北师大版-数学-八年级上册-《用二元一次方程组确定一次函数表达式》教学设计

合集下载

北师大版数学八年级上册用二元一次方程组确定一次函数表达式课件

北师大版数学八年级上册用二元一次方程组确定一次函数表达式课件

对点范例
1.一次函数y=kx+b,经过(1,1),(2,-4),则k与b的值为(
)C k=3,
A. b=-2
k=-3, B. b=4
k=-5, C. b=6
k=6, D. b=-5
知识重点 知识点二:根据实际问题求一次函数表达式 根据实际问题给出的条件选取___两__个____等量关系,再用待定系数 法求出一次函数的表达式.
对点范例 3. 已知一次函数的图象如图5-7-1,则此函数的解析式为 _____y_=_2_x_-_8_______.
课堂演练 典例精析 【例1】如图5-7-2,直线AB对应的函数 表达式是___y_=_____x_+_2______.
思路点拨:根据图象上两个特殊点的坐标,利用待定系数法即 可确定直线的函数表达式.
对点范例 2.有一段导线,在0 ℃时电阻为2 Ω,温度每增加1 ℃,电阻增 加0.008 Ω,那么电阻R(Ω)表示为关于温度t(℃)的函数关系式 为( A ) A. R=2+0.008t B. R=2-0.008t C. t=2+0.008R D. t=2-0.008R
知识重点 知识点三:根据图象求一次函数表达式 选取图象上的___两__个____特殊点,再用待定系数法求出一次函数的 表达式.
举一反三
2. 某商场经营一批进价为2元的小商品,在市场营销中发现此商 品的日销售单价x(元)与日销售量y(件)之间有如下关系:
x/元
3
5
9
11
y/件
18
14
6
2
(1)求日销售量y与日销售单价x的函数关系式; (2)根据(1)中所求的函数关系式计算当日销售单价为6元时 ,日销售量是多少件.
解:(1)由题意,知y与x是一次函数关系,设y与x的函数关系

北师大版八年级数学上册用二元一次方程组确定一次函数表达式课件

北师大版八年级数学上册用二元一次方程组确定一次函数表达式课件
议一议(1)对照教材,比较你的做法与小明,小亮与小颖的方法有什么不同?与同伴交流(2)思考讨论:图象法与代数法在解决问题时有什么不同?
用作图象的方法可以直观地获得问题的结果,但有时却难以准确,为了获得准确的结果,我们一般用代数方法。
2. 例:某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(kg)的一次函数,现知李明带了60kg的行李,交了行李费5元,王华带了90kg的行李,交了行李费10元.
(1)写出y与x之间的函数表达式
(2)旅客最多可免费携带多少千克的行李?
解:(1)设y=kx+b,根据题意,得
解得
所以 y与x之间的函数表达式为
(2)当y=0时,解得x=30所以旅客最多可以免费携带30 kg的行李。
学习新知
(1)一般设一次函数的表达式为什么?(2)确定一次函数的表达式关键是确定哪些参数的值?(3)确定一次函数的表达式需要几个条件?(4)确定一次函数的表达式需要几个步骤?
四、学习新知
你有几种解决上述问题的方法?它们有什么不同之处?
10080604020
小明的方法求出的结果准确吗?
1
2
3
5
2.8
你明白他的想法吗? 用他的方法做一做, 看看和你的结果一致吗?
用方程解行程问题
1 h后乙距A地80 km,即乙的速度是 20 km/h,
解:(1)设y=kx+b,根据题意,得
解得
∴y与x之间的函数表达式为
(2)当x=4时,y=0.5×4+14.5解得y=16.5∴当所挂物体的质量为4kg时弹簧的长为16.5cm.
五、课内训练(一)
2.图中的两条直线 , 的交点坐标是 ,

北师大版数学八年级上册《1 认识二元一次方程组》说课稿1

北师大版数学八年级上册《1 认识二元一次方程组》说课稿1

北师大版数学八年级上册《1 认识二元一次方程组》说课稿1一. 教材分析《北师大版数学八年级上册》第一章《认识二元一次方程组》是整个初中数学的重要内容,也是解决实际问题的基础。

本章主要介绍二元一次方程组的概念、解法及其应用。

通过本章的学习,学生能够理解二元一次方程组的意义,掌握解二元一次方程组的方法,提高解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了代数的基本知识,具备一定的逻辑思维能力。

但是,对于二元一次方程组这一概念,学生可能初次接触,理解上存在一定的困难。

因此,在教学过程中,我将以学生已有的知识为基础,引导学生逐步理解二元一次方程组的概念,并通过实例让学生感受其在实际问题中的应用。

三. 说教学目标1.知识与技能:学生能够理解二元一次方程组的概念,掌握解二元一次方程组的方法,能够运用二元一次方程组解决实际问题。

2.过程与方法:通过自主学习、合作交流,学生能够培养发现问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,提高学生解决实际问题的能力。

四. 说教学重难点1.教学重点:二元一次方程组的概念、解法及其应用。

2.教学难点:二元一次方程组的解法,特别是解的判断。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、积极参与。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件、网络资源等现代教育技术手段,提高教学效果。

六. 说教学过程1.导入新课:通过生活实例引入二元一次方程组的概念,激发学生的学习兴趣。

2.自主学习:学生自主探究二元一次方程组的解法,总结解题规律。

3.合作交流:学生分组讨论,分享解题心得,互相学习,培养团队合作精神。

4.教师讲解:针对学生的疑问和困难,教师进行讲解,引导学生深入理解二元一次方程组的概念和解法。

5.巩固练习:学生独立完成练习题,检验学习效果。

6.拓展应用:学生分组解决实际问题,体会数学在生活中的应用。

北师版初中数学八年级上册精品教学课件 第5章 7用二元一次方程组确定一次函数表达式

北师版初中数学八年级上册精品教学课件 第5章 7用二元一次方程组确定一次函数表达式

费?
思路分析 (1)由给出的图形可以知道,前3分钟的通话费是多少?
(2)求射线BC所在直线的函数表达式需要几个条件?分别是什么?
(3)由求出的一次函数表达式能求出通话8分钟的电话费吗?
解 设射线BC所在直线的函数表达式为y=kt+b(k≠0,t≥3).
因为点B(3,2.4),C(5,4.4)在射线BC所在直线上,
41 000
53 500
成本y/元

(1)经过对上表中数据的探究,发现这种读物的投入成本y(单位:元)是印数
x(单位:册)的一次函数,求这个一次函数的表达式(不要求写出x的取值范
围);
(2)如果出版社投入成本48 000元,那么能印该读物多少册?
思路分析 设出一次函数表达式→选择表中的两组数值→代入表达式中,列
出方程组→求出k,b的值→确定函数表达式.
解 (1)设所求一次函数的表达式为y=kx+b(k≠0).
由题表中数据知,当x=5 000时,y=28 500;
当x=8 000时,y=36 000.
把它们分别代入函数表达式中,得
5
5 000 + = 28 500,
解得 = 2 ,
8 000 + = 36 000,
二元一次方程组
7
用二元一次方程组确定一次函数表达式
核心·重难探究
知识点
确定一次函数表达式
【例1】 某出版社出版一种适合中学生阅读的科普读物,若该读物首次出
版印刷的印数不少于5 000册时,投入的成本与印数间的相应数据如下:
5 000
8 000
10 000
15 000
印数x/册

28 500

5.7用二元一次方程组确定一次函数表达式教案

5.7用二元一次方程组确定一次函数表达式教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
并求解得到k和b的值,进而确定一次函数的表达式。
2.教学难点
-难点一:理解一次函数图象与方程组之间的联系。对于一些学生来说,理解图象上的点如何转化为方程组中的未知数可能会存在困难。
解决方法:通过图象的直观展示,结合具体例子的逐步引导,帮助学生建立起图象与方程组之间的联系。
-难点二:在求解方程组时,如何正确选择和运用求解方法。学生在面对不同的方程组时,可能会在选择方法上感到困惑。
具体内容包括:
(1)回两点坐标,列出一个包含k和b的二元一次方程组;
(3)求解二元一次方程组,得到k和b的值,进而确定一次函数表达式;
(4)通过实际案例,让学生练习如何运用二元一次方程组求解一次函数表达式。
二、核心素养目标
1.培养学生逻辑推理能力:通过分析一次函数图象上的点与方程组之间的关系,让学生掌握推理方法,提高逻辑思维能力。
这些核心素养目标与新教材要求相符,旨在帮助学生全面提高数学学科素养,为未来学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
-理解一次函数图象上任意两点与二元一次方程组之间的关系,这是本节课的核心内容。重点讲解如何从一次函数图象上的两点坐标出发,构建出包含斜率k和截距b的二元一次方程组。
-掌握求解二元一次方程组的方法,并能够将其应用于确定一次函数表达式。强调学生熟练运用代入法、消元法等方法求解方程组,进而得到一次函数的表达式。

《二元一次方程与一次函数》教学设计

《二元一次方程与一次函数》教学设计

5.6二元一次方程与一次函数教学设计深圳市龙岗中学姚颖妍一、教材分析《二元一次方程与一次函数》是北师大版教科书八年级(上)第五章第六节内容。

该节内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。

本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的。

二、学情分析在八年级上册第四章第3节学生已经学习了如何根据已知条件准确画出一次函数的图象,初步掌握了一次函数及其图象的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。

同时,在本章中的第二节“求解二元一次方程组”中学生已经能够正确解方程(组),能够认识和接受函数解析式与二元一次方程之间的互相转换。

在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验。

三、教学目标1、知识目标:(1)初步理解二元一次方程和一次函数的关系。

(2)掌握二元一次方程组和对应的两条直线之间的关系。

(3)掌握二元一次方程组的图象解法。

2、能力目标:(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法。

(2)通过自主探究,进一步发展学生数形结合的意识和能力。

3、情感态度和价值观目标;(1)让学生积极参与数学活动,对数学有好奇心和求知欲,.感受成功的快乐,体验独自克服困难、解决数学问题的过程。

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

四、教学重难点1、教学重点:(1)二元一次方程和一次函数的关系。

北师大版数学八年级上册第5章第8课时用二元一次方程组确定一次函数表达式课件

北师大版数学八年级上册第5章第8课时用二元一次方程组确定一次函数表达式课件
思路点拨:把x=-4,y=9;x=6,y=3分别代入已知函 数解析式,列出关于系数k,b的方程组,通过解方程组来求 它们的值.
1. 在平面直角坐标系中,直线l经过点(2,3), (-1,-3),求直线l的解析式.
【例2】(课本P127习题)在弹性限度内,弹簧的长度 y(cm)是所挂物体质量x(kg)的一次函数.当所挂物体 的质量为1 kg时,弹簧长15 cm;当所挂物体的质量为3 kg 时,弹簧长16 cm. (1)写出y与x之间的关系式; (2)求当所挂物体的质量为4 kg时,弹簧的长度.
D. t=2-0.008R
知识点三 根据图象求一次函数表达式
选取图象上的___两__个_____特殊点,再用待定系数法求出一 次函数的表达式.
3. 已知一次函数的图象如图5-8-1,则此函数的解析式 为____y_=__2_x_-__8____.
课堂导练
【例1】已知一次函数y=kx+b,当x=-4时,y的值为9; 当x=6时,y的值为3,求该一次函数的关系式.
3. (创新变式)已知一次函数y=kx+b的自变量的取值范围 是-4≤x≤2,相应函数值的取值范围是-5≤y≤7,求此 函数的解析式.
谢谢
根据实际问题给出的条件选取___两__个_______等量关系,再 用待定系数法求出一次函数的表达式.
2. 有一段导线,在0 ℃时电阻为2 Ω,温度每增加1 ℃,
电阻增加0.008 Ω,那么电阻R(Ω)关于温度t(℃)的函数
Байду номын сангаас
关系式为( A )
A. R=2+0.008t
B. R=2-0.008t
C. t=2+0.008R
探究新知
知识点一 用待定系数法确定一次函数表达式

《用二元一次方程组确定一次函数的表达式》优秀教案

《用二元一次方程组确定一次函数的表达式》优秀教案

八年数学导学案
课题57用二元一次方程组确定一次函数的表达式
课型新授课课时1课时
学习目标1理解作函数图像的方法与代数方法各自的特点
2掌握利用二元一次方程组确定一次函数的表达式
3进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化
学习重点
利用二元一次方程组确定一次
函数的表达式学习
难点
理解方程与函数的联系
导学流程教学过程教学内容
预习交流
问题导学
交流展示
评价点拨一、学习准备
1二元一次方程组与一次函数的联系有
2二元一次方程组的解法有
二、解读教材
阅读教材-7 ()15
y m x
=++1
m<-1
m>-1
m=-),C(6,-1)在同一条直线上,求m的值。

=b,图像经过点A2,4,B0,2两点,且与轴交于点C。

(1)求这个函数的表达式。

(2)求△AOC的面积
(2,2)和点B(-2,-4)
(1)求AB的函数表达式;
(2)求图像与轴、轴的交点坐标C、D,并求出直线AB与坐标
轴所围成的面积;
(3)如果点M(a,
2
1
)和N(-4,b)在直线AB上,求a,b
的值。

解得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章二元一次方程组用二元一次方程组确定一次函数表达式一、教材分析《用二元一次方程组确定一次函数表达式》是义务教育课程标准北师大版实验教科书八年级(上)第五章《二元一次方程组》第七节,本节内容安排了1个学时完成.主要是通过对作图像方法与代数方法的比较,探索利用二元一次方程组确定一次函数的表达式.这一内容是上一课时内容的自然发展,上一课时探索了函数与方程之间的关系,并获得了方程组的图像解法,本节课研究利用二元一次方程组确定一次函数的表达式,这样更为全面地理解函数与方程、图形与代数表达式之间的关系,从而发展学生数形结合的意识。

二、学情分析学生已经熟练掌握了二元一次方程组的解法,同时在第六章也学习了确定一次函数的表达式的基本方法,在上一节课又学习了二元一次方程组的图像解法,这些知识为本节课的学习作好了很好的铺垫.由于上节课的惯性,学生易在图像法上停留,因为图像法很直观,容易接受,因此本节课对代数方法的渗透应有一个循序渐进的过程.三、目标分析教学目标知识与技能目标1.理解作函数图像的方法与代数方法各自的特点.2.掌握利用二元一次方程组确定一次函数的表达式.3.进一步理解方程与函数的联系.过程与方法目标:1.经历应用问题多种解法的探究过程,在探究中学会解决应用问题的一些基本方法和策略.2.在对作图像解法与代数解法的对比中,体会知识之间的普遍联系和知识之间的相互转化.3.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.情感与态度目标:1.在探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.教学重点利用二元一次方程组确定一次函数的表达式.教学难点建立数形结合的思想.四、教法学法1.教学方法启发引导与自主探究相结合.2.课前准备教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本,坐标纸.五、教学过程本节课设计了六个教学环节:第一环节,复习引入;第二环节,设计实际问题情境,导入新课;第三环节,典型例题,探究二元一次方程组确定一次函数的表达式;第四环节,练习与提高;第五环节,课堂小结;第六环节,布置作业.第一环节复习引入内容:(1)二元一次方程组与一次函数有何联系?(2) 二元一次方程组有哪些解法?意图:通过(1)问,体会函数和方程之间的联系——二元一次方程组的解是它们对应的两个一次函数图像的交点坐标;反之,两个一次函数图像的交点也是它们所对应的二元一次方程组的解;所以方程问题可以转化为函数来解决,同样函数问题也可以通过方程问题来加以解决.为后面利用二元一次方程组确定一次函数的表达式埋下伏笔.通过(2)问,让学生感受解决问题的方法的多样性和知识之间是互相联系的,为后面利用作图像方法和代数方法解决议一议的问题作铺垫.效果:回忆旧知,为本节课学习新的知识做铺垫.第二环节设计实际问题情境,导入新课内容:教材议一议A ,B 两地相距100千米,甲、乙两人骑车同时分别从A ,B 两地相向而行.假设他们都保持匀速行驶,则他们各自到A 地的距离S (千米)都是骑车时间t (时)的一次函数.1小时后乙距离A 地80千米;2小时后甲距离A 地30千米.问经过多长时间两人将相遇?意图:通过实际问题情景,进一步加强函数与方程的联系,让学生在多种方法解决问题的思考和比较中体会作图像方法与代数方法各自的特点,为讲解待定系数法确定一次函数的解析式做好铺垫.同时理解知识之间有着广泛的联系. 通过“小明的方法求出的结果准确吗?”自然过渡到本节课的主要内容。

效果:通过引例的分组探索,深刻理解图像方法可以更直观、形象,但缺乏准确,用代数方法虽然准确,但不够形象和直观.第三环节 典型例题,探究一次函数解析式的确定内容:例1 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.(1) 写出y 与x 之间的函数表达式;(2) 旅客最多可免费携带多少千克的行李?解:(1)设b kx y +=,根据题意,可得方程组⎩⎨⎧+=+=.9010,605b k b k 解该方程组,得⎪⎩⎪⎨⎧-==.5,61b k 所以.561-=x y (2)当x =30时,y =0. 所以旅客最多可免费携带30千克的行李. 例2 某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示.(1) 分别写出当0≤x ≤15和x >15时,y 与x 的函数关系式;(2) 若某用户十月份用水量为10吨,则应交水费多少元?若该用户十一月份交了51元的水费,则他该月用水多少吨?解:(1)当0≤x ≤15时,设x k y 1=,根据题意得11527k =,解得591=k 所以当0≤x ≤15时,x y 59=; 当x >15时,设b x k y +=2,根据题意,可得方程组⎩⎨⎧+=+=.2039,152722b k b k 解这个方程组,得⎪⎩⎪⎨⎧-==.9,5122b k所以当x >15时,9512-=x y . (2)当x =10时,代入x y 59=中,得y =18. 当y =51时,代入9512-=x y 中,得x =25. 意图:通过两个例题的探索,让学生掌握利用二元一次方程组确定一次函数的表达式的方法;在设计本例题时,考虑到两种类型,一是利用文字提供的信息,一种是利用图像提供的信息,补充例2主要是承接第六章,一次函数图像的应用,进一步强化学生数形结合的意识,学会从图形中获取有用的信息.效果:通过两个例题的讲解,让学生掌握利用二元一次方程组确定一次函数的表达式的具体的做法,让学生深刻理解解决这种问题的一般步骤与方法,使学生有知识迁移的基础.第四环节 练习与提高内容:1. 图中的两条直线1l ,2l 的交点坐标可以看做方程组 的解答案:⎩⎨⎧-=-=+.12,4y x y x2. 在弹性限度内,弹簧的长度y (厘米)是所挂 物体质量x (千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x 之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案:5.145.0+=x y当x =4是,y =5.163. 教材例2的再探索:我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶,如图所示,1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.当时间t 等于多少分钟时,我边防快艇B 能够追赶上A 。

答案:直线1l 的解析式:x y 531=,直线2l 的解析式:6512+=x y 15分钟意图:通过练习1,强化函数与方程的关系,同时也是利用二元一次方程组确定一次函数解析式这一方法的训练;练习2是配合例1出的一个练习,目的是强化本节知识的重点“利用二元一次方程组确定一次函数解析式”;练习3是第六章“一次函数图像的应用”一节中的例2,目的在于加强学生数形结合思想的应用,以及从图形中获取有用的信息,同时也是对本节课教学重点的强化.让学生明白新旧知识之间是有着知识上的联系的.效果:通过学生的解答和老师的讲解,让学生掌握这类问题解决的一般方法,为课堂小结做好铺垫.1l2l第五环节 课堂小结内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:b kx y +=()0≠k ;2.将已知条件代入上述表达式中得k ,b 的二元一次方程组;3.解这个二元一次方程组得k ,b ,进而得到一次函数的表达式.意图和效果:让学生对本节课的内容作概括的归纳与整理.第六环节 布置作业习题5.8六、课后反思(1)设计理念事物之间是存在普遍联系的,研究二元一次方程组与一次函数之间的关系应证了辨证唯物主义的这一观点.同时利用二元一次方程组解决一次函数问题也是初中阶段数学学习的一个重要内容.教材通过引例对图像方法与代数方法的比较,使学生了解解决应用问题的策略和方法是多样性的,同时也使学生理解图像方法与代数方法在解决具体问题中各自的优劣,从而对方法作出正确的选择.通过一个具体的例子,让学生掌握用二元一次方程组解决一次函数问题的一般步骤与方法.(2)突出重点、突破难点的策略本节课是二元一次方程组和一次函数关系的第二节课,主要要求学生能够利用二元一次方程组解决一次函数的解析式问题,根据一次函数解析式进一步解决相关的一些问题,关于这方面的练习,以老师的讲解为主,在此基础上,还要让学生动手、动脑去解决问题,在技能上作出强化.作为第二节课,在内容上要让学生进一步理解它们之间的联系的同时,要让学生理解为什么要用二元一次方程组去求解一次函数的解析式的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解图像方法和代数方法解决问题的优点和缺点,在这个基础上,学生掌握用二元一次方程组解决一次函数的解析式问题才会有着坚实的理论基础,有关这一方面的题目要让学生充分讨论,其理解才会深刻;同时要以这一部分的知识为载体,让学生理解解决问题方法的多样性的,结合函数的图像,进一步理解数形结合的思想在数学学习中的重要性.(3)评价方式根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对问题的理解水平和解决过程中的表述水平,关注的是学生对基本知识技能的掌握情况和应用二元一次方程组解决一次函数的解析式的相关问题的提高.教学中可通过学生对“做一做”的探究情况和学生对反馈练习的完成情况分析学生的认识状况和解决问题的意识和能力水平.对于学生的回答教师应给予恰当的评价和鼓励,帮助学生认识自我,建立自信,发挥评价的教育功能.附:板书设计。

相关文档
最新文档