可持续农业综述
农业推广文献综述

农业推广文献综述当前我国农业发展所面临的人口膨胀、耕地减少、粮食供给压力加大等问题日渐突出。
普遍存在着人均农业资源占有率及利用率低,劳动生产率低,粮食生产科技水平低,农业基础设施投入不足等现象.由此可见,基于传统模式的农业已经难以适应当今世界的需求,于是传统农业向现代农业进行转化已经成为不可逆转的趋势。
现代农业属于农业发展的最新阶段,备受学术界的关注.美国、欧盟、日本、韩国等国家对现代农业的开发、现代农业的进程以及现代农业的实现途径等问题都进行了大量的研究。
在中国也有很多学者对西方发达国家现代农业的发展进行过较为广泛的考察和分析,从而对现代农业的内涵、特征、发展进程等有了深刻的认识.1 现代农业的内涵现代农业的范畴到底是指什么?学术界对此进行了较长时期的讨论,代表性的学术观点有以下几种:2007年的中央一号文件明确指出了发展现代农业这个方向,并提出发展现代农业是社会主义新农村建设的首要任务.其中对现代农业的科学论述是:“要用现代物质条件装备农业,用现代科学技术改造农业,用现代产业体系提升农业,用现代经营形式推进农业,用现代发展理念引领农业,用培养新型农民发展农业”。
中国工程院院士卢良恕(2006)指出:“现代农业是继原始农业、传统农业之后的一个农业发展新阶段。
现代农业以现代工业装备为物质条件。
现代农业的核心是科学化,特征是商品化,方向是集约化,目标是产业化”。
他从发展阶段的角度来看待现代农业,认为现代农业是一个动态的历史的概念,是农业发展的一个崭新的阶段。
同样,蒋和平教授(2009)也认为现代农业是一个动态的、历史的、相对的概念,是相对于传统农业而言的新型农业。
他指出现代农业的内涵包括创新、产业化经营、集约化经营、外向型、适度规模经营、标准化等理念。
中国社科院农村发展研究所李静(2005)指出:“现代农业是指在工业化、城市化高度发展的条件下,依托城市在资本、信息、人才、科技、市场等方面的优势,以农业资源为基础、市场为导向、效益为中心、产业化为抓手,城市与乡村融为一体,农业与其他产业日益融合,农产品生产、加工、营销、服务相互配套,具有经济、生态、文化多种功能的农业综合开发系统”。
关于农业产业化发展的研究综述 文献综述

编号(学号):文献综述(2012届本科)题目:关于农业产业化发展的研究综述学院:专业:农林经济管理姓名:指导教师:完成日期:2012年 4 月28 日注:[封面的文献综述编号统一填写学号]沈阳农业大学学士学位论文文献综述关于农业产业化发展的研究综述摘要:20世纪90年代初,“农业产业化”一经提出就成为理论界关注的热点, 农业产业化是我国发展农村经济、是国家增税、企业增利、农民增收的有效途径,是农业发展新的生长点和农业转向现代化的重要途径,是社会主义新农村建设的重要内容,是发展区域经济、推进城乡一体化、促进现代农业发展的现实选择,对我国“三农”问题的解决具有重大的现实意义。
由于我国农业产业化起步晚,农业基础薄弱,规模化和产业化水平低,加之地区间发展存在极大的不平衡性,农业产业化仍然存在一些急待解决的问题,新农村建设为我国推进农业产业化提出了新要求。
如何提高农业产业化的可持续性,是我们必须思考和研究的重要问题。
现通过对近几年国内学术界的相关研究成果进行综述,以期对此问题的研究能够更进一步。
关键词:农业产业化;产业链;模式中国是一个农业大国,农业是国民经济的基础,具有举足轻重的作用。
2007年1月29日,《中共中央国务院关于积极发展现代农业扎实推进社会主义新农村建设的若干意见》下发,文件明确要求开发农业多种功能,健全发展现代农业的产业体系,要大力发展特色农业,扶持农业产业化龙头企业发展。
此后的中央文件也多次提到了农业产业化发展的重要性。
从政府高度重视,到各项促进措施可以看出,发展特色农业,推进农业产业化的一直是农业经济发展的突破口,在建设社会主义新农村的宏伟工程里发挥着举足轻重的作用。
我国农业产业化发展近20年,取得了很大的成就,农业综合增长力显著增强,基本实现了由粗放生产向集约化生产的历史跨越。
但是随着现代农业发展进入关键时期,我国的农业产业化发展也迫切需要在体系上进一步创新,在质量上进一步提升。
我国农业产业化最早是1993年在山东潍坊提出来的。
国内农业高质量发展的研究综述

国内农业高质量发展的研究综述随着国家农业现代化进程的推进,农业高质量发展成为目前农业发展的重要目标。
本文将对国内农业高质量发展的研究进行综述。
一、农业高质量发展的概念及内涵1. 农业高质量发展的概念农业高质量发展是指在遵循可持续发展原则的基础上,以科技创新为驱动,通过提高农产品质量、农业效益和农村发展水平,实现农业现代化的发展模式。
2. 农业高质量发展的内涵农业高质量发展包括三个方面的内容:提高农产品质量,提高农业产能,提高农民收入。
提高农产品质量是农业高质量发展的核心目标,包括提高农产品的安全性、营养价值和品质等;提高农业产能是农业高质量发展的基础,通过科技创新、提高资源利用效率等方式实现;提高农民收入是农业高质量发展的根本目标,包括提高农民的经济收入、改善农民的生活品质等。
二、农业高质量发展的主要问题与挑战1. 资源环境压力随着农业生产的规模扩大和生产方式的转变,农业面临着越来越大的资源环境压力,包括土地资源的减少、水资源的短缺、环境污染等问题。
2. 农业科技进步滞后国内农业科技水平与发达国家相比仍存在一定差距,农业科技进步滞后成为制约农业高质量发展的重要问题。
3. 农产品质量安全问题国内农产品质量安全问题仍然突出,其中包括农药残留超标、兽药滥用等问题,严重影响了消费者对农产品的信任度。
4. 农业产业结构不合理当前国内农业产业结构以传统农产品为主导,行业发展较为单一,缺乏多样化、差异化的发展路径。
三、农业高质量发展的对策与路径1. 创新科技驱动推动农业高质量发展需依靠科技创新,加强农业科技研发能力,提高农业科技的应用水平,包括农业机械化、生物技术、信息技术等方面。
2. 优化品种结构通过选育优质高产品种和适应性强的品种,优化农业生产结构,提高农作物产量和品质。
3. 推进农业产业升级加快农业产业化发展进程,推动农业由传统农业向现代农业转型升级,促进农产品加工业、农业服务业等相关产业的发展。
4. 加强农产品质量安全监管加强农产品质量安全监管,制定严格的质量标准和监管措施,提高农产品的质量和安全水平。
农业现代化工作综述

农业现代化工作综述农业现代化是指农业生产方式、农业经营体制、农业科技水平和农业产业结构等方面实现现代化,提高农业综合生产能力和农民生活质量的发展阶段。
在我国,农业现代化工作是农业发展的重要任务,对于实现农村的全面振兴、农民的持续增收和农业可持续发展具有重要意义。
我国农业现代化工作经历了多个阶段。
在改革开放初期,我国农业面临着农村经济落后、技术水平低下和农产品供给不足等问题,农业现代化进程相对较为滞后。
然而,随着国家对农业的重视和改革开放的推进,农业现代化工作逐渐展开。
特别是近年来,乡村振兴战略的实施,更加推动了农业现代化的进程。
在农业现代化的过程中,我国注重科技创新和技术引进。
加大科研投入,推动农业科学研究和技术创新,培育农业高新技术和高效农业装备。
如利用生物技术改良农作物品质、提高抗病虫害能力;利用信息技术推进精准农业,实现农业生产的精细化管理和智能化操作;利用先进的种植技术和养殖技术,提高农产品的产量和质量。
同时,我国还积极引进国外的农业技术和设备,借鉴国外先进经验,推动农业现代化的进程。
同时,农业现代化工作还涉及农业经营体制的改革。
推动农村合作经济组织发展,鼓励农民参与农业产业化经营,培育大农业集团和农产品合作社等新型农业经营主体。
建立起多层次、多样化的农业经营体系,提高农民的组织化程度和市场交易能力,从而提高农业产业的综合竞争力。
农业现代化工作还涉及农业产业结构的调整。
推动农业产业化和农产品加工业的发展,推动农村农民增收途径的拓宽。
发展农产品专业合作社和农产品供应链,提高农产品的附加值和市场占有率。
同时,注重保护农业生态环境,推动绿色农业的发展,提高农产品的安全性和可持续性。
农业现代化工作的成果是显著的。
我国农业总产值持续增长,农民收入不断提高,农村的面貌和生活水平得到显著改善。
农业科技水平大幅提升,农业生产的资源利用效率得到提高,农产品的品质和安全性得到保障。
农村基础设施和公共服务设施的建设也得到加强,农村的社会事业也取得了较大的发展。
对当前农业形势的研究综述

对当前农业形势的研究综述当前农业形势的研究综述农业是人类社会发展的重要基石之一,也是全球经济发展的核心领域,为满足人口的基本生存需求和提高国家的自给自足能力做出了重要的贡献。
然而,随着全球化和人口增长的推进,农业形势日益复杂和严峻,面临着多方面的挑战和压力。
本文旨在探讨当前全球农业形势的现状以及面临的挑战和解决方案。
一、全球农业现状1.粮食生产增长缓慢。
近年来,全球粮食生产增长从最初的快速增长逐渐趋于缓慢,而人口的增长速度并没有随之减缓。
目前全球仍有超过8亿人口处于饥饿状态。
2.农业生产因极端气候而失去稳定性。
由于全球气候的变化,在农业生产过程中,农民们常常面临极端气候的影响,如干旱、洪涝、台风等,这种变化大大降低了农产品的产量,使得农民的收益也大受影响。
3.城市化导致农业用地的减少。
在全球城市化的进程中,大量农地被用于建设城市或者工业区,使得耕地数量减少。
4.不可持续农业生产方式。
全球大量农民仍然采用一些不可持续的农业生产方式,如大量使用化学农药、化学肥料等,其使用对土壤的损害以及人体健康的风险都极高,不利于农业健康持续发展。
二、全球农业面临的挑战1.全球气候变化对农业生产的影响。
气候变化将会对全球农业生产带来很大影响,但由于不确定性因素较大,对农业影响的具体程度难以预测。
2.人口增长对农业生产的压力。
全球人口的持续增长将会对农业生产产生较大的压力,需要大量的农产品保证人类的生活所需。
3.粮食供求产生的变化。
目前全球农业存在大量浪费问题,而且不同的地区农业生产的差异性也很大,这些都影响到全球的粮食供给格局。
4.农业生产方式的转变。
尽管当前大量农民仍然采用不可持续的农业生产方式,但是为了保证农业的可持续发展,需要进行农业生产方式的转变,以提高生产效率以及农产品品质。
三、解决方案1.采用新技术手段促进农业发展。
科技的快速发展给农业带来了大量的机遇,如基因编辑技术,精准农业等。
这些新技术的应用可以提高农业生产效率,解决部分人类的饥饿问题。
国内外农业可持续发展研究综述

国内外农业可持续发展研究综述农业是人类生活的基础,也是保障全球粮食安全和实现可持续发展的关键领域之一。
随着全球经济的不断发展和人口的增长,农业可持续发展问题日益凸显。
本文将针对国内外农业可持续发展的研究现状进行综述,分析其现状、前景和挑战。
近年来,随着环境变化、生态破坏和资源短缺等问题的突出,农业发展面临着巨大的挑战。
国内外研究者通过对农业可持续发展的深入研究,提出了一系列解决方案。
首先,研究者关注生态农业的发展。
生态农业强调的是生态环境保护与利用效率的结合,通过合理利用自然资源,保护生态环境,实现农业与生态之间的良性互动。
一些国家如荷兰、日本等通过引进先进的农业技术和管理模式,不仅提高了农产品的品质和产量,还减少了对地下水和土壤的污染。
其次,农业科技的进步对可持续发展起到了积极的推动作用。
遗传工程、精确农业、保护性耕作等新技术的应用,不仅提高了农作物的产量和抗病能力,还减少了对农药和化肥的需求,实现了农业生产的绿色化和环保化。
同时,农业科技的不断创新也为农村地区提供了更多的就业机会,推动了农村经济的发展。
第三,农业可持续发展的国际合作也日益加强。
联合国粮农组织等国际组织通过发布政策文件,推动各国加大对农业可持续发展的投资力度,并加强对农业发展中国家的援助。
同时,国际间的技术交流与合作,也为农业可持续发展提供了有益的经验借鉴。
然而,农业可持续发展仍面临一些挑战。
首先,农业发展区域间的差异性较大。
由于地理环境、气候条件和经济实力等方面的差异,不同地区在农业可持续发展方面面临的问题各异。
因此,需要根据不同地区的特点和实际情况,制定差异化的政策和措施。
其次,农业可持续发展面临的科技壁垒和技术不平衡问题也比较突出。
一些发展中国家由于科技水平不足和贫困等问题,难以有效推进农业可持续发展。
因此,国际社会应加大技术援助和创新合作力度,帮助发展中国家提高农业生产能力和可持续发展水平。
此外,农业可持续发展还面临着市场需求的问题。
农业生态学研究综述

农业生态学研究综述一、引言农业生态学是研究农业系统与自然环境相互作用的学科,旨在通过合理利用生态原理和方法,实现农业的可持续发展。
本文将综述农业生态学的研究内容、方法和应用,以及未来发展方向。
二、研究内容农业生态学的研究内容主要包括农业生态系统的结构和功能、农业生态过程及其调控机制、农业生态系统的评价和优化等。
农业生态系统是由农田、农作物、农民和自然环境共同构成的复杂系统,研究其结构和功能有助于了解农业生态系统的内在联系和相互作用。
农业生态过程研究包括农田水、肥、杂草和病虫害的生态过程,以及农业生态系统中的能量流和物质循环等。
通过探究农业生态过程的规律,可以有效调控农业生态系统,提高农业生产效益和生态环境质量。
农业生态系统的评价和优化研究主要是通过建立合理的评价指标和优化模型,对农业生态系统进行综合评估和优化配置,以实现农业的可持续发展。
三、研究方法农业生态学的研究方法主要包括实地调查观测、实验研究和模型模拟等。
实地调查观测是农业生态学研究的基础,通过对农田和农作物进行系统观测和数据采集,获取可靠的研究数据。
实验研究是验证和探究农业生态学假设的重要手段,通过对农田和农作物进行人为干预和监测,得出科学结论。
模型模拟是农业生态学研究的重要工具,通过建立农业生态系统的数学模型,预测和分析农业生态过程和系统响应,为农业生产提供科学依据。
四、应用与成果农业生态学的研究成果广泛应用于农业生产、环境保护和决策管理等领域。
在农业生产方面,农业生态学研究为高效农业、有机农业和生态农业等提供了理论和技术支持,推动了农业生产方式的转型升级。
在环境保护方面,农业生态学研究帮助减少了农业对环境的负面影响,降低了农田水体和土壤的污染风险,保护了生物多样性和生态系统稳定性。
在决策管理方面,农业生态学研究为农业政策制定和农田规划提供科学依据,促进了农业可持续发展和农村经济繁荣。
五、未来发展方向随着社会经济的发展和人们对农业生态环境的关注度增加,农业生态学面临着新的挑战和机遇。
农业高质量发展的文献综述

农业高质量发展的文献综述农业高质量发展是指在保障粮食安全和农民收入的基础上,提高农业生产的效益、质量和可持续发展水平。
以下是一些关于农业高质量发展的文献综述。
1. Haggblade, S., & Hazell, P. (2011). Successes in African agriculture: Lessons for the future. World Bank Publications. 这本书综述了非洲农业领域的成功案例,探讨了实现农业高质量发展的关键因素和策略,包括农产品市场、农技推广和农业投资等方面。
2. Fan, S. (2017). Chinese agriculture: A changing framework for high-quality development. China Agricultural Economic Review, 9(4), 486-501. 本文分析了中国农业高质量发展的框架,重点关注农业供给侧结构性改革、农业技术创新和农业可持续发展等方面的政策和实践。
3. Jayne, T. S., Sitko, N. J., Mason, N. M., & Burke, W. J. (2010). Land constraints in Western Kenya: Implications for agriculture and rural livelihoods. Agricultural Economics, 41(3-4), 179-195. 本文研究了肯尼亚西部的土地约束对农业和农村生计的影响,提出了解决土地约束问题促进农业高质量发展的政策建议。
4. Reardon, T., Berdegue, J. A., & Escobar, G. (2001). Rural Nonfarm Employment and Incomes in Latin America: Overview and Policy Implications. World Development, 29(3), 395-409. 这篇文章综述了拉丁美洲农村非农就业和收入的情况,并分析了非农就业对农村经济发展和农业高质量发展的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Agron.Sustain.Dev.28(2008)57–64Available online at:c INRA,EDP Sciences, DOI:10.1051/agro:2007025Review article Soils and sustainable agriculture.A reviewR.L al*Carbon Management and Sequestration Center,The Ohio State University,Columbus,OH43210,USA(Accepted23April2007)Abstract–Enhancing food production and supporting civil/engineering structures have been the principal foci of soil science research during most of the19th and thefirst seven or eight decades of the20th century.Demands on soil resources during the21st century and beyond include:(i)increasing agronomic production to meet the food needs of additional3.5billion people that will reside in developing countries along with likely shift in food habits from plant-based to animal-based diet,(ii)producing ligno-cellulosic biomass through establishment of energy plantations on agriculturally surplus/marginal soils or other specifically identified lands,(iii)converting degraded/desertified soils to restorative land use for enhancing biodiversity and improving the environment,(iv)sequestering carbon in terrestrial(soil and trees)and aquatic ecosystems to off-set industrial emissions and stabilize the atmospheric abundance of CO2and other greenhouse gases,(v)developing farming/cropping systems which improve water use efficiency and minimize risks of water pollution,contamination and eutrophication,and (vi)creating reserves for species preservation,recreation and enhancing aesthetic value of soil resources.Realization of these multifarious soil functions necessitate establishment of inter-disciplinary approach with close linkages between soil scientists and chemists,physicists, geologists,hydrologists,climatologists,biologists,system engineers(nano technologists),computer scientists and information technologists, economists,social scientists and molecular geneticists dealing with human,animal and microbial processes.While advancing the study of basic principles and processes,soil scientists must also reach out to other disciplines to address the global issues of the21st century and beyond. sustainable agriculture/soil functions/food security/climate change/biofuels/water resources/waste management1.INTRODUCTIONGoals of soil management during the19th century and the first half of the20th century,when world population was merely38%of the2006level,was to maintain agronomic pro-ductivity to meet the food demands of2to3billion inhab-itants.Demands on soil resources are different of a densely populated and rapidly industrializing world of the21st cen-tury.In addition to food supply,modern societies have insa-tiable demands for energy,water,wood products,and land area for urbanization,infra-structure,and disposal of urban and industrial wastes.There is also a need to alleviate rural poverty and raise the standard of living of masses dependent on subsistence farming.In addition,there are several environ-mental issues which need to be addressed such as the climate change,eutrophication and contamination of natural waters, land degradation and desertification,and loss of biodiversity. To a great extent,solutions to these issues lie in sustainable management of world’s soil resources(Fig.1),through adop-tion of agronomic techniques which are at the cutting edge of science.2.ADV ANCING FOOD SECURITYThe world population of merely0.2billion during the bib-lical era increased by only0.11billion(to0.31billion)dur-*Corresponding author:Lal.1@ ing the next one thousand years by1000AD.However,the population increased20times to6billion during the next 1000years by2000AD.The world population is projected to reach9.4billion by2050and10billion by2100(Fischer and Heilig,1997;Cohen,2003).The most remarkable aspect of the future population dynamics is the fact that all of the projected increase by about3.5billion will occur in developing countries of Asia(mostly South Asia)and Africa(mostly sub-Saharan Africa).These are also the regions where soil resources are limited in extent(per capita),fragile to natural and anthro-pogenic perturbations,and prone to degradation by the pro-jected climate change and the increase in demographic pres-sure.Thus,any future increase in agronomic/food production will have to occur through vertical increase in production per unit area,time and input(e.g.,nutrients,water,energy)of the resources already committed to agriculture.It is in this context that developing and identification of some innovative methods of soil management are crucial to feeding the world popula-tion of10billion.These methods must minimize losses by de-livering nutrients and water directly to the plant roots during the most critical stages of crop growth.Degraded and deserti-fied soils must be reclaimed through enhancement of the soil organic matter(SOM)pool,creation of a positive elemental budget with balanced supply of all essential nutrients,effective control of soil erosion by water and wind,restoration of soil structure and tilth through bioturbation,and enhancement of activity and species diversity of soil fauna andflora.Soil man-agement techniques must be chosen to ensure:(i)liberal use58R.LalFigure 1.World soils and global issues of 21st century.of crop residues,animal dung and other biosolids,(ii)minimal disturbance of soil surface to provide a continuous cover of a plant canopy or residue mulch,(iii)judicious use of sub-soil fertigation techniques to maintain adequate level of nutrient and water supply required for optimal growth,(iv)an ade-quate level of microbial activity in the rhizosphere for organic matter turnover and elemental cycling,and (v)use of com-plex cropping /farming systems which strengthen nutrient cy-cling and enhance use e fficiency of input.Identification,devel-opment and validation of such innovations must be based on modern technologies such as GIS,remote sensing,genetic ma-nipulations of crops and rhizospheric organisms,soil-specific management,and slow /time release formulations of fertilizers.Increase in crop yields must occur in rainfed /dry farming sys-tems which account for more than 80%of world’s croplands.Breaking the agrarian stagnation /deceleration in sub-Saharan Africa must be given the highest priority by soil scientists and agronomists from around the world.While expanding irrigated agriculture is important,crop yields have to be improved on rainfed agriculture in Asia and Africa,by conserving or recy-cling every drop of rain,and by not taking soils for granted.3.BIOFUELSIn comparison with the stone age or bronze age,the indus-trial era (1750to 2050)will be referred to the carbon (C)age or carbon civilization by future generations from 2100AD and beyond.The use of fossil fuel,since the onset of industrial revolution ∼1750,has drastically disturbed the global C cy-cle with the attendant impact on the climate change and the increase in earth’s temperature along with change in rainfall amount and distribution.The present civilization is hooked on C,and is in need of a big time rehabilitation.Breaking the C-habit will require development of C-neutral or non-carbon fuel sources,and both soil science and agronomy have a major role to play in this endeavor.Not only the recommended agricul-tural input (fertilizers,pesticides,tillage methods,irrigation)must be e fficiently used,the future energy demands will even-tually be met by non-carbon fuel,most likely hydrogen.The latter can be generated from biomass produced through ap-propriate land uses and judicious cropping /farming systems.In the meanwhile,modern biofuels (ethanol,biodiesel)can play an important role in minimizing emissions of greenhouse gases and reducing the rate of increase of atmospheric concen-tration of CO 2(Brown,1999;Cassman et al.,2006).Convert-ing grains (e.g.,corn)to ethanol is rather an ine fficient method of energy production,and grains are and will remain in high demands as food staple for humans and feed for livestock and poultry.Crop residues are also being considered as a source of en-ergy (Somerville,2006;Service,2007).Indeed,one Mg (1t)of lignocellulosic residues is equivalent to 250–300L of ethanol,15–18GJ of energy,16×106kcal or 2barrels of diesel (Lal,2005;Weisz,2004).The energy return on investment (EROI)for grain-based ethanol is low.Furthermore,crop residues (ofSoils and sustainable agriculture.A review59Table I.Species for establishing biofuel plantations.English Name Botanical Name1.Warm Season Grasses•Switch grass Panicum virgutum L.•Big blue stem Andropogan gerardi,Vitnam•Indian grass Sorghastrum nuttans L.Nas•Blue giant grass Calanagrostis Canadensis Michx Bean L.•Guines grass Panicum Maximum L.•Elephant grass Pennisetum perpereum schm.•Kallar/Karnal grass Leptochloa frscha L.•Molasses grass Melinis minutiflona•Reed canary grass Phalaris arundinacae L.•Cord grass Spartina pectinata Link.2.Short Rotation Woody Crops•Popalar spp Populus spp.•Willow spp Salix ssp.•Mesquite(Velayti Babul)Prosopis juliflora•Miscanthus Miscanthus spp.•Black locus Robinia pseudoacacia L.•Birch Onopordum nervosum3.Halophytes•Pickle weed Salicornia bigelovii•Salt grass Distichlis palmeri•Salt brushes Atriplex spp.•Algae Spirulina geitleri4.Drought Tolerant Trees•Gum tree Eucalyptus spp.•Leucaena(Subabul)Leucaena leucocephala•Casurinas Casurina equisetifolia•Acacia Acacia spp.•Teak Tectona grandis•Cassia Casia siameacorn,wheat,barley,millet,rice)must be used as soil amend-ment/mulch to control erosion,conserve water and replenish the depleted SOM pool through soil C sequestration,and re-store degraded soils and ecosystems(Wilhelm et al.,2004). Crop residues must not be considered a waste,because they have multifarious but competing uses including conservation of soil and water,cycling of nutrients,enhancement of the use efficiency of fertilizers and irrigation water,and above all,as a food of soil organisms which are essential to making soil a living ing crop residues for production of biofu-els is“robbing Peter to pay Paul”and all that glitters is not gold,not even the green gold.The price of harvesting crop residues(such as from the U.S.Corn Belt)will be severe soil and environmental degradation(dust bowl),because there is no such thing as a free lunch.It is,thus,important to iden-tify dedicated crops which can be grown to establish biofuel plantations(Tab.I).Furthermore,new lands(agriculturally marginal/surplus soils;and degraded,disturbed and polluted soils)must be identified to establish appropriate biofuel plan-tations.In addition to providing the lignocellulosic biomass for conversion to ethanol,establishment of biofuel plantations on degraded soils would also lead to soil C sequestration and enhance soil quality and the ecosystem services that it would provide.The EORI of biofuel production system must be care-fully assessed through a comprehensive life cycle analysis.In addition to establishing managed biofuel plantations,lignocel-lulosic biomass can also be harvested from natural vegetation growth on abandoned/set aside or fallowed land(Tilman et al., 2006).The issue of using crop residues for cellulosic ethanol production must not be resolved on the basis of short-term eco-nomic gains.The rational decision must be based on the long-term sustainable use of natural resources(Figs.2,3).Indeed, the immediate needs for fuel must not override the urgency to achieve global food security,especially for almost1billion food-insecure people in Africa and Asia.If the crop residues harvested for celunol production are not returned as compost (with enhanced plant nutrients such as N,P,K),the long-term adverse impacts on soil quality(such as has been the caselFigure2.Site and eco-system specific effects of crop residue management on soil and environment quality must be assessed in relation to improvement in soil quality and sustainable use of natural resources.in severely degraded soils of sub-Saharan Africa and South Asia due to perpetual removal of crop residues)will jeopar-dize global food security and set-in-motion the soil degrada-tion spiral with the attendant impact on social unrest and po-litical instability(Fig.4).4.W ASTE DISPOSALThe importance of soil for the safe disposal of ever-increasing industrial and urban wastes cannot be over-emphasized.The municipal solid wastes generated in the U.S. doubled between1970and2003(USEPA,2006),as is also the case in western Europe and developing economies,In ad-dition,there are wastes of animal and poultry industry,and food processing plants and restaurants.Theses wastes contain-ing biosolids which can be used as energy source(either for direct combustion or conversion to methane or ethanol),and as soil amendment,or both.The by products of biosolids used for production of methane gas or ethanol must be composted and used as soil amendment.Soils of appropriate characteristics(e.g.,good drainage,ab-sence of impermeable layer in the vadoze zone,high activ-ity and species diversity of macro and micro-organisms in the surface layer,highly aggregated and stable structure)is also a natural biomembrane which must be used tofilter and de-nature/biodegrade industrial pollutants.Carefully chosen soils and the underlying parent material/geologic strata are being used as a repository for nuclear wastes(e.g.,Yucatan moun-tain range in the southwestern U.S.).Although questionable in terms of effectiveness and economic cost,geologic strata are also being used/considered for storage of industrial CO2emit-ted from point sources(Schrag,2007).The importance of soil as a medium for waste disposal is bound to increase with in-crease in population and industrialization,and soil scientists must be pro-active in this emergingfield of great significance. Similarly,agronomists must be very actively involved in phy-toremediation of polluted soils by using plants to denature in-dustrial pollutants.5.FARMING CARBONCarbon sequestration in terrestrial ecosystems(e.g.,soils, trees,wetlands),and improving soil quality so that soils can be a net sink for CH4and release less N2O,is an important issue which must be addressed by soil scientists,crop scien-tists,agronomists,foresters and wetland ecologists.While un-derstanding the processes which impact the ecosystem carbon pool andfluxes is important,soil scientists and agronomists must liaise with economists and policy experts to develop a methodology for trading of carbon credits so that it can be traded like any farm commodity(e.g.,corn,millet,poul-try).Similar to C sequestered in trees,methodology must beSoils and sustainable agriculture.A review61Figure3.An objective assessment of short-term economic gains versus long-term and sustainable use of natural resources important to the decision-making process for competing uses of crop residues.developed to trade C in soils(Breslau,2006;Brahic,2006).In addition,emissions of CH4and N2O can be converted to CO2 equivalent,and also traded.Trading C credits can provide an-other income stream for farmers,and provide the much needed incentives to invest in soil improvements(e.g.,erosion control, fertility management,irrigation).Restoration of degraded soils and ecosystems is an im-portant facet intimately linked to soil C sequestration.Soil degradation and desertification,biophysical processes driven by socio-economic and political factors,are severe prob-lems in developing countries of South Asia and sub-Saharan Africa(Oldeman,1994).Restoration of eroded/degraded soils, through land use conversion via afforestation and conversion of degraded croplands to improved and well managed pas-tures,will lead to terrestrial C sequestration(in soils and trees) as an ancillary benefit.Soil degradation through land mis-use,soil mismanagement,and excessive consumption of wa-ter throughflood irrigation that leads to salinization and inun-dation are luxuries that the land-starved and the water-scarce world cannot afford,not anymore.There is a strong link between soil restoration,carbon se-questration,food security(Lal,2006)and biodiversity(Fig.5). Improvement of soil quality,gradual and a slow process as it may be,is caused by an increase in the terrestrial C pool.The latter is also linked with biodiversity,water quality and mi-cro and meso-climate,and emission of greenhouse gases into the atmosphere.Understanding interactive mechanisms,espe-cially those which link processes in soil with those in atmo-sphere and hydrosphere through biosphere,are of a high pri-ority for soil scientists and agronomists.In addition to quan-tifying these processes,soil scientists and agronomists must also communicate theirfindings to policy makers such as the US Congress,European Parliament,and the aniza-tions.Through their interactive research outlined above,soil scientists must provide the basic information which is needed to bring together three U.N.Conventions(i.e.,UNFCCC, UNFCBD,and UNFCDC).While providing crucial informa-tion on biodiversity,desertification control and climate change to strengthen cross linkages among three U.N.Conventions, soil scientists can also build bridges to link these organiza-tions with the noble lenium Development Goals of cutting poverty and hunger in half.In agricultural economy, which involves two-thirds to three-fourths of the rural pop-ulation,increasing agronomic productivity and providing an-other income stream for farmers through trading of C credits are important strategies to advance food security while allevi-ating poverty and improving the environment.Generating in-come through trading of soil/terrestrial carbon credits may be the entry point or the handle to break the vicious cycle of soil degradation-low yields-poverty–hunger-severe soil degrada-tion.It is a truly win-win-win strategy that deserves a serious attention of the world community.6.W ATER RESOURCESIn addition to fertility and nutrient supply,agricultural pro-ductivity will be constrained by lack of water resources,whose severity will be exacerbated by frequent and severe droughtlResidue removal•Low NPP •Food deficit•Crusting •CompactionRunoff lossesSoil erosion by water & windNegative nutrient balanceDepletion of soil organic matter•Poverty •Hunger•MalnutritionPolitical instability Civil unrestFigure 4.The Classic Collapse.stress due to the projected climate change.Whereas agricul-ture is the largest consumer of water,the competition from industrial and urban uses is increasing with increase in de-mographic pressure and rapid industrialization (Gleick,2003;Kondratyev,2003;Johnson et al.,2001).The scarcity of fresh water is exacerbated by non-point and point source pollutions (Tilman et al.,2006),and will be further aggravated by likely shift in diet in developing economies (e.g.,China,India)from plant-based to animal-based products (Clay,2004).In this re-gard,improved understanding of soils and agronomic pro-cesses which enhance water use e fficiencies is highly relevant and extremely critical.Soil scientists and agronomists need to work closely with plant breeders to develop genetically engi-neered plants which have high productivity per unit consump-tion of water,with irrigation engineers to reduce losses of wa-ter during conveyance and delivery,with micro-meteorologists to reduce losses from soil evaporation,with hydrologists to economically and e ffectively recycle water drained into the sub-soil or ground water,and with municipalities of large ur-ban centers to develop techniques of recycling waste water for irrigation and aquifer recharge.Replacing flood irrigation with subirrigation or drip irrigation techniques is a high priority.7.REACHING OUTThe traditional functions of soil have been:(i)the medium for plant growth,(ii)foundation for civil structures,and (iii)source of raw materials for industry.During the 21st century and beyond,functions of soil must be expanded to include the following:(i)mitigation of climate change through C seques-tration in terrestrial and aquatic ecosystems,(ii)purification of water through filtration and denaturing of pollutants,(iii)dis-posal of urban and industrial wastes in a way that these do not contaminate water or pollute air,(iv)store germ plasm includ-ing that of microbes which can be used to combat diseases,(v)archive human and planetary history,(vi)support being a reactor of chemical and physical processes,and (vii)provide a strategic entity in national and international a ffairs to give peace a chance.The concept of “sustainable agriculture”needs to be revis-ited in the context of the need for increasing productivity in developing countries which will entirely inherit the future in-crease in population of 3.5billion by the end of the 21st cen-tury.With reference to the densely populated countries of Asia and Africa,sustainable agricultural practices are those which:(i)maximize productivity per unit area,time and input of fer-tilizers,water and energy,(ii)optimize the use of o ff-farm in-put,(iii)increase household income through increase in pro-duction,trading of carbon credits,o ff-farm employment,and value addition of farm produce,(iv)improve quality and quan-tity of fresh water resources at the farm level,(v)provide edu-cation opportunities especially for women,(vi)create clean household cooking fuel for the rural population to improve health of women and children and spare animal dung and crop residues for use as soil amendments,and (vii)address con-cerns of the farm family especially food security until the next harvest.It is a fact that indiscriminate use of chemicals,exces-sive tillage and luxury irrigation have degraded soils,polluted waters and contaminated air.The problem is not with the tech-nology.It has been the over-fertilzation,overuse of pesticides,excessive application of irrigation because of free water,un-necessary plowing,complete removal of crop residues along with uncontrolled grazing,and the use of animal dung for household fuel rather than soil amendment that have caused the problems.Access to adequate and balanced food and clean drinking water are the most basic human rights which must be re-spected.Political stability and ethnic conflicts are caused by hunger and the desperateness created by it.Thus,the concept of sustainable agriculture must be based on the simple fact that agricultural ecosystems are only sustainable in the long-term if the outputs of all components produced balance the inputs into the system.Whether the required amount of input (nutrients)to obtain the desired yield is supplied in organic rather than inorganic form is a matter of availability and logistics.Plants cannot di fferentiate the nutrients supplied through the organic or synthetic sources.The important question is of supplying nutrients in adequate quantity and when needed to produce enough food to meet the needs of 6.5billion people now and 10billion by the end of the century.In some cases,in vicin-ity of large livestock or poultary farms,organic manures maySoils and sustainable agriculture.A review 63Global Food Security Through Increase in SoilQualityTerrestrial Carbon Sequestration to Mitigate ClimateChangeDesertification Control to Restore Degraded Soils andEcosystemsEnhancing Biodiversity Through Improvement in Quality of Soil & BioticFactorsAlleviation of Rural Poverty Through Increase in AgronomicProductivity & Trading of CarbonCreditsFigure 5.A positive and synergistic interaction between desertification control,biodiversity improvement,climate change mitigation,and food security.The latter is improved through improvement in soil quality,increase in availability of water resources,strengthening of elemental cycling,and enhancement of bioturbation in the rhizosphere.Soil scientists and agronomists must be actively pursuing quantification of these synergistic e ffects.be available.In other cases,massive intervention through fer-tilizer use has no practical alternatives in a world of growing population.In some cases traditional breeding is acceptable,in others the natural process of gene manipulation may have to be accelerated through techniques of genetic engineering.The strategy is to use the technology prudently and with utmost objectivity and rationality.Transgenic plants can be grown on degraded and salt-a ffected soils to produce biomass for bio-fuels,and to alleviate biotic and abiotic stresses on dryland agriculture.If e ffective,why not?While those holding the neo-Malthusian views will again be proven wrong through adoption of already proven and emerg-ing technologies for sustainable management of soil resources,soil scientists and agronomists cannot undertake these seri-ous issues all by themselves.These are far reaching and com-plex functions that soil scientists may take lead in but must develop close cooperation with other disciplines.While ad-vancing and improving the knowledge of basic processes,soil scientists must also work with geologists,hydrologists,clima-tologists,biologists,chemists,physicists,computer scientists,nanto technologists,system engineers,economists and politi-cal scientists to address these emerging issues of the 21st cen-tury.The key strategy is to reach out to other disciplines while strengthening and advancing the science of soil and its dynam-ics in an ever changing physical,social,economic and polit-ical climate.Agriculture,implemented properly,is an impor-tant solution to the issue of achieving global food security but also of improving the environment.The agricultural history of10to 13millenia has taught us that the motto of modern civi-lization must be “In Soil We Trust”.REFERENCESBrahic C.(2006)Price cash rattles Europe’s CO 2reduction scheme,Science 312,1123.Breslau K.(2006)It can pay to be green,clean air means profits at theclimate exchange,Newsweek,22May 2006,45.Brown K.S.(1999)Bright future –or brief flare –for renewable energy,Science 285,678–680.Cassman K.,Eidman V .,Simpson E.(2006)Convergence of agricultureand energy,CAST Commentary QTA 2006-3,CAST,DeMoines,IA,12p.Clay J.(2004)World Agriculture and The Environment:A Commodityby Commodity Guide to Impacts and Practices,Island Press,Washington,DC,570p.Cohen J.E.(2003)The human population:next half century,Science 320,1172–1175.Fischer G.,Heilig G.K.(1997)Population momentum and the demand onland and water resources,Philos.T.Roy.Soc.B 352,869–889.Gleick P.H.(2003)Global fresh water resources,Science 302,1524–1528.Johnson N.,Revenga C.,Echeverria J.(2001)Managing water for peopleand nature,Science 292,1071–1074.Kondratyev K.Y .,Krapivin V .F.,Varotsos C.A.(2003)Global carbon cy-cle and climate change,Springer-Verlag,Berlin,388p.lLal R.(2005)World crop residues production and implications of this use as a biofuel,Environ.Int.31,575–584.Lal R.(2006)Enhancing crop yields in developing countries through restoration of soil organic carbon pool in agricultural lands,Land Degrad.Dev.17,197–206.Oldeman L.R.(1994)The global extent of soil degradation,in:GreenlandD.J.,Szabolcs I.(Eds.),Soil Resilience and Sustainable Land Use,CAB International,Wallingford,UK,pp.99–118.Schrag D.(2007)Preparing to capture carbon,Science315,812–813. Service R.F.(2007)Cellulosic Ethanol:Biofuel Researchers Prepare to Reap New Harvest,Science315,1488–1491.Somerville C.(2006)The billion ton biofuel vision,Science312,1277.Tilman D.,Hill J.,Lehman C.(2006)Carbon-negative biofuels from low-input high-diversity grassland biomass,Science314,1598–1660.USEPA(2006)Municipal solid waste(online).Available at /epaoswer/non-hw/muncpl/EPA, Washington,DC.Weisz P.B.(2004)Bad choices and constraints on long-term energy sup-plies,Physics Today,July2004,47–52.Wilhelm W.V.,Johnson J.M.F.,Hatfield J.L.,V orhees W.B.,Linden D.R.(2004)Crop and soil productivity response to crop residue manage-ment:a literature review,Agron.J.96,1–17.。