.4V,输出低电平<0.4V。
TTL电平和CMOS电平的区别

TTL电平和CMOS电平的区别!(转贴)TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。
TTL 电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。
TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。
这是由于可靠性和成本两面的原因。
因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响;另外对于并行数据传输,电缆以及连接器的费用比起串行通信方式来也要高一些。
6 c4 p; z2 k' r3 D$ f& L什么是TTL电平,什么是CMOS电平,他们的区别(一)TTL高电平3.6~5V,低电平0V~2.4V ' w6 n- P7 `( L6 ECMOS电平Vcc可达到12V PCB设计论坛,PCB layout设计,高速PCB设计,高速SI仿真设计4 K, M" v1 {! i- B% A9 F% y" lCMOS电路输出高电平约为0.9Vcc,而输出低电平约为EDA365高速PCB论坛$ K3Y* O# j3 |0.1Vcc。
CMOS电路不使用的输入端不能悬空,会造成逻辑混乱。
TTL电路不使用的输入端悬空为高电平PCB设计论坛,PCB layout设计,高速PCB设计,高速SI仿真设计& k, H; f' e0 e8 b1 a! l+ I$ J另外,CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。
TTL电平与CMOS电平,RS232电平的区别

TTL电平与CMOS电平,RS232电平的区别关于电平,是日常电气电子技术工作中经常遇到的问题,那么TTL电平、CMOS电平、RS232电平到底有哪些区别?TTL电平(一)TTL高电平3.6~5V,低电平0V~2.4VCMOS电平Vcc可达到12VCMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc。
CMOS电路不使用的输入端不能悬空,会造成逻辑混乱。
TTL电路不使用的输入端悬空为高电平另外,CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。
用TTL电平他们就可以兼容(二)TTL电平是5V,CMOS电平一般是12V。
TTL电路电源电压Vcc是5V,CMOS电路电源电压一般是12V。
5V的电平不能触发CMOS电路,12V的电平会损坏TTL电路,因此不能互相兼容匹配。
(三)TTL电平标准输出 L: <0.4V ; H:>2.4V。
输入 L: <0.8V ; H:>2.0VTTL器件输出低电平要小于0.4V,高电平要大于2.4V。
输入,低于0.8V就认为是0,高于2.0就认为是1。
CMOS电平:输出 L: <0.1*Vcc ; H:>0.9*Vcc输入 L: <0.3*Vcc ; H:>0.7*Vcc.RS232电平标准逻辑1的电平为-3~-15V,逻辑0的电平为+3~+15V,注意电平的定义反相了一次。
TTL和CMOS的逻辑电平转换CMOS电平能驱动TTL电平。
TTL电平不能驱动CMOS电平,需加上拉电阻。
#自动化#plc#电气。
CMOS和TTL电路的区别

CMOS和TTL电路的区别CMOS是场效应管构成,TTL为双极晶体管构成S的逻辑电平范围比较大(5~15V),TTL只能在5V下工作3.CMOS的高低电平之间相差比较大、抗干扰性强,TTL则相差小,抗干扰能力差4.CMOS功耗很小,TTL功耗较大(1~5mA/门)5.CMOS的工作频率较TTL略低,但是高速CMOS速度与TTL差不多相当。
1,TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4,驱动门电路OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5,TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施:1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
TTL电平和CMOS电平总结

TTL电平和CMOS电平总结TTL电平是一种基于双极型晶体管的数字电平标准。
它使用NPN和PNP型晶体管作为信号的放大和开关元件。
TTL电平标准定义了电压范围,表示逻辑低电平(0)和逻辑高电平(1)。
通常情况下,TTL逻辑低电平的范围为0V至0.8V,逻辑高电平的范围为2.2V至5V。
TTL电平的特点包括:1.高噪声抗干扰能力:由于TTL电路中采用了差分信号传输原理,使得TTL电平对噪声和干扰的抗干扰能力较强,适用于工业控制等环境噪声较大的场合。
2.低功耗:TTL电路采用双极型晶体管,功耗相对较低,适用于需要长时间运行的场合。
3.低输入输出阻抗:TTL电路的输入输出阻抗较低,使得信号传输速度较快,适用于需要高速传输的场合。
4.灵敏度高:TTL电路的输入灵敏度较高,可以读取较低的输入电压信号,适用于处理较小的信号。
然而,TTL电平也存在一些不足之处,如功耗较高、不适用于低电压供电等。
CMOS电平是一种使用CMOS晶体管构成的数字电平标准。
CMOS电平使用PMOS和NMOS晶体管作为信号的放大和开关元件。
CMOS电平标准也定义了逻辑低电平(0)和逻辑高电平(1)的电压范围。
通常情况下,CMOS逻辑低电平的范围为0V至0.3V,逻辑高电平的范围为0.7V至VCC(供电电压)。
CMOS电平的特点包括:1.低功耗:CMOS电路以其低功耗而闻名。
由于CMOS晶体管在不同的状态下只消耗微小的电流,适用于需要长时间运行和低功耗的电子设备。
2.高噪声抗干扰能力:CMOS电路抗噪声和抗干扰能力较强,适用于高精度和高灵敏度的应用。
3.高输入输出阻抗:CMOS电路的输入输出阻抗较高,使得它对电压和电流的源和负载较为适应。
4.宽电源电压范围:CMOS电路的供电电压范围较宽,可以适应不同的供电电压要求。
然而,与TTL电平相比,CMOS电平的传输速度较慢,灵敏度略低。
总的来说,TTL和CMOS电平各有优势,应根据具体的应用场景和需求来选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TTL电平和CMOS电平总结TTL电平和CMOS电平总结1,TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5,TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施:1)在输入端和输出端加钳位电路,使输入和输出不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加限流电阻,即使有大的电流也不让它进去。
4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。
6,COMS电路的使用注意事项1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。
所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。
2)输入端接低内阻的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之内。
3)当接长信号传输线时,在COMS电路端接匹配电阻。
4)当输入端接大电容时,应该在输入端和电容间接保护电阻。
电阻值为R=V0/1mA.V0是外界电容上的电压。
5)COMS的输入电流超过1mA,就有可能烧坏COMS。
7,TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理):1)悬空时相当于输入端接高电平。
因为这时可以看作是输入端接一个无穷大的电阻。
2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。
因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。
这个一定要注意。
COMS门电路就不用考虑这些了。
8,TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD 门,它的输出就叫做开漏输出。
OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?那是因为当三极管截止的时候,它的基极电流约等于0,但是并不是真正的为0,经过三极管的集电极的电流也就不是真正的 0,而是约0。
而这个就是漏电流。
开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。
它可以吸收很大的电流,但是不能向外输出的电流。
所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。
OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。
9,什么叫做图腾柱,它与开漏电路有什么区别?TTL集成电路中,输出有接上拉三极管的输出叫做图腾柱输出,没有的叫做OC门。
因为TTL就是一个三级关,图腾柱也就是两个三级管推挽相连。
所以推挽就是图腾。
一般图腾式输出,高电平400UA,低电平8MA要了解逻辑电平的内容,首先要知道以下几个概念的含义:1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。
2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。
3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
5:阀值电平(Vt):数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。
它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平对于一般的逻辑电平,以上参数的关系如下:Voh > Vih > Vt > Vil > Vol。
6:Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。
7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。
8:Iih:逻辑门输入为高电平时的电流(为灌电流)。
9:Iil:逻辑门输入为低电平时的电流(为拉电流)。
门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。
开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。
对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件:(1): RL < (VCC-Voh)/(n*Ioh+m*Iih)(2):RL > (VCC-Vol)/(Iol+m*Iil)其中n:线与的开路门数;m:被驱动的输入端数。
常用的逻辑电平·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。
·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。
·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。
·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。
·低电压的逻辑电平还有2.5V和1.8V两种。
·ECL/PECL和LVDS是差分输入输出。
·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。
TTL和CMOS的逻辑电平关系图2-1:TTL和CMOS的逻辑电平图上图为5V TTL逻辑电平、5V CMOS逻辑电平、LVTTL逻辑电平和LVCMOS逻辑电平的示意图。
5V TTL逻辑电平和5V CMOS逻辑电平是很通用的逻辑电平,注意他们的输入输出电平差别较大,在互连时要特别注意。
另外5V CMOS器件的逻辑电平参数与供电电压有一定关系,一般情况下,Voh≥Vcc-0.2V,Vih≥0.7Vcc;Vol≤0.1V,Vil≤0.3Vcc;噪声容限较TTL电平高。
JEDEC组织在定义3.3V的逻辑电平标准时,定义了LVTTL和LVCMOS 逻辑电平标准。
LVTTL逻辑电平标准的输入输出电平与5V TTL逻辑电平标准的输入输出电平很接近,从而给它们之间的互连带来了方便。
LVTTL逻辑电平定义的工作电压范围是3.0-3.6V。
LVCMOS逻辑电平标准是从5V CMOS逻辑电平关注移植过来的,所以它的Vih、Vil和Voh、Vol与工作电压有关,其值如上图所示。
LVCMOS逻辑电平定义的工作电压范围是2.7-3.6V。
5V 的CMOS逻辑器件工作于3.3V时,其输入输出逻辑电平即为LVCMOS 逻辑电平,它的Vih大约为0.7×VCC=2.31V左右,由于此电平与 LVTTL的Voh(2.4V)之间的电压差太小,使逻辑器件工作不稳定性增加,所以一般不推荐使用5V CMOS器件工作于3.3V电压的工作方式。
由于相同的原因,使用LVCMOS输入电平参数的3.3V逻辑器件也很少。
JEDEC组织为了加强在3.3V上各种逻辑器件的互连和3.3V与5V逻辑器件的互连,在参考LVCMOS和LVTTL逻辑电平标准的基础上,又定义了一种标准,其名称即为3.3V逻辑电平标准,其参数如下:图2-2:低电压逻辑电平标准从上图可以看出,3.3V逻辑电平标准的参数其实和LVTTL逻辑电平标准的参数差别不大,只是它定义的Vol可以很低(0.2V),另外,它还定义了其 Voh 最高可以到VCC-0.2V,所以3.3V逻辑电平标准可以包容LVCMOS的输出电平。
在实际使用当中,对LVTTL标准和 3.3V逻辑电平标准并不太区分,某些地方用LVTTL电平标准来替代3.3V逻辑电平标准,一般是可以的。
JEDEC组织还定义了2.5V逻辑电平标准,如上图所示。
另外,还有一种2.5V CMOS逻辑电平标准,它与上图的2.5V逻辑电平标准差别不大,可兼容。
低电压的逻辑电平还有1.8V、1.5V、1.2V的逻辑电平。
TTL和CMOS逻辑器件逻辑器件的分类方法有很多,下面以逻辑器件的功能、工艺特点和逻辑电平等方法来进行简单描述。
TTL和CMOS器件的功能分类按功能进行划分,逻辑器件可以大概分为以下几类:门电路和反相器、选择器、译码器、计数器、寄存器、触发器、锁存器、缓冲驱动器、收发器、总线开关、背板驱动器等。
1:门电路和反相器逻辑门主要有与门74X08、与非门74X00、或门74X32、或非门74X02、异或门74X86、反相器74X04等。
2:选择器选择器主要有2-1、4-1、8-1选择器74X157、74X153、74X151等。
3:编/译码器编/译码器主要有2/4、3/8和4/16译码器74X139、74X138、74X154等。
4:计数器计数器主要有同步计数器74X161和异步计数器74X393等。
5:寄存器寄存器主要有串-并移位寄存器74X164和并-串寄存器74X165等。
6:触发器触发器主要有J-K触发器、带三态的D触发器74X374、不带三态的D触发器74X74、施密特触发器等。
7:锁存器锁存器主要有D型锁存器74X373、寻址锁存器74X259等。
8:缓冲驱动器缓冲驱动器主要有带反向的缓冲驱动器74X240和不带反向的缓冲驱动器74X244等。
9:收发器收发器主要有寄存器收发器74X543、通用收发器74X245、总线收发器等。